Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Environ Monit Assess ; 196(8): 689, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958781

ABSTRACT

Authorities have long proved the utility of bioindicators in monitoring the state of environmental pollution. Some biological indicators can measure environmental pollutant levels, and many tree species have been tested for suitability for monitoring purposes. The differences in morphological characteristics in the trees have demonstrated the effects of human activities on different materials. Measuring bark and wood biomass from contaminated sites was identified and directly compared with those from a clean site or areas characterized by distinct contamination sources. However, preliminary results demonstrate the approach's potential in the realization of strategies for disease control and promoting health to reduce environmental and health inequalities in at-risk urban areas. Picea orientalis L. and Cedrus atlantica Endl., especially their bark, can be regarded as a more robust storage of Cu (37.95 mg/kg) and Mn (188.25 mg/kg) than Pinus pinaster, Cupressus arizonica, and Pseudotsuga menziesii, which and is therefore a better bioindicator for Cu and Mn pollution. Considering the total concentrations as a result of the study, the pollution is thought to be caused by environmental problems and traffic in the region. The deposition of Cu, Mn, Ni, and Zn elements was found P. menziesii (60, 443, 58, and 258 mg/kg) and P. orientalis (76, 1684, 41, and 378 mg/kg) and seems to reflect atmospheric quite clearly compared to P. pinaster, C. arizonica, and C. atlantica. Ni and Zn concentrations have significantly increased since 1983, and P. menziesii and P. orientalis can be potentially valuable bioindicators for emphasizing polluted fields.


Subject(s)
Air Pollutants , Environmental Monitoring , Plant Bark , Environmental Monitoring/methods , Air Pollutants/analysis , Plant Bark/chemistry , Trees , Metals, Heavy/analysis , Biological Monitoring/methods , Cities , Picea/chemistry
2.
Sci Rep ; 14(1): 15090, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956124

ABSTRACT

Arid and semi-arid areas are among the most threatened ecosystems on the planet. The Tehuacán-Cuicatlán Biosphere Reserve (TCBR), in southeastern Mexico, is an arid and semi-arid area with high biological diversity and human settlements of eight ethnic groups. Two rivers drain the reserve, Río Grande (RG) and Río Salado (RS), which are not subject to water quality monitoring by government agencies; however, measures of water quality of these rivers are needed to focus conservation actions on this resource. This work aimed to test the effectiveness of participatory water quality monitoring with the participation of three actors: Reserve management leaders, local communities, and academics, to monitoring water quality in the rivers of the TCBR. Ninety-two residents were trained to carry out water quality biomonitoring using the Biological Monitoring Working Party (BMWP) index calibrated for the reserve. The BMWP uses macroinvertebrate families to display numerical and categorical water quality scores. Additionally, the Water Quality Index (WQI) was assessed and the Normalized Difference Vegetation Index (NDVI) of the riparian zones was estimated in each study site. The mean WQI scores were 69.24 for RS (no treatment necessary for most crops and necessary treatment for public water supply) and 75.16 for RG (minor purification for crops requiring high-quality water and necessary treatment for public water supply). The BMWP showed five water quality categories (Excellent, Very Good, Good, Fair, and Poor), showing higher water quality scores in the upper portion of the basins and capable of discriminating study sites with lower scores close to human settlements. At one study site, data from participatory monitoring impelled actions taken to address a pollution source and influenced policy focus, reaching the maximum level of participatory-based monitoring. This led to avoid the discharge of wastewater into the river to conserve and protect the water resource. WQI is closely related to BMWP; however, the latter was far more sensitive to detecting areas affected by domestic water discharges. The NDVI presented low values for the TCBR, being lower in RS (the driest area). Although the NDVI showed a weak relationship with BMWP values, areas with higher NDVI values generally achieved higher BMWP values. The results of this study highlight the high sensitivity of the BMWP to detect several water quality conditions in the rivers running through the TCBR when compared to WQI. In addition, the usefulness of biomonitoring using the BMWP index was evident, as well as the importance of the participation of local inhabitants contributing to the knowledge of water quality in biosphere reserves and carrying out timely measures that allow the rivers in these reserves to be maintained in good condition.


Subject(s)
Citizen Science , Indigenous Peoples , Rivers , Water Quality , Mexico , Humans , Ecosystem , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Water Supply/standards , Biological Monitoring/methods , Desert Climate
3.
J Toxicol Environ Health B Crit Rev ; 27(5-6): 212-232, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38845364

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of significant public health concern, with several that are highly toxic to humans, including some proven or suspected carcinogens. To account for the high variability of PAH mixtures encountered in occupational settings, adjusting urinary 1-hydroxypyrene (1-OHP) levels by the total airborne pyrene (PyrT)/benzo[a]pyrene (BaP) ratio is essential for human biomonitoring (HBM). Given the complexity and cost of systematically monitoring atmospheric levels, alternative approaches to simultaneous airborne and HBM are required. The aim of this review was to catalog airborne PyrT/BaP ratios measured during different industrial activities and recommend 1-OHP-dedicated biological guidance values (BGV). A literature search was conducted. Seventy-one studies were included, with 5619 samples pertaining to 15 industrial sectors, 79 emission processes, and 213 occupational activities. This review summarized more than 40 years of data from almost 20 countries and highlighted the diversity and evolution of PAH emissions. PyrT/BaP ratios were highly variable, ranging from 0.8 in coke production to nearly 40 in tire and rubber production. A single PyrT/BaP value cannot apply to all occupational contexts, raising the question of the relevance of defining a single biological limit value for 1-OHP in industrial sectors where the PyrT/BaP ratio variability is high. Based upon the inventory, a practical approach is proposed for systematic PAH exposure and risk assessment, with a simple frame to follow based upon specific 1-OHP BGVs depending upon the occupational context and setup of a free PAH HBM interactive tool.


Subject(s)
Air Pollutants , Benzo(a)pyrene , Biological Monitoring , Pyrenes , Pyrenes/analysis , Pyrenes/urine , Humans , Benzo(a)pyrene/analysis , Biological Monitoring/methods , Air Pollutants/analysis , Environmental Monitoring/methods , Occupational Exposure/analysis , Industry
4.
PLoS One ; 19(6): e0305398, 2024.
Article in English | MEDLINE | ID: mdl-38917117

ABSTRACT

The Arctic faces increasing exposure to environmental chemicals such as metals, posing health risks to humans and wildlife. Biomonitoring of polar bears (Ursus maritimus) can be used to quantify chemicals in the environment and in traditional foods consumed by the Inuit. However, typically, these samples are collected through invasive or terminal methods. The biomonitoring of feces could be a useful alternative to the current metal monitoring method within the Arctic. Here, we aim to 1) quantify the relationship between concentrations of metals in the feces and tissues (muscle, liver, and fat) of polar bears using predictive modeling, 2) develop an easy-to-use conversion tool for use in community-based monitoring programs to non-invasively estimate contaminant concentrations in polar bears tissues and 3) demonstrate the application of these models by examining potential exposure risk for humans from consumption of polar bear muscle. Fecal, muscle, liver, and fat samples were harvested from 49 polar bears through a community-based monitoring program. The samples were analyzed for 32 metals. Exploratory analysis indicated that mean metal concentrations generally did not vary by age or sex, and many of the metals measured in feces were positively correlated with the internal tissue concentration. We developed predictive linear regression models between internal (muscle, liver, fat) and external (feces) metal concentrations and further explored the mercury and methylmercury relationships for utility risk screening. Using the cross-validated regression coefficients, we developed a conversion tool that contributes to the One Health approach by understanding the interrelated health of humans, wildlife, and the environment in the Arctic. The findings support using feces as a biomonitoring tool for assessing contaminants in polar bears. Further research is needed to validate the developed models for other regions in the Arctic and assess the impact of environmental weathering on fecal metal concentrations.


Subject(s)
Feces , Ursidae , Feces/chemistry , Animals , Female , Male , Arctic Regions , Metals/analysis , Biological Monitoring/methods , Food Contamination/analysis , Humans , Environmental Monitoring/methods , Environmental Pollutants/analysis , Liver/chemistry , Liver/metabolism
5.
Curr Opin Pediatr ; 36(4): 456-462, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38832930

ABSTRACT

PURPOSE OF REVIEW: 21-Hydroxylase deficiency (21-OHD), the most common form of congenital adrenal hyperplasia, is an autosomal recessive disorder caused by pathogenic variants in CYP21A2 . Although this disorder has been known for several decades, many challenges related to its monitoring and treatment remain to be addressed. The present review is written to describe an overview of biochemical monitoring of this entity, with particular focus on overnight fasting urine pregnanetriol. RECENT FINDINGS: We have conducted a decade-long research project to investigate methods of monitoring 21-OHD in children. Our latest studies on this topic have recently been published. One is a review of methods for monitoring 21-OHD. The other was to demonstrate that measuring the first morning PT level may be more practical and useful for biochemical monitoring of 21-OHD. The first morning pregnanetriol (PT), which was previously reported to reflect a long-term auxological data during the prepubertal period, correlated more significantly than the other timing PT in this study, with 17-OHP, before the morning medication. SUMMARY: In conclusion, although the optimal method of monitoring this disease is still uncertain, the use of overnight fasting urine pregnanetriol (P3) as a marker of 21-OHD is scientifically sound and may be clinically practical.


Subject(s)
Adrenal Hyperplasia, Congenital , Fasting , Pregnanetriol , Humans , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/urine , Adrenal Hyperplasia, Congenital/drug therapy , Child , Pregnanetriol/urine , Fasting/urine , Biomarkers/urine , Biomarkers/blood , Steroid 21-Hydroxylase/genetics , Steroid 21-Hydroxylase/urine , Biological Monitoring/methods
6.
Sci Rep ; 14(1): 14291, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906953

ABSTRACT

Parabens (PBs) are used as preservatives in various products. They pollute the environment and penetrate living organisms, showing endocrine disrupting activity. Till now studies on long-term exposure of farm animals to PBs have not been performed. Among matrices using in PBs biomonitoring hair samples are becoming more and more important. During this study concentration levels of methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP) butyl paraben (BuP) and benzyl paraben (BeP) were evaluated using liquid chromatography-mass spectrometry (LC-MS) in hair samples collected from dairy cows bred in the Kyrgyz Republic. MeP was noted in 93.8% of samples (with mean concentration levels 62.2 ± 61.8 pg/mg), PrP in 16.7% of samples (12.4 ± 6.5 pg/mg) and EtP in 8.3% of samples (21.4 ± 11.9 pg/mg). BuP was found only in one sample (2.1%) and BeP was not detected in any sample included in the study. Some differences in MeP concentration levels in the hair samples depending on district, where cows were bred were noted. This study has shown that among PBs, dairy cows are exposed mainly to MeP, and hair samples may be a suitable matrix for research on PBs levels in farm animals.


Subject(s)
Hair , Parabens , Animals , Cattle , Parabens/analysis , Hair/chemistry , Female , Chromatography, Liquid/methods , Hair Analysis/methods , Dairying , Environmental Exposure/analysis , Biological Monitoring/methods
7.
Food Chem Toxicol ; 189: 114774, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824992

ABSTRACT

Furan and 2-methylfuran (2-MF) can form during food processing and accumulate in foods at various concentrations depending on processing technology and beverage/meal preparation methods applied prior to consumption. Here, we report a controlled dosimetry study with 20 volunteers (10 male, 10 female) to monitor dietary furan/2-MF exposure. The volunteers followed an eleven-day furan/2-MF-restricted diet in which they consumed freshly prepared coffee brew containing known amounts of furan and 2-MF on two separate occasions (250 mL and 500 mL on days 4 and 8, respectively). Urine was collected over the whole study period and analyzed for key metabolites derived from the primary oxidative furan metabolite cis-2-butene-1,4-dial (BDA) (i.e., Lys-BDA, AcLys-BDA and cyclic GSH-BDA) and the primary 2-MF metabolite acetylacrolein (AcA, 4-oxo-pent-2-enal) (i.e., Lys-AcA and AcLys-AcA). A previously established stable isotope dilution analysis (SIDA) method was utilized. Excretion kinetics revealed two peaks (at 0-2 and 24-36 h) for AcLys-BDA, Lys-BDA, AcLysAcA and LysAcA, whereas GSH-BDA showed a single peak. Notably, women on average excreted the metabolite GSH-BDA slightly faster than men, indicating gender differences. Overall, the study provided further insights into the spectrum of possible biomarkers of furan and 2-methyfuran metabolites occurring in the urine of volunteers after coffee consumption.


Subject(s)
Biomarkers , Furans , Humans , Furans/urine , Male , Female , Biomarkers/urine , Adult , Coffee/chemistry , Food Contamination/analysis , Young Adult , Dietary Exposure , Middle Aged , Biological Monitoring/methods
8.
PLoS One ; 19(6): e0305053, 2024.
Article in English | MEDLINE | ID: mdl-38924033

ABSTRACT

This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.


Subject(s)
Biodegradation, Environmental , Lead , Mining , Plants , Soil Pollutants , Zinc , Morocco , Zinc/analysis , Zinc/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Lead/metabolism , Lead/analysis , Plants/metabolism , Plants/chemistry , Environmental Monitoring/methods , Biological Monitoring/methods , Soil/chemistry
9.
Front Public Health ; 12: 1336014, 2024.
Article in English | MEDLINE | ID: mdl-38932775

ABSTRACT

Introduction: Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives: This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method: The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis: Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions: Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.


Subject(s)
Biological Monitoring , Pesticide Residues , Humans , Pesticide Residues/urine , Pesticide Residues/analysis , Biological Monitoring/methods , Gas Chromatography-Mass Spectrometry , Mass Spectrometry/methods , Environmental Exposure/analysis , Chromatography, Liquid
10.
Environ Geochem Health ; 46(7): 244, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851657

ABSTRACT

HIGHLIGHTS: Microplastics (MPs) and microrubbers (MRs) determined in lichens and mosses around Shiraz. In lichens, MPs mainly thin fibres up to 1 MP g-1; MRs were < 0.1 MP g-1. In mosses, abundances were similar but with a greater fraction of larger, non-fibrous particles. Larger MPs and MRs decreased in abundance with distance and elevation from Shiraz. Around Shiraz, the common moss, Grimmia critina, would be the most suitable biomonitor. Lichens and mosses have been employed as biomonitors of atmospheric particulate pollutants, like metals and industrial solids, for many decades. Here, we evaluated the potential of nine species of crustose and foliose lichens and a widely distributed moss (Grimmia critina) to act as biomonitors of airborne microplastics (MPs) and microrubbers (MRs). About 200 lichens and 40 mosses were sampled across different altitudinal transects in the vicinity of Shiraz City, southwest Iran, and MPs and MRs were quantified and characterised after sample peroxidation. In most species of lichen, MP and MR abundance overall was < 1 g-1 and < 0.1 g-1, respectively, and the majority of plastics were fibres of < 10 µm in diameter and < 1000 µm in length. Respective weight normalised abundances of MPs and MRs were similar in G. critina, but there were greater proportions of both larger (> 1000 µm) and non-fibrous particles among the MPs. In both lichens and moss, there was a greater number of larger MPs and MRs at locations closest to and at the same elevation as Shiraz than at more distant and elevated locations, suggesting an inverse relationship between particle size and distance travelled. Among the lichens, members of the genus Acarospora, with their areolated form, appeared to act as the most suitable biomonitors for MPs and MRs. Overall, however, the wide distribution of the moss, G. crinita, and its ability to intercept and accumulate a broader range of sizes and shapes of MPs and MRs make this species a better choice, at least in the type of environment studied.


Subject(s)
Air Pollutants , Bryophyta , Lichens , Microplastics , Lichens/chemistry , Iran , Microplastics/analysis , Air Pollutants/analysis , Bryophyta/chemistry , Environmental Monitoring/methods , Biological Monitoring/methods , Particle Size
11.
Environ Sci Pollut Res Int ; 31(26): 38416-38427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38802616

ABSTRACT

Classical monitoring of air pollution provides information on environmental quality but involves high costs. An alternative to this method is the use of bioindicators. The purpose of our work was to evaluate atmospheric aerosol pollution by selected polycyclic aromatic hydrocarbons conducted as part of annual active biomonitoring ("moss-bag" technique) with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. The gas chromatography-mass spectrometry (GC-MS) was utilized to determine certain 13 polycyclic aromatic hydrocarbons (PAHs). Three seasonal variations in PAH concentrations have been observed as a result of the study. A fire on the toilet paper plant caused an increase of five new compounds: benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), indeno(1.2.3)-cd_pyrene (IP), dibenzo(a.h)anthracene (Dah), and benzo(g.h.i)perylene (Bghi) in proximity after 8 months of exposure compared to previous months. The effect of meteorological conditions on the deposition of PAHs (mainly wind direction) in mosses was confirmed by principal component analysis (PCA). Dicranum polysetum moss accumulated on average 26.5% more PAHs than the other species, which allows considering its broader use in active biomonitoring. The "moss-bag" technique demonstrates its feasibility in assessing the source of PAH air pollution in a long-term study. It is recommended to use this biological method as a valuable tool in air quality monitoring.


Subject(s)
Air Pollutants , Biological Monitoring , Bryophyta , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Biological Monitoring/methods , Bryophyta/chemistry , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution , Gas Chromatography-Mass Spectrometry , Seasons
12.
Indian Pediatr ; 61(7): 649-655, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38803097

ABSTRACT

OBJECTIVES: To compare the urinary bisphenol A (BPA) levels in bottle-fed and never bottle-fed infants and under-five children and to determine the impact of bottle-feeding practices and sociodemographic factors on urinary BPA levels. METHODS: A community-based cross-sectional study was carried out on children aged between 2 to 60 months attending the Anganwadi centres in Chandigarh. RESULTS: Urine samples were collected from 184 children, out of which 94.56% (n = 174) children had detectable urinary BPA levels. The mean (SD) BPA level was 2.74 (2.60) ng/ml and BPA was detected in 93.9% of 'ever' bottle-fed children (n = 93/99) and 95.3% of 'never' bottle-fed children (n = 81/85) (P = 0.69). On multivariate regression analysis, there were no significant predictors for high (≥ 75th percentile) urinary BPA levels. Still, the odds of urinary BPA levels ≥75th percentile showed higher trend for significance among children from middle/higher socioeconomic background in reference to lower socioeconomic stratum (adjusted OR 7.02; 95% CI 1.24, 133.25; P = 0.07) and among children whose feeding bottles were brushed once or twice daily in reference to group with no daily brushing (adjusted OR 3.92, 95% CI 0.95, 20.56; P = 0.07). CONCLUSIONS: Although feeding with plastic bottle did not emerge as a statistically significant risk factor for BPA exposure, yet detection of BPA levels among majority of study children signals urgent need for unmasking exposure to other sources given the potential long-term toxicity of BPA among infants and young children.


Subject(s)
Benzhydryl Compounds , Bottle Feeding , Phenols , Humans , Benzhydryl Compounds/urine , Phenols/urine , Infant , India , Bottle Feeding/statistics & numerical data , Child, Preschool , Female , Male , Cross-Sectional Studies , Biological Monitoring/methods
13.
Environ Pollut ; 355: 124219, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38797347

ABSTRACT

Atmospheric pollution is a major public health issue and has become increasingly critical for human health. Urban atmospheric pollution is typically assessed through physicochemical indicators aligned with environmental legislation parameters, providing data on air quality levels. While the effects of pollution on sensitive organisms serve as a warning for public health decision-makers, there remains a need to explore the interpretation of environmental data on pollutants. The use of species adapted to urban environments as sentinels enables continuous and integrated monitoring of environmental pollution implications on biological systems. In this study, we investigated the use of the plant species Tradescantia pallida as a biomonitor to evaluate the genotoxic effects of atmospheric pollution under diverse vehicular traffic conditions. T. pallida was strategically planted at the leading urban intersections in Uberlândia, Brazil. During COVID-19 pandemic lockdowns, we compared indicators such as physical, biological, and traffic data at different intersections in residential and commercial zones. The reduction in vehicular traffic highlighted the sensitivity of plant species to changes in air and soil pollutants. T. pallida showed bioaccumulation of heavy metals Cd and Cr in monitored areas with higher traffic levels. Additionally, we established a multiple linear regression model to estimate genotoxicity using the micronucleus test, with chromium concentration in the soil (X1) and particulate matter (PM) in the atmosphere (X2) identified as the primary independent variables. Our findings provide a comprehensive portrait of the impact of vehicular traffic changes on PM and offer valuable insights for refining parameters and models of Environmental Health Surveillance.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Tradescantia , Tradescantia/drug effects , Tradescantia/genetics , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Biological Monitoring/methods , Brazil , Particulate Matter/analysis , Particulate Matter/toxicity , Cities , Micronucleus Tests , Soil Pollutants/analysis , Soil Pollutants/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Humans , COVID-19
14.
Biomed Chromatogr ; 38(7): e5883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38712625

ABSTRACT

The application of green microextraction techniques (METs) is constantly being developed in different areas including pharmaceutical, forensic, food and environmental analysis. However, they are less used in biological monitoring of workers in occupational settings. Developing valid extraction methods and analytical techniques for the determination of occupational indicators plays a critical role in the management of workers' exposure to chemicals in workplaces. Microextraction techniques have become increasingly important because they are inexpensive, robust and environmentally friendly. This study aimed to provide a comprehensive review and interpret the applications of METs and novel sorbents and liquids in biological monitoring. Future perspectives and occupational indicators that METs have not yet been developed for are also discussed.


Subject(s)
Biological Monitoring , Liquid Phase Microextraction , Occupational Exposure , Solid Phase Microextraction , Humans , Solid Phase Microextraction/methods , Liquid Phase Microextraction/methods , Biological Monitoring/methods , Occupational Exposure/analysis , Green Chemistry Technology/methods
15.
Environ Monit Assess ; 196(6): 513, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709416

ABSTRACT

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.


Subject(s)
Air Pollutants , Environmental Monitoring , Metals, Heavy , Air Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Biological Monitoring/methods , Cities , Bryophyta/chemistry , Industry , Air Pollution/statistics & numerical data , Turkey
16.
Talanta ; 276: 126257, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38781913

ABSTRACT

Alkyl imidazolium ionic liquids (Cn[MIM]), initially heralded as eco-friendly green solvents for diverse industrial applications, have increasingly been recognized fortheir biodegradability challenges and multiple biotoxicity. Despite potential health risks, research into the effects of Cn[MIM] on human health remains scarce, particularly regarding their detection in biological serum samples. This study validated a matrix-matched calibration quantitative method that utilizes solid-phase extraction (SPE) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method was used to analyze the presence of 10 ionic liquids (ILs) with varying alkyl carbon chain lengths (C2-C12) across 300 human serum samples. Efficient separation was achieved using optimized SPE conditions and a BEH C18 column with an appropriate mobile phase. Results demonstrated a strong linear relationship (0.05-100 ng/mL; R2 = 0.995-0.999), with detection and quantification limits with detection and quantification limits ranging from 0.001 to 0.107 ng/mL and 0.003-0.355 ng/mL, respectively. Intraday and inter-day precisions were 0.85-6.99 % and 1.50-7.46 %, with recoveries between 82 and 113 %. The validated method detected C6MIM in 19 % of samples and C8MIM in 8.3 % of samples, with concentrations ranging from 0.02 to 111.70 µg/L and 0.09-16.99 µg/L, respectively, suggesting a potential risk of human exposure. This underscores the importance of robust detection methods in monitoring environmental and human health impacts of alkyl imidazolium compounds.


Subject(s)
Imidazoles , Ionic Liquids , Tandem Mass Spectrometry , Humans , Ionic Liquids/chemistry , Tandem Mass Spectrometry/methods , Imidazoles/chemistry , Imidazoles/blood , Biological Monitoring/methods , Chromatography, High Pressure Liquid/methods , Environmental Exposure/analysis , Solid Phase Extraction , Limit of Detection
17.
Sci Total Environ ; 935: 173243, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38761946

ABSTRACT

Determining biological status of freshwater ecosystems is critical for ensuring ecosystem health and maintaining associated services to such ecosystems. Freshwater macroinvertebrates respond predictably to environmental disturbances and are widely used in biomonitoring programs. However, many freshwater species are difficult to capture and sort from debris or substrate and morphological identification is challenging, especially larval stages, damaged specimens, or hyperdiverse groups such as Diptera. The advent of high throughput sequencing technologies has enhanced DNA barcoding tools to automatise species identification for whole communities, as metabarcoding is increasingly used to monitor biodiversity. However, recent comparisons have revealed little congruence between morphological and molecular-based identifications. Using broad range universal primers for DNA barcode marker cox1, we compare community composition captured between morphological and molecular-based approaches from different sources - tissue-based (bulk benthic and bulk drift samples) and environmental DNA (eDNA, filtered water) metabarcoding - for samples collected along a gradient of anthropogenic disturbances. For comparability, metabarcoding taxonomic assignments were filtered by taxa included in the standardised national biological metric IBMWP. At the family level, bulk benthic metabarcoding showed the highest congruence with morphology, and the most abundant taxa were captured by all techniques. Richness captured by morphology and bulk benthic metabarcoding decreased along the gradient, whereas richness recorded by eDNA remained constant and increased downstream when sequencing bulk drift. Estimates of biological metrics were higher using molecular than morphological identification. At species level, diversity captured by bulk benthic samples were higher than the other techniques. Importantly, bulk benthic and eDNA metabarcoding captured different and complementary portions of the community - benthic versus water column, respectively - and their combined use is recommended. While bulk benthic metabarcoding can likely replace morphology using similar benthic biological indices, water eDNA will require new metrics because this technique sequences a different portion of the community.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Environmental Monitoring , Fresh Water , Invertebrates , Animals , Invertebrates/genetics , Invertebrates/classification , Environmental Monitoring/methods , DNA, Environmental , Ecosystem , Biological Monitoring/methods
18.
Chemosphere ; 359: 142296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729440

ABSTRACT

While plant toxicity reduction remains the primary metric for judging the success of metal immobilization in soil, the suitability of microorganisms as universal indicators of its effectiveness in various contaminated soils remains a point of contention. This study assessed the sensitivity of microbial bioindicators in monitoring metal immobilization success in smelter-impacted soils. It compared plants and microorganisms as indicators of the efficiency of natural Fe-Mn nodules from the Gulf of Finland in immobilizing metals in soils contaminated by a Ni/Cu smelter, on the Kola Peninsula, Murmansk region, Russia. Perennial ryegrass (Lolium perenne) was grown on nodule-amended and control soils. Plant responses in the smelter-impacted soils proved to be sensitive and robust indicators of successful metal immobilization. However, microbial responses exhibited a more complex story. Despite the observed reductions in soluble metal concentrations, shoot metal contents in ryegrass, and significant improvements in plant growth, certain microbial bioindicators were unresponsive to metal immobilization success brought about by the addition of Fe-Mn nodules. Among microbial bioindicators studied, community-level physiological profiling, microbial biomass carbon, and basal respiration were sensitive indicators of metal immobilization success, whereas the number of saprotrophic, oligotrophic, and Fe-oxidizing bacteria and fungi, the biomass of bacteria and fungi, and enzymatic activity were less robust indicators. Interestingly, the correlations between different microbial responses measured were weak or even negative. Some microbial responses also exhibited negative correlations with plant biomass. These findings underscore the need for further research on comparative evaluations of plants and microorganisms as reliable indicators of metal immobilization efficacy in polluted environments.


Subject(s)
Lolium , Soil Microbiology , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Lolium/metabolism , Soil/chemistry , Metals/metabolism , Metals/analysis , Bacteria/metabolism , Biodegradation, Environmental , Russia , Fungi/metabolism , Environmental Monitoring/methods , Finland , Biological Monitoring/methods
19.
Environ Int ; 187: 108707, 2024 May.
Article in English | MEDLINE | ID: mdl-38692149

ABSTRACT

Currently, natural and urban ecosystems are affected by different types of atmospheric deposition, which can compromise the balance of the environment. Plastic pollution represents one of the major threats for biota, including lichens. Epiphytic lichens have value as bioindicators of environmental pollution, climate change, and anthropic impacts. In this study, we aim to investigate the lichen bioaccumulation of airborne microplastics along an anthropogenic pollution gradient. We sampled lichens from the Genera Cladonia and Xanthoria to highlight the effectiveness of lichens as tools for passive biomonitoring of microplastics. We chose three sites, a "natural site" in Altipiani di Arcinazzo, a "protected site" in Castelporziano Presidential estate and an "urban site" in the centre of Rome. Overall, we sampled 90 lichens, observed for external plastic entrapment, melt in oxygen peroxide and analysed for plastic entrapment. To validate the method, we calculated recovery rates of microplastics in lichen. Particularly, 253 MPs particles were detected across the 90 lichen samples: 97 % were fibers, and 3 % were fragments. A gradient in the number of microplastic fibers across the sites emerged, with increasing accumulation of microplastics from the natural site (n = 58) to the urban site (n = 116), with a direct relationship between the length and abundance of airborne microplastic fibers. Moreover, we detected the first evidences of airborne mesoplastics entrapped by lichens. On average, the natural site experienced the shortest fibre length and the centre of Rome the longest. No differences in microplastics accumulation emerged from the two genera. Our results indicated that lichens can effectively be used for passive biomonitoring of microplastic deposition. In this scenario, the role of lichens in entrapping microplastics and protecting pristine areas must be investigated. Furthermore, considering the impact that airborne microplastics can have on human health and the effectiveness of lichens as airborne microplastic bioindicators, their use is encouraged.


Subject(s)
Air Pollutants , Environmental Monitoring , Lichens , Microplastics , Lichens/chemistry , Microplastics/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Biological Monitoring/methods , Cities
20.
J Chromatogr A ; 1725: 464944, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38703459

ABSTRACT

Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert­butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 µg/L to 0.04 µg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 µg/L for boys and 4.90 µg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biological Monitoring , Oxidative Stress , Pesticides , Tandem Mass Spectrometry , Humans , Child, Preschool , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Female , Male , Biological Monitoring/methods , Pesticides/urine , Pesticides/metabolism , 8-Hydroxy-2'-Deoxyguanosine/urine , Limit of Detection , Biomarkers/urine , Liquid-Liquid Extraction/methods , Child
SELECTION OF CITATIONS
SEARCH DETAIL
...