Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.587
Filter
1.
Biochem J ; 481(13): 839-864, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958473

ABSTRACT

The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Discovery , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Discovery/methods , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Humans , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/metabolism , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
2.
Yale J Biol Med ; 97(2): 205-224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947104

ABSTRACT

Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aß formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.


Subject(s)
Alzheimer Disease , Microalgae , Seaweed , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Microalgae/chemistry , Microalgae/metabolism , Seaweed/chemistry , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/isolation & purification , Antioxidants/pharmacology
3.
Bioorg Med Chem ; 109: 117791, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38870715

ABSTRACT

The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.


Subject(s)
Flavonoids , Heterocyclic Compounds , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/chemical synthesis , Humans , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Chemistry, Pharmaceutical , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Animals
4.
Biomolecules ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927063

ABSTRACT

The Ebola virus (EBOV) is a lethal pathogen causing hemorrhagic fever syndrome which remains a global health challenge. In the EBOV, two multifunctional proteins, VP35 and VP40, have significant roles in replication, virion assembly, and budding from the cell and have been identified as druggable targets. In this study, we employed in silico methods comprising molecular docking, molecular dynamic simulations, and pharmacological properties to identify prospective drugs for inhibiting VP35 and VP40 proteins from the myxobacterial bioactive natural product repertoire. Cystobactamid 934-2, Cystobactamid 919-1, and Cittilin A bound firmly to VP35. Meanwhile, 2-Hydroxysorangiadenosine, Enhypyrazinone B, and Sorangiadenosine showed strong binding to the matrix protein VP40. Molecular dynamic simulations revealed that, among these compounds, Cystobactamid 919-1 and 2-Hydroxysorangiadenosine had stable interactions with their respective targets. Similarly, molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations indicated close-fitting receptor binding with VP35 or VP40. These two compounds also exhibited good pharmacological properties. In conclusion, we identified Cystobactamid 919-1 and 2-Hydroxysorangiadenosine as potential ligands for EBOV that target VP35 and VP40 proteins. These findings signify an essential step in vitro and in vivo to validate their potential for EBOV inhibition.


Subject(s)
Antiviral Agents , Biological Products , Ebolavirus , Molecular Docking Simulation , Molecular Dynamics Simulation , Ebolavirus/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Myxococcales/chemistry , Humans , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/chemistry , Nucleocapsid Proteins
6.
Arch Pharm Res ; 47(6): 505-537, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850495

ABSTRACT

The oceans are rich in diverse microorganisms, animals, and plants. This vast biological complexity is a major source of unique secondary metabolites. In particular, marine fungi are a promising source of compounds with unique structures and potent antibacterial properties. Over the last decade, substantial progress has been made to identify these valuable antibacterial agents. This review summarizes the chemical structures and antibacterial activities of 223 compounds identified between 2012 and 2023. These compounds, effective against various bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus, exhibit strong potential as antibacterial therapeutics. The review also highlights the relevant challenges in transitioning from drug discovery to product commercialization. Emerging technologies such as metagenomics and synthetic biology are proposed as viable solutions. This paper sets the stage for further research on antibacterial compounds derived from marine fungi and advocates a multidisciplinary approach to combat drug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Biological Products , Fungi , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Fungi/drug effects , Aquatic Organisms/chemistry , Animals , Humans , Bacteria/drug effects , Drug Discovery , Microbial Sensitivity Tests
7.
Mar Drugs ; 22(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921579

ABSTRACT

Bioprospecting the secondary metabolism of underexplored Actinomycetota taxa is a prolific route to uncover novel chemistry. In this work, we report the isolation, structure elucidation, and bioactivity screening of cellulamides A and B (1 and 2), two novel linear peptides obtained from the culture of the macroalga-associated Cellulosimicrobium funkei CT-R177. The host of this microorganism, the Chlorophyta Codium tomentosum, was collected in the northern Portuguese coast and, in the scope of a bioprospecting study focused on its associated actinobacterial community, strain CT-R177 was isolated, taxonomically identified, and screened for the production of antimicrobial and anticancer compounds. Dereplication of a crude extract of this strain using LC-HRMS(/MS) analysis unveiled a putative novel natural product, cellulamide A (1), that was isolated following mass spectrometry-guided fractionation. An additional analog, cellulamide B (2) was obtained during the chromatographic process and chemically characterized. The chemical structures of the novel linear peptides, including their absolute configurations, were elucidated using a combination of HRMS, 1D/2D NMR spectroscopy, and Marfey's analysis. Cellulamide A (1) was subjected to a set of bioactivity screenings, but no significant biological activity was observed. The cellulamides represent the first family of natural products reported from the Actinomycetota genus Cellulosimicrobium, showcasing not only the potential of less-explored taxa but also of host-associated marine strains for novel chemistry discovery.


Subject(s)
Peptides , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/isolation & purification , Actinobacteria/chemistry , Actinobacteria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Aquatic Organisms , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification
8.
Mar Drugs ; 22(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921585

ABSTRACT

Talaromyces, a filamentous fungus widely distributed across terrestrial and marine environments, can produce a diverse array of natural products, including alkaloids, polyketones, and polyketide-terpenoids. Among these, chrodrimanins represented a typical class of natural products. In this study, we isolated three previously undescribed pentaketide-sesquiterpenes, 8,9-epi-chrodrimanins (1-3), along with eight known compounds (4-11). The structures of compounds 1-3 were elucidated using nuclear magnetic resonance (NMR) and mass spectrometry (MS), while their absolute configurations were determined through X-ray crystallography and electronic circular dichroism (ECD) computations. The biosynthetic pathways of compounds 1-3 initiate with 6-hydroxymellein and involve multiple stages of isoprenylation, cyclization, oxidation, and acetylation. We selected four strains of gastrointestinal cancer cells for activity evaluation. We found that compound 3 selectively inhibited MKN-45, whereas compounds 1 and 2 exhibited no significant inhibitory activity against the four cell lines. These findings suggested that 8,9-epi-chrodrimanins could serve as scaffold compounds for further structural modifications, potentially leading to the development of targeted therapies for gastric cancer.


Subject(s)
Antineoplastic Agents , Talaromyces , Talaromyces/chemistry , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Crystallography, X-Ray , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Aquatic Organisms , Magnetic Resonance Spectroscopy , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Molecular Structure
9.
Biomed Pharmacother ; 176: 116891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38865850

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.


Subject(s)
Autophagy , Biological Products , Colitis, Ulcerative , Autophagy/drug effects , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Animals , Gastrointestinal Microbiome/drug effects
10.
Nat Commun ; 15(1): 5085, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877016

ABSTRACT

MraY (phospho-N-acetylmuramoyl-pentapeptide-transferase) inhibitory natural products are attractive molecules as candidates for a new class of antibacterial agents to combat antimicrobial-resistant bacteria. Structural optimization of these natural products is required to improve their drug-like properties for therapeutic use. However, chemical modifications of these natural products are painstaking tasks due to complex synthetic processes, which is a bottleneck in advancing natural products to the clinic. Here, we develop a strategy for a comprehensive in situ evaluation of the build-up library, which enables us to streamline the preparation of the analogue library and directly assess its biological activities. We apply this approach to a series of MraY inhibitory natural products. Through construction and evaluation of the 686-compound library, we identify promising analogues that exhibit potent and broad-spectrum antibacterial activity against highly drug-resistant strains in vitro as well as in vivo in an acute thigh infection model. Structures of the MraY-analogue complexes reveal distinct interaction patterns, suggesting that these analogues represent MraY inhibitors with unique binding modes. We further demonstrate the generality of our strategy by applying it to tubulin-binding natural products to modulate their tubulin polymerization activities.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Biological Products , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biological Products/pharmacology , Biological Products/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Animals , Mice , Humans , Transferases (Other Substituted Phosphate Groups)
11.
J Am Chem Soc ; 146(26): 18172-18183, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888159

ABSTRACT

Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1ß by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Penicillium , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Penicillium/metabolism , Penicillium/chemistry , Humans , Biosynthetic Pathways/drug effects , Interleukin-1beta/metabolism , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/metabolism , Molecular Structure
12.
J Agric Food Chem ; 72(26): 14993-15004, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38896806

ABSTRACT

These days, easy access to commercially available (poly)phenolic compounds has expanded the scope of potential research beyond the field of chemistry, particularly in the area of their bioactivity. However, the quality of these compounds is often overlooked or not even considered. This issue is illustrated in this study through the example of (dihydro)phenanthrenes, a group of natural products present in yams, as AMP-activated protein kinase (AMPK) activators. A study conducted in our group on a series of compounds, fully characterized using a combination of chemical synthesis, NMR and MS techniques, provided evidence that the conclusions of a previous study were erroneous, likely due to the use of a misidentified commercial compound by its supplier. Furthermore, we demonstrated that additional representatives of the (dihydro)phenanthrene phytochemical classes were able to directly activate AMPK, avoiding the risk of misinterpretation of results based on analysis of a single compound alone.


Subject(s)
AMP-Activated Protein Kinases , Phenanthrenes , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Phenanthrenes/chemistry , Humans , Biological Products/chemistry , Biological Products/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure
13.
In Vivo ; 38(4): 1767-1774, 2024.
Article in English | MEDLINE | ID: mdl-38936924

ABSTRACT

BACKGROUND/AIM: Dermal papilla (DP) stem cells are known for their remarkable regenerative capacity, making them a valuable model for assessing the effects of natural products on cellular processes, including stemness, and autophagy. MATERIALS AND METHODS: Autophagy and stemness characteristics were assessed using real-time RT-PCR to analyze mRNA levels, along with immunofluorescence and western blot techniques for protein level evaluation. RESULTS: Butterfly Pea, Emblica Fruits, Kaffir Lime, and Thunbergia Laurifolia extracts induced autophagy in DP cells. Kaffir Lime-treated cells exhibited increase in the OCT4, NANOG, and SOX2 mRNA (6-, 5, and 5.5-fold, respectively), and protein levels (4-, 3-, and 1.5-fold, respectively). All extracts activated the survival protein kinase B (Akt) in DP cells. CONCLUSION: Natural products are a promising source for promoting hair growth by rejuvenating hair stem cells.


Subject(s)
Autophagy , Biological Products , Hair Follicle , Plant Extracts , Stem Cells , Autophagy/drug effects , Humans , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Biological Products/pharmacology , Plant Extracts/pharmacology , Hair Follicle/drug effects , Hair Follicle/cytology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Cell Differentiation/drug effects
14.
Future Med Chem ; 16(10): 1029-1051, 2024.
Article in English | MEDLINE | ID: mdl-38910575

ABSTRACT

Compound databases (DBs) are essential tools for drug discovery. The number of DBs in public domain is increasing, so it is important to analyze these DBs. In this article, the main characteristics of 64 DBs will be presented. The methodological strategy used was a literature search. To analyze the characteristics obtained in the review, the DBs were categorized into two subsections: Open Access and Commercial DBs. Open access includes generalist DBs (containing compounds of diverse origins), DBs with specific applicability, DBs exclusive to natural products and those containing compounds with specific pharmacological action. The literature review showed that there are challenges to making these repositories available, such as standardizing information curation practices and funding to maintain and sustain them.


[Box: see text].


Subject(s)
Biological Products , Drug Discovery , Biological Products/chemistry , Biological Products/pharmacology , Humans , Databases, Chemical , Databases, Factual , Databases, Pharmaceutical
15.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930793

ABSTRACT

The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.


Subject(s)
Biological Products , Colorectal Neoplasms , Drugs, Chinese Herbal , Signal Transduction , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/antagonists & inhibitors , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Signal Transduction/drug effects , Biological Products/therapeutic use , Biological Products/pharmacology , Biological Products/chemistry , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Animals , Herbal Medicine/methods
16.
Biomed Pharmacother ; 176: 116847, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823277

ABSTRACT

Luteolin, a monomeric substance, is a natural product of the Brucea javanica (BJ) plant. Brucea javanica oil emulsion injection (BJOEI) is a proprietary Chinese medicine purified from BJ that is widely used clinically as an anti-tumor treatment. Although a growing body of research suggests that luteolin and BJOEI have anti-tumor effects, the molecular mechanism of action has not been fully elucidated. In this study, through molecular docking technology, we found that luteolin can interact directly with GPSM2 and regulate the FoxO signaling pathway through GPSM2. In addition, the inhibitory effect of luteolin on colon adenocarcinoma (COAD) cells was found to be offset by knockdown of GPSM2. In contrast, the anti-proliferative effects of luteolin could be notably reversed by overexpression of GPSM2. The results reveal that GPSM2 is crucial in luteolin-mediated anti-proliferative effects. The mediation of anti-proliferative effects by GPSM2 has also been indirectly demonstrated in RKO and SW480 xenograft mice models. In addition, we verified that BJOEI inhibits the progression of COAD by mediating GPSM2 and regulating the FoxO signaling pathway. We also found that BJOEI achieved a better anti-tumor effect when combined with fluorouracil injection. Collectively, our data show that the anti-tumor effects of BJOEI and luteolin on COAD are GPSM2-dependent and downregulating the expression of GPSM2 to regulate the FoxO signaling pathway may be an effective way to treat COAD.


Subject(s)
Adenocarcinoma , Cell Proliferation , Colonic Neoplasms , Fluorouracil , Luteolin , Mice, Nude , Luteolin/pharmacology , Humans , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Fluorouracil/pharmacology , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Signal Transduction/drug effects , Mice , Biological Products/pharmacology , Biological Products/isolation & purification , Biological Products/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Molecular Docking Simulation
17.
Planta Med ; 90(7-08): 576-587, 2024 06.
Article in English | MEDLINE | ID: mdl-38843797

ABSTRACT

The average age of the population is increasing worldwide, which has a profound impact on our society. This leads to an increasing demand for medicines and requires the development of new strategies to promote health during the additional years. In the search for resources and therapeutics for improved health during an extended life span, attention has to be paid to environmental exposure and ecosystem burdens that inevitably emerge with the extended consumption of medicines and drug development, even in the preclinical stage. The hereby introduced sustainable strategy for drug discovery is built on 3Rs, "R: obustness, R: eliability, and saving R: esources", inspired by both the 3Rs used in animal experiments and environmental protection, and centers on the usefulness and the variety of the small model organism Caenorhabditis elegans for detecting health-promoting natural products. A workflow encompassing a multilevel screening approach is presented to maximize the amount of information on health-promoting samples, while considering the 3Rs. A detailed, methodology- and praxis-oriented compilation and discussion of proposed C. elegans health span assays and more disease-specific assays are presented to offer guidance for scientists intending to work with C. elegans, thus facilitating the initial steps towards the integration of C. elegans assays in their laboratories.


Subject(s)
Biological Products , Caenorhabditis elegans , Caenorhabditis elegans/drug effects , Animals , Biological Products/pharmacology , Drug Discovery/methods
18.
Front Immunol ; 15: 1325356, 2024.
Article in English | MEDLINE | ID: mdl-38835766

ABSTRACT

Introduction: Circulating T follicular helper (cTfh) cells and circulating T peripheral helper (cTph) cells (which share common characteristics with the cTfh population) are implicated in the pathogenesis of immune-mediated and autoimmune diseases such as psoriasis (Ps). Their close interplay with the interleukin 17 (IL-17) axis and the ex vivo effect of IL-17-targeting biologic agents used to treat Ps on them are elusive. This study aimed to investigate the effect of biologics targeting IL-17 on cTfh and cTph cell subpopulations isolated from the blood of patients with Ps. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with Ps at treatment initiation and three months later. Samples were also collected from controls. Cells were stained using monoclonal antibodies. Flow cytometry assessed the fraction of cTfh (CD3+CD4+CXCR5+) and cTph (CD3+CD4+CXCR5-PD-1hi) cells.. Results: Flow cytometric analysis showed increased fractions of activated cTfh subsets including ICOS+ and ICOS+PD-1+ expressing cells, in patients compared to controls. Biologic blocking of IL-17A diminished the cTfh population. Furthermore, ICOS+ and ICOS+PD-1+ sub-populations were also inhibited. Finally, the cTph cell fraction significantly decreased after three months of successful treatment with biologics. Conclusion: Early anti-IL-17-mediated clinical remission in Ps is associated with decreased cTfh and cTph cell subpopulations.


Subject(s)
Biological Products , Interleukin-17 , Psoriasis , Humans , Psoriasis/immunology , Psoriasis/drug therapy , Male , Female , Interleukin-17/metabolism , Interleukin-17/antagonists & inhibitors , Adult , Middle Aged , Biological Products/therapeutic use , Biological Products/pharmacology , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/drug effects
19.
Molecules ; 29(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893450

ABSTRACT

Isoflavones are a class of natural products that exhibit a wide range of interesting biological properties, including antioxidant, hepatoprotective, antimicrobial, and anti-inflammatory activities. Scandenone (1), osajin (2), and 6,8-diprenylgenistein (3) are natural prenylated isoflavones that share the same polyphenol framework. In this research, the key intermediate 15 was used for the synthesis of the natural isoflavones 1-3, establishing a stereoselective synthetic method for both linear and angular pyran isoflavones. The antibacterial activities of 1-3 were also evaluated, and all of them displayed good antibacterial activity against Gram-positive bacteria. Among them, 2 was the most potent one against MRSA, with a MIC value of 2 µg/mL, and the SEM assay indicated that the bacterial cell membranes of both MRSA and E. faecalis could be disrupted by 2. These findings suggest that this type of isoflavone could serve as a lead for the development of novel antibacterial agents for the treatment of Gram-positive bacterial infections.


Subject(s)
Anti-Bacterial Agents , Isoflavones , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/chemical synthesis , Molecular Structure , Methicillin-Resistant Staphylococcus aureus/drug effects , Gram-Positive Bacteria/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Enterococcus faecalis/drug effects
20.
Molecules ; 29(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893547

ABSTRACT

Hemorrhoid disease is a common anorectal disorder affecting populations worldwide, with high prevalence, treatment difficulties, and considerable treatment costs. Compared to other treatment options, medical therapy for hemorrhoids offers minimal harm, more dignity to patients, and is more economical. Unfortunately, there are few chemical hemorrhoid medications available clinically, which makes the search for efficacious, cost-effective, and environmentally friendly new medication classes a focal point of research. In this context, searching for available natural products to improve hemorrhoids exhibits tremendous potential. These products are derived from nature, predominantly from plants, with a minor portion coming from animals, fungi, and algae. They have excellent coagulation pathway regulation, anti-inflammatory, antibacterial, and tissue regeneration activities. Therefore, we take the view that they are a class of potential hemorrhoid drugs, prevention products, and medication add-on ingredients. This article first reviews the factors contributing to the development of hemorrhoids, types, primary symptoms, and the mechanisms of natural products for hemorrhoids. Building on this foundation, we screened natural products with potential hemorrhoid improvement activity, including polyphenols and flavonoids, terpenes, polysaccharides, and other types.


Subject(s)
Biological Products , Hemorrhoids , Hemorrhoids/drug therapy , Humans , Biological Products/therapeutic use , Biological Products/pharmacology , Biological Products/chemistry , Animals , Polyphenols/therapeutic use , Polyphenols/chemistry , Polyphenols/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...