Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.434
Filter
1.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003046

ABSTRACT

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Subject(s)
Biodegradation, Environmental , Bioreactors , Hydrocarbons , Rhodococcus , Rhodococcus/metabolism , Bioreactors/microbiology , Hydrocarbons/metabolism , Carbon/metabolism , Air Pollutants/metabolism , Air Pollutants/analysis , Mass Spectrometry , Toluene/metabolism , Xylenes/metabolism , Butanes/metabolism , Benzene Derivatives , Pentanes
2.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003059

ABSTRACT

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Subject(s)
Fatty Acids, Volatile , Hydrogen-Ion Concentration , Fatty Acids, Volatile/metabolism , Fermentation , Acetic Acid/metabolism , Bioreactors
3.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003058

ABSTRACT

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Subject(s)
Bioreactors , Nitrogen , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology , Phosphorus/metabolism , Salinity , Sodium Chloride , Bacteria/metabolism , Microbiota , Biological Oxygen Demand Analysis
4.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003069

ABSTRACT

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Nitrification , Nitrogen/metabolism , Soil/chemistry , Denitrification , Wastewater/chemistry , Sewage/microbiology , Soil Microbiology , Zeolites/chemistry , Phosphorus/metabolism , Bioreactors/microbiology , Bacteria/metabolism
5.
J Environ Sci (China) ; 148: 151-173, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095154

ABSTRACT

The removal of nitrogen via the ANAMMOX process is a promising green wastewater treatment technology, with numerous benefits. The incessant studies on the ANAMMOX process over the years due to its long start-up and high operational cost has positively influenced its technological advancement, even though at a rather slow pace. At the moment, relatively new ANAMMOX technologies are being developed with the goal of treating low carbon wastewater at low temperatures, tackling nitrite and nitrate accumulation and methane utilization from digestates while also recovering resources (phosphorus) in a sustainable manner. This review compares and contrasts the handful of ANAMMOX -based processes developed thus far with plausible solutions for addressing their respective bottlenecks hindering full-scale implementation. Ultimately, future prospects for advancing understanding of mechanisms and engineering application of ANAMMOX process are posited. As a whole, technological advances in process design and patents have greatly contributed to better understanding of the ANAMMOX process, which has greatly aided in the optimization and industrialization of the ANAMMOX process. This review is intended to provide researchers with an overview of the present state of research and technological development of the ANAMMOX process, thus serving as a guide for realizing energy autarkic future practical applications.


Subject(s)
Bioreactors , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Wastewater , Nitrogen/metabolism , Anaerobiosis , Oxidation-Reduction
6.
J Environ Sci (China) ; 148: 321-335, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095168

ABSTRACT

Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/microbiology , Anaerobiosis , Waste Disposal, Fluid/methods , Pilot Projects , Bioreactors/microbiology , Methane/metabolism , Methane/analysis , Carbon/metabolism , Carbon/analysis , China , Biofuels
7.
J Environ Sci (China) ; 148: 579-590, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095191

ABSTRACT

This work established a quantitative method to access the shear stability of aerobic granular sludge (AGS) and validated its feasibility by using the mature AGS from a pilot-scale (50 tons/day) membrane bioreactor (MBR) for treating real municipal wastewater. The results showed that the changing rate (ΔS) of the peak area (S) of granule size distribution (GSD) exhibited an exponential relationship (R2≥0.76) with the shear time (y=a-b·cx), which was a suitable indicative index to reflect the shear stability of different AGS samples. The limiting granule size (LGS) was defined and proposed to characterize the equilibrium size for AGS after being sheared for a period of time, whose value in terms of Dv50 showed high correlation (R2=0.92) with the parameter a. The free Ca2+ (28.44-34.21 mg/L) in the influent specifically interacted with polysaccharides (PS) in the granule's extracellular polymeric substance (EPS) as a nucleation site, thereby inducing the formation of Ca precipitation to enhance its Young's modulus, while Ca2+ primarily interacted with PS in soluble metabolic product (SMP) during the initial granulation process. Furthermore, the Young's modulus significantly affected the parameter a related to shear stability (R2=0.99). Since the parameter a was more closely related (R2=1.00) to ΔS than that of the parameter b or c, the excellent correlation (R2=0.99) between the parameter a and the wet density further verified the feasibility of this method.


Subject(s)
Bioreactors , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Pilot Projects , Wastewater/chemistry , Membranes, Artificial , Aerobiosis
8.
J Environ Sci (China) ; 148: 625-636, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095195

ABSTRACT

Woodchip bioreactors are an eco-friendly technology for removing nitrogen (N) pollution. However, there needs to be more clarity regarding the dissolved organic matter (DOM) characteristics and bacterial community succession mechanisms and their association with the N removal performance of bioreactors. The laboratory woodchip bioreactors were continuously operated for 360 days under three influent N level treatments, and the results showed that the average removal rate of TN was 45.80 g N/(m3·day) when the influent N level was 100 mg N/L, which was better than 10 mg N/L and 50 mg N/L. Dynamic succession of bacterial communities in response to influent N levels and DOM characteristics was an important driver of TN removal rates. Medium to high N levels enriched a copiotroph bacterial module (Module 1) detected by network analysis, including Phenylobacterium, Xanthobacteraceae, Burkholderiaceae, Pseudomonas, and Magnetospirillaceae, carrying N-cycle related genes for denitrification and ammonia assimilation by the rapid consumption of DOM. Such a process can increase carbon limitation to stimulate local organic carbon decomposition to enrich oligotrophs with fewer N-cycle potentials (Module 2). Together, this study reveals that the compositional change of DOM and bacterial community succession are closely related to N removal performance, providing an ecological basis for developing techniques for N-rich effluent treatment.


Subject(s)
Bacteria , Bioreactors , Nitrogen , Waste Disposal, Fluid , Bioreactors/microbiology , Nitrogen/analysis , Bacteria/metabolism , Waste Disposal, Fluid/methods , Microbiota
9.
Biomaterials ; 312: 122713, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39084096

ABSTRACT

Traditional bioreactor systems involve the use of three-dimensional (3D) scaffolds or stem cell aggregates, limiting the accessibility to the production of cell-secreted biomolecules. Herein, we present the use a pulse electromagnetic fields (pEMFs)-assisted wave-motion bioreactor system for the dynamic and scalable culture of human bone marrow-derived mesenchymal stem cells (hBMSCs) with enhanced the secretion of various soluble factors with massive therapeutic potential. The present study investigated the influence of dynamic pEMF (D-pEMF) on the kinetic of hBMSCs. A 30-min exposure of pEMF (10V-1Hz, 5.82 G) with 35 oscillations per minute (OPM) rocking speed can induce the proliferation (1 × 105 â†’ 4.5 × 105) of hBMSCs than static culture. Furthermore, the culture of hBMSCs in osteo-induction media revealed a greater enhancement of osteogenic transcription factors under the D-pEMF condition, suggesting that D-pEMF addition significantly boosted hBMSCs osteogenesis. Additionally, the RNA sequencing data revealed a significant shift in various osteogenic and signaling genes in the D-pEMF group, further suggesting their osteogenic capabilities. In this research, we demonstrated that the combined effect of wave and pEMF stimulation on hBMSCs allows rapid proliferation and induces osteogenic properties in the cells. Moreover, our study revealed that D-pEMF stimuli also induce ROS-scavenging properties in the cultured cells. This study also revealed a bioactive and cost-effective approach that enables the use of cells without using any expensive materials and avoids the possible risks associated with them post-implantation.


Subject(s)
Bioreactors , Electromagnetic Fields , Mesenchymal Stem Cells , Osteogenesis , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Gene Expression Profiling , Cell Proliferation , Cell Differentiation , Cells, Cultured , Transcriptome
10.
J Vis Exp ; (210)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39221940

ABSTRACT

Natural killer cell-derived extracellular vesicles (NK-EVs) are being investigated as cancer biotherapeutics. They possess unique properties as cytotoxic nanovesicles targeting cancer cells and as immunomodulatory communicators. A scalable biomanufacturing workflow enables the production of large quantities of high-purity NK-EVs to meet the pre-clinical and clinical demands. The workflow employs a closed-loop hollow-fiber bioreactor, enabling continuous production of NK-EVs from the NK92-MI cell line under serum-free, xeno-free, feeder-free, and antibiotic-free conditions in compliance with Good Manufacturing Practices standards. This protocol-driven study outlines the biomanufacturing workflow for isolating NK-EVs using size-exclusion chromatography, ultrafiltration, and filter-based sterilization. Essential NK-EV product characterization is performed via nanoparticle tracking analysis, and their functionality is assessed through a validated cell viability-based potency assay against cancer cells. This scalable biomanufacturing process holds significant potential to advance the clinical translation of NK-EV-based cancer biotherapeutics by adhering to best practices and ensuring reproducibility.


Subject(s)
Extracellular Vesicles , Killer Cells, Natural , Humans , Extracellular Vesicles/chemistry , Workflow , Bioreactors , Neoplasms/pathology , Chromatography, Gel/methods , Cell Line, Tumor
11.
Appl Microbiol Biotechnol ; 108(1): 458, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230670

ABSTRACT

The advancement of fungal biocontrol agents depends on replacing cereal grains with low-cost agro-industrial byproducts for their economical mass production and development of stable formulations. We propose an innovative approach to develop a rice flour-based formulation of the beneficial biocontrol agent Trichoderma asperelloides CMAA1584 designed to simulate a micro-bioreactor within the concept of full biorefinery process, affording in situ conidiation, extended shelf-life, and effective control of Sclerotinia sclerotiorum, a devastating pathogen of several dicot agricultural crops worldwide. Rice flour is an inexpensive and underexplored byproduct derived from broken rice after milling, capable of sustaining high yields of conidial production through our optimized fermentation-formulation route. Conidial yield was mainly influenced by nitrogen content (0.1% w/w) added to the rice meal coupled with the fermentor type. Hydrolyzed yeast was the best nitrogen source yielding 2.6 × 109 colony-forming units (CFU)/g within 14 days. Subsequently, GControl, GLecithin, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru formulations were obtained by extrusion followed by air-drying and further assessed for their potential to induce secondary sporulation in situ, storage stability, and efficacy against Sclerotinia. GControl, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru stood out with the highest number of CFU after sporulation upon re-hydration on water-agar medium. Shelf-life of formulations GControl and GBentonite remained consistent for > 3 months at ambient temperature, while in GBentonite and GOrganic compost+Break-Thru formulations remained viable for 24 months during refrigerated storage. Formulations exhibited similar efficacy in suppressing the myceliogenic germination of Sclerotinia irrespective of their concentration tested (5 × 104 to 5 × 106 CFU/g of soil), resulting in 79.2 to 93.7% relative inhibition. Noteworthily, all 24-month-old formulations kept under cold storage successfully suppressed sclerotia. This work provides an environmentally friendly bioprocess method using rice flour as the main feedstock to develop waste-free granular formulations of Trichoderma conidia that are effective in suppressing Sclerotinia while also improving biopesticide shelf-life. KEY POINTS: • Innovative "bioreactor-in-a-granule" system for T. asperelloides is devised. • Dry granules of aerial conidia remain highly viable for 24 months at 4 °C. • Effective control of white-mold sclerotia via soil application of Trichoderma-based granules.


Subject(s)
Ascomycota , Bioreactors , Fermentation , Oryza , Spores, Fungal , Bioreactors/microbiology , Ascomycota/growth & development , Ascomycota/metabolism , Oryza/microbiology , Spores, Fungal/growth & development , Nitrogen/metabolism , Hypocreales/metabolism , Hypocreales/growth & development , Biological Control Agents/chemistry , Trichoderma/metabolism , Trichoderma/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control
12.
Water Environ Res ; 96(9): e11109, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223833

ABSTRACT

Anaerobic treatment of industrial wastewater using upflow anaerobic reactors is an extended trend due to its high efficiency and biogas production potential, but its implementation in some sectors is limited due to the complexity and toxicity of the wastewaters. In this study, a two-stage expanded granular sludge bed (EGSB) reactors system has been investigated at both bench and pilot scale for the treatment of complex and toxic real wastewater from a petrochemical industry. The effect of different operational parameters including organic loading rate (OLR), hydraulic retention time (HRT) and influent characteristics over COD removal and biogas production and composition have been studied. Additionally, biomass specific methanogenic activity (SMA) and wastewater toxicity have been evaluated after long-term operation. Optimum total HRT of 24 h has been determined resulting in total COD and SO4 2- removal of 56.30 ± 5.25% and 31.68 ± 14.71%, respectively, at pilot scale, and average biogas production of 93.47 ± 34.92 NL/day with 67.01 ± 10.23 %CH4 content and 5210.11 ± 6802.27 ppmv of H2S. SMA and toxicity tests have confirmed inhibitory and toxic effects of wastewater over anaerobic biomass with average maximum inhibition of 65.34% in the unacclimated anaerobic inoculum while chronic toxicity produced a decrease of an order of magnitude in SMA after 600 days of operation. This study demonstrates the feasibility of applying an anaerobic treatment to this wastewater using EGSB reactors between a 0.97-1.74 gCOD/L/day OLR range. Nonetheless, periodic reinoculation would be necessary for long-term operation due to chronic toxicity of the wastewater exerted on the anaerobic biomass. PRACTITIONER POINTS: A two-stage EGSB reactors system has been operated at bench and pilot scale to treat complex and toxic petrochemical wastewater. Optimal total HRT of 24 h resulted in average COD removal ranging from 40% to 60%. SMA and toxicity tests have been performed to study long-term acclimation, detecting an activity depletion of an order of magnitude.


Subject(s)
Bioreactors , Industrial Waste , Waste Disposal, Fluid , Wastewater , Anaerobiosis , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Biofuels , Biomass
13.
Water Sci Technol ; 89(2): 333-346, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39219133

ABSTRACT

The application of a hybrid-fruit-peel (HFP) coagulant used as an external carbon source (ECS) in both simulated water and real sewage having a low carbon source treated with sequencing batch reactor (SBR) was studied, compared with that of sodium acetate (NaAc). The impact of HFP on sludge properties (such as extracellular polymer substance (EPS), dehydrogenase activity (DHA), charged property, size, microscopic images and bacteria phase) was characterized. The results showed that as an ECS, HFP basically gave similar nitrogen removal to NaAc and also gave a similar developing trend of both dissolved oxygen (DO) and pH. HFP promoted more proliferation of microorganisms and posed higher levels of protein (PN) and polysaccharide (PS) than NaAc, but gave slightly lower DHA than NaAc. After HFP was added as an ECS, the types and quantities of microorganisms increased significantly, the effluent qualities were improved and the sludge size and extensibility became larger, which was conducive to direct contact and remove pollutants. HFP played a similar role to NaAc as ECS and can be used as a quality and slow-releasing ECS for low carbon source wastewaters.


Subject(s)
Carbon , Carbon/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Fruit/chemistry , Sewage/chemistry , Water Purification/methods , Bioreactors
14.
Microb Biotechnol ; 17(9): e70006, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235453

ABSTRACT

Feedstock variability represents a challenge in lignocellulosic biorefineries, as it can influence both lignocellulose deconstruction and microbial conversion processes for biofuels and biochemicals production. The impact of feedstock variability on microbial performance remains underexplored, and predictive tools for microbial behaviour are needed to mitigate risks in biorefinery scale-up. Here, twelve batches of corn stover were deconstructed via deacetylation, mechanical refining, and enzymatic hydrolysis to generate lignin-rich and sugar streams. These batches and their derived streams were characterised to identify their chemical components, and the streams were used as substrates for producing muconate and butyrate by engineered Pseudomonas putida and wildtype Clostridium tyrobutyricum, respectively. Bacterial performance (growth, product titers, yields, and productivities) differed among the batches, but no strong correlations were identified between feedstock composition and performance. To provide metabolic insights into the origin of these differences, we evaluated the effect of twenty-three isolated chemical components on these microbes, including three components in relevant bioprocess settings in bioreactors, and we found that growth-inhibitory concentrations were outside the ranges observed in the streams. Overall, this study generates a foundational dataset on P. putida and C. tyrobutyricum performance to enable future predictive models and underscores their resilience in effectively converting fluctuating lignocellulose-derived streams into bioproducts.


Subject(s)
Clostridium tyrobutyricum , Lignin , Metabolic Engineering , Pseudomonas putida , Zea mays , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Lignin/metabolism , Zea mays/microbiology , Clostridium tyrobutyricum/metabolism , Clostridium tyrobutyricum/genetics , Biotransformation , Bioreactors/microbiology , Sugars/metabolism , Butyrates/metabolism
15.
Water Sci Technol ; 90(3): 665-679, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141028

ABSTRACT

Development of low-cost and reliable reactors demanding minimal supervision is a need-of-the-hour for sewage treatment in rural areas. This study explores the performance of a multi-stage sponge-filled trickling filter (SPTF) for sewage treatment, employing polyethylene (PE) and polyurethane (PU) media. Chemical oxygen demand (COD) and nitrogen transformation were evaluated at hydraulic loading rates (HLRs) ranging from 2 to 6 m/d using synthetic sewage as influent. At influent COD of ∼350 mg/L, PU-SPTF and PE-SPTF achieved a COD removal of 97% across all HLRs with most of the removal occurring in the first segments. Operation of PE-SPTF at an HLR of 6 m/d caused substantial wash-out of biomass, while PU-SPTF retained biomass and achieved effluent COD < 10 mg/L even at HLR of 8-10 m/d. The maximum Total Nitrogen removal by PE-SPTF and PU-SPTF reactors was 93.56 ± 1.36 and 92.24 ± 0.66%, respectively, at an HLR of 6 m/d. Simultaneous removal of ammonia and nitrate was observed at all the HLRs in the first segment of both SPTFs indicating ANAMMOX activity. COD removal data, media depth, and HLRs were fitted (R2 > 0.99) to a first-order kinetic relationship. For a comparable COD removal, CO2 emission by PU-SPTF was 3.5% of that of an activated sludge system.


Subject(s)
Biological Oxygen Demand Analysis , Filtration , Nitrogen , Sewage , Nitrogen/chemistry , Sewage/chemistry , Filtration/methods , Filtration/instrumentation , Bioreactors , Waste Disposal, Fluid/methods
16.
Water Sci Technol ; 90(3): 721-730, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141031

ABSTRACT

Accurately characterizing the substrate used in anaerobic digestion is crucial for predicting the biogas plant's performance. This issue makes particularly challenging the application of modeling in codigestion plants. In this work, a novel methodology called substrate prediction module (SPM) has been developed and tested, using virtual codigestion data. The SPM aims to estimate the inlet properties of the substrate based on the reverse application of the anaerobic digestion model n1 (ADM1). The results show that, while the SPM can estimate some properties of the substrate based on certain output parameters, there are limitations in accurately determining all required variables.


Subject(s)
Bioreactors , Anaerobiosis , Models, Theoretical , Biofuels , Waste Disposal, Fluid/methods
17.
Water Sci Technol ; 90(3): 696-720, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141030

ABSTRACT

Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Methane/metabolism , Bioreactors , Biofuels
18.
Water Sci Technol ; 90(3): 894-907, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141040

ABSTRACT

This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.


Subject(s)
Charcoal , Methane , Charcoal/chemistry , Anaerobiosis , Methane/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Food , Garbage , Microbiota , Bioreactors , Food Loss and Waste
19.
Water Sci Technol ; 90(3): 985-994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141046

ABSTRACT

The study analyses the performance of a pilot plant using a rotating hollow fibre (HF) membrane bioreactor system. The experiments evaluated the effect of operational parameters such as rotational speed, aeration strategies, and maintenance cleaning (MC) procedures on the efficiency of the system, in particular transmembrane pressure (TMP) and filtrate quality. The results indicate that the rotating membrane module reduces TMP increase and can operate for 48 days with satisfactory performance, even without aeration. This has the potential to significantly improve efficiency, resulting in significant energy savings. In addition, two MC methods, clean in air and clean in place, were tested and found to be efficient for weekly MC. It was observed that operating without aeration during colder seasons may not be effective. Therefore, adaptive strategies are needed to address seasonal temperature variations.


Subject(s)
Bioreactors , Membranes, Artificial , Pressure , Waste Disposal, Fluid/methods , Waste Disposal, Fluid/instrumentation , Pilot Projects , Water Purification/methods , Water Purification/instrumentation
20.
Water Sci Technol ; 90(3): 1082-1098, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141053

ABSTRACT

Anaerobic co-digestion of source-separated blackwater (BW) and food and kitchen waste (FW) offers decentralized circular economy solutions by enabling local production of biogas and nutrient-rich byproducts. In this study, a 2 m3 pilot-scale continuously stirred tank reactor (CSTR) operated under mesophilic conditions was utilized for co-digestion of BW and FW. The process obtained a CH4 yield of 0.7 ± 0.2 m3/kg influent-volatile solid (VS), reaching a maximum yield of 1.1 ± 0.1 m3/kg influent-VS, with an average organic loading rate of 0.6 ± 0.1 kg-VS/m3/d and HRT of 25 days. The CH4 production rate averaged 0.4 ± 0.1 m3/m3/d, peaking at 0.6 ± 0.1 m3/m3/d. Treatment of digestate through flocculation followed by sedimentation recovered over 90% of ammonium nitrogen and potassium, and 80-85% of total phosphorus in the liquid fraction. This nutrient-rich liquid was used to cultivate Chlorella vulgaris, achieving a biomass concentration of 1.2 ± 0.1 g/L and 85 ± 3% and 78 ± 5% ammonium nitrogen and phosphorus removal efficiency, respectively. These findings not only highlight the feasibility of anaerobic co-digestion of source-separated BW and FW in local biogas production but also demonstrate the potential of microalgae cultivation as a sustainable approach to converting digestate into nutrient-rich algae biomass.


Subject(s)
Biofuels , Bioreactors , Anaerobiosis , Nutrients/metabolism , Waste Disposal, Fluid/methods , Food , Wastewater/chemistry , Phosphorus/metabolism , Food Loss and Waste
SELECTION OF CITATIONS
SEARCH DETAIL