Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.580
Filter
1.
Proc Biol Sci ; 291(2028): 20241013, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39106952

ABSTRACT

Males and females often differ in ecology, behaviour and lifestyle, and these differences are expected to lead to sex differences in parasite susceptibility. However, neither the sex differences in parasite prevalence, nor their ecological and evolutionary drivers have been investigated across a broad range of taxa using phylogenetically corrected analyses. Using the most extensive dataset yet that includes 755 prevalence estimates from 151 wild bird species in a meta-analytic framework, here we compare sex differences in blood and gastrointestinal parasites. We show that despite sex differences in parasite infection being frequently reported in the literature, only Haemoproteus infections were more prevalent in females than in males. Notably, only seasonality was strongly associated with the sex-specific parasite prevalence of both Leucocytozoon and Haemoproteus, where birds showed greater female bias in prevalence during breeding periods compared to the non-breeding period. No other ecological or sexual selection variables were associated with sex-specific prevalence of parasite prevalence. We suggest that much of the variation in sex-biased prevalence could be idiosyncratic, and driven by local ecology and behavioural differences of the parasite and the host. Therefore, breeding ecology and sexual selection may only have a modest influence on sex-different parasite prevalence across wild birds.


Subject(s)
Biological Evolution , Bird Diseases , Birds , Animals , Birds/parasitology , Female , Bird Diseases/parasitology , Bird Diseases/epidemiology , Male , Prevalence , Haemosporida/physiology , Sex Factors , Sex Characteristics , Animals, Wild/parasitology , Seasons , Protozoan Infections, Animal/epidemiology , Protozoan Infections, Animal/parasitology
3.
BMC Vet Res ; 20(1): 300, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971814

ABSTRACT

BACKGROUND: Clostridium perfringens (C. perfringens) is an important zoonotic microorganism that can cause animal and human infections, however information about the prevalence status in wild birds of this pathogenic bacterium is currently limited. RESULT: In this study, 57 strains of C. perfringens were isolated from 328 fecal samples of wild birds. All the isolates were identified as type A and 70.18% of the isolates carried the cpb2 gene. Antimicrobial susceptibility testing showed that and 22.80% of the isolates were classified as multidrug-resistant strains. The MLST analysis of the 57 isolates from wild birds was categorized into 55 different sequence types (STs) and clustered into eight clonal complexes (CCs) with an average of 20.1 alleles and the Simpson Diversity index (Ds) of 0.9812, and revealed a high level of genetic diversity within the C. perfringens populations. Interestingly, the isolates from swan goose were clustered in the same CC while isolates from other bird species were more scattered suggesting that a potential difference in genetic diversity among the C. perfringens populations associated with different bird species. CONCLUSION: C. perfringens exhibits a wide range of host adaptations, varying degrees of antimicrobial resistance, and a high degree of genetic diversity in wild birds. Understanding the prevalence, toxin type, antimicrobial resistance, and genetic diversity of C. perfringens in wildlife populations is essential for developing effective strategies for disease control and management.


Subject(s)
Animals, Wild , Birds , Clostridium Infections , Clostridium perfringens , Drug Resistance, Multiple, Bacterial , Genetic Variation , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/drug effects , Animals , Birds/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Animals, Wild/microbiology , Feces/microbiology , Multilocus Sequence Typing/veterinary , Anti-Bacterial Agents/pharmacology , Bird Diseases/microbiology , Bird Diseases/epidemiology , Microbial Sensitivity Tests/veterinary
4.
Sci Rep ; 14(1): 15354, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38961242

ABSTRACT

Among parasites of the digestive tract of the black-headed gull (Chroicocephalus ridibundus) in Poland, the best known are species of digenetic trematodes and cestodes. Nematodes of this bird species are not well known. Black-headed gulls, due to their varied diet, migration, life in a flock, and changes of habitat, can become infected with various species of helminths, and like synanthropic birds, they can spread the dispersal stages of parasites across urban and recreational areas. In the present study, an attempt was made to identify the helminth fauna of C. ridibundus from breeding colonies in north-central Poland. The aim of the study was to describe the taxonomic structure of parasites of the digestive tract of the black-headed gull and determine the quantitative parameters of their occurrence. A total of 43 black-headed gulls were examined post-mortem for gastrointestinal helminths, resulting in the identification of four cestodes (Paricterotaenia porosa, Lateriporus clerci, Anomotaenia micracantha, and Wardium fusum), three trematodes (Diplostomum pseudospathaceum, Plagiorchis laricola, and Apophallus muehlingi), and three nematodes (Eucoleus contortus, Cosmocephalus obvelatus, and Porrocaecum ensicaudatum). Lateriporus clerci (in adult form), C. obvelatus and P. ensicaudatum (in larval form) were recorded for the first time in the black-headed gull in Poland.


Subject(s)
Bird Diseases , Charadriiformes , Helminths , Animals , Poland , Charadriiformes/parasitology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Helminths/isolation & purification , Helminths/classification , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Breeding
6.
J Avian Med Surg ; 38(2): 108-115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980820

ABSTRACT

Adipocytic tumors are mesenchymal tumors that are commonly reported in psittacine birds; however, large-scale studies evaluating their prevalence and associated risk factors are lacking. A retrospective study of adipocytic tumors in psittacine birds was performed by reviewing pathology submissions from the University of California, Davis-Drury Reavill Pathology Database, containing 26 013 submissions from psittacine birds (1998-2018). Age, sex, genus, anatomic distribution, and pathological diagnosis were collected for each case when available. The prevalence, risk factors, and association with other lipid-accumulation disorders were reported. A total of 450 cases of lipoma, 129 cases of myelolipoma, 35 cases of hemangiolipoma, 31 cases of liposarcoma, and 451 cases of xanthoma were identified. The prevalence of adipocytic tumors and xanthomas on necropsy was 1.3% (158/11 737, 95% confidence interval [CI]: 1.1-1.6). Adipocytic tumors were identified in 27 genera. Amazona (odds ratio [OR] = 1.93, 95% CI: 1.24-2.99, p = 0.004), Myiopsitta (OR = 2.3, 95% CI: 1.0-5.2, p = 0.041), Melopsittacus (OR = 3.4, 95% CI: 2.1-5.5, p < 0.001), and Agapornis (OR = 3.5, 95% CI: 2.0-6.1, p < 0.001) had significantly higher odds of developing adipocytic tumors compared with other genera, whereas Ara had significantly lower odds (OR = 0.5, 95% CI: 0.3-0.9, p = 0.030). Age was also a significant risk factor for many types of adipocytic tumors. There was no significant association between general adipocytic tumor formation and atherosclerosis or hepatic lipidosis. Xanthomas were associated with atherosclerosis (OR = 1.88, 95% CI: 1.01-3.51, p = 0.048), but not hepatic lipidosis (p = 0.503). On necropsy, the trunk and air sacs were the most common sites of xanthoma formation, whereas the trunk and liver were the most common sites of lipoma and myelolipoma formation, respectively.


Subject(s)
Bird Diseases , Psittaciformes , Xanthomatosis , Animals , Bird Diseases/epidemiology , Bird Diseases/pathology , Xanthomatosis/veterinary , Xanthomatosis/epidemiology , Xanthomatosis/pathology , Risk Factors , Prevalence , Retrospective Studies , Male , Female
7.
BMC Vet Res ; 20(1): 305, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982473

ABSTRACT

BACKGROUND: Pigeon Rotavirus A (RVA) infection has been confirmed in pigeons in the last decade as a cause of Young Pigeon Disease (YPD). Although YPD has been known for many years to date, no studies have been conducted to track the spread of RVA infection in pigeons during the racing season. The presented research aims to determine the course of RVA infection during the flights of young racing pigeons in the summer season, in one of the districts in the Mazovian Voivodeship in Poland. RESULTS: Faecal samples of pigeons collected from transport baskets in vehicles transporting pigeons to the starting point were tested. The quantitative RT-PCR (qRT-PCR) was used to detect the genetic material of RVA. Samples taken during 6 flights were analysed. The study showed a percentage increase in infections up to the fourth flight of pigeons, and then their decrease. With Cq values below 20, breeders did not participate in the next flight and/or reported disease in the flock. With positive Cq values of 20 to 30, clinical signs of disease were not reported. Of the 76 breeders participating in the races, at least one positive result was found in 46 (60.5%). Including the occurrence of the disease during the racing season was reported by 11 breeders (14.4%). The main clinical signs in sick pigeons were vomiting, diarrhea and stowed crop. The tested pigeons were not vaccinated against RVA. CONCLUSIONS: During training and racing of pigeons, it is not possible to avoid exposing them to pathogens, including RVA, regardless of whether pigeons from different breeders are placed in the same baskets or are in separate baskets. However, after four flights the number of new cases of the disease decreases which indicates the development of immunity. The qRT-PCR test is useful in the diagnosis and differentiation of clinical (Cq below 20) and subclinical RVA infections in racing pigeons.


Subject(s)
Bird Diseases , Columbidae , Feces , Rotavirus Infections , Rotavirus , Seasons , Animals , Columbidae/virology , Rotavirus Infections/veterinary , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Rotavirus/isolation & purification , Feces/virology , Poland/epidemiology
8.
Sci Rep ; 14(1): 17018, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39043828

ABSTRACT

Urban areas, i.e. dense housing and reduced green spaces, can significantly impact avian health, through altering land use and increasing biotic and abiotic stress. This study assessed the association of urbanization on haemosporidian infections, vectors, immune response, and body condition in Parus major nestlings, across four classes of urbanization along an urban-to-rural gradient in Vienna, Austria. Contrary to our expectations, vector abundance remained consistent across the gradient, while an increase in leukocyte count is positively associated with total parasite intensity. We found that nestlings in more urbanized areas exhibited higher parasite intensity and altered immune response, as evidenced by variations in the heterophil to lymphocyte ratio and leukocyte counts. Culicidae female vectors were associated with nestlings' total parasites, scaled mass index, and industrial units. Nestlings in highly developed areas had higher infection rates than those in forests, suggesting increased exposure to infections. However, there was no clear relationship between total female vectors and total parasites. The level of urbanization negatively affected nestling body condition, with a decrease in fat deposits from forested to highly urbanized areas. Our findings highlight the complex interplay between urbanization, vector-borne parasite transmission, and host immune response, emphasizing the need for comprehensive urban planning to improve wildlife health and guarantee ecosystem functioning. Understanding how urbanization affects bird immunity and parasite infections is critical for adapting urban landscapes for wildlife health and ecosystem integrity.


Subject(s)
Bird Diseases , Haemosporida , Urbanization , Animals , Haemosporida/physiology , Bird Diseases/parasitology , Bird Diseases/immunology , Bird Diseases/epidemiology , Female , Austria , Ecosystem
9.
Acta Trop ; 257: 107286, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876165

ABSTRACT

Forest regeneration is becoming a powerful tool to combat land conversion which covers 30 % of the Neotropical territory. However, little is known about the effect of forest regeneration on vector-borne diseases. Here, we describe the haemosporidian lineage composition across a successional gradient within an Atlantic Forest bird community. We test whether forest successional stages, in addition to host life history traits affect haemosporidian infection probability. We sampled birds at 16 sampling units with different successional stages between 2017 and 2018 within a forest remnant located in Antonina, Paraná, Brazil. We captured bird individuals using mist-nets, identified them to the species level, and collected blood samples to detect and identify Plasmodium and Haemoproteus lineages based on molecular analysis. We used a Bayesian phylogenetic linear model with a Bernoulli distribution to test whether the haemosporidian infection probability is affected by nest type, foraging stratum, and forest successional stage. We captured 322 bird individuals belonging to 52 species and 21 families. We found 31 parasite lineages and an overall haemosporidian prevalence of 23.9 %, with most infections being caused by Plasmodium (21.7 % of prevalence). The Plasmodium probability of infection was associated with forest successional stage and bird foraging stratum. Birds from the secondary forest in an intermediate stage of succession are more likely to be infected by the parasites than birds from the primary forests (ß = 1.21, 95 % CI = 0.11 - 2.43), birds from upper strata exhibit a lower probability of infection than birds from lower foraging strata (ß = -1.81, 95 % CI = -3.80 - -0.08). Nest type did not affect the Plasmodium probability of infection. Our results highlight the relevance of forest succession on haemosporidian infection dynamics, which is particularly relevant in a world where natural regeneration is the main tool used in forest restoration.


Subject(s)
Bird Diseases , Birds , Forests , Haemosporida , Animals , Birds/parasitology , Haemosporida/isolation & purification , Haemosporida/genetics , Brazil/epidemiology , Prevalence , Bird Diseases/parasitology , Bird Diseases/epidemiology , Plasmodium/isolation & purification , Plasmodium/classification , Phylogeny , Protozoan Infections, Animal/epidemiology , Protozoan Infections, Animal/parasitology , Bayes Theorem
10.
Rev Bras Parasitol Vet ; 33(2): e000524, 2024.
Article in English | MEDLINE | ID: mdl-38896754

ABSTRACT

The saffron finch, Sicalis flaveola, a passerine bird, can be found in nearly all Brazilian territory and is also raised in captivity. The objective of this work was to determine the prevalence and load of oocysts in captive saffron finches in the municipality of Campos dos Goytacazes, state of Rio de Janeiro and in free-living saffron finches in the municipality of Eugenopolis, state of Minas Gerais. In this analysis, 30 captive and 30 wild birds were assessed. Feces eliminated in a 24-hour period were collected and weighed to determine the number of oocysts per gram of feces (OoPG). Statistical analyses were performed using Microsoft Excel and GraphPad Prism Software. All birds in the present study were positive for one or more species of coccidia. Captive birds had a mean total oocyst count higher than that of wild birds. No significant differences in OoPG counts were observed when comparing males and females or captive and wild birds. We can conclude that due to the fact that birds both eat and defecate in their cages, it is essential to keep them as clean as possible, since captive birds have a higher prevalence of coccidia.


Subject(s)
Finches , Animals , Finches/parasitology , Prevalence , Female , Male , Brazil/epidemiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Oocysts , Animals, Wild/parasitology , Parasite Load , Animals, Zoo/parasitology , Feces/parasitology
11.
Int J Food Microbiol ; 421: 110754, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38917490

ABSTRACT

Waterbirds, are one of the popular game animals and are of significant relevance to parasite spread due to their ability to fly and migrate great distances in relatively short periods of time. In Australia, however, the knowledge of parasites infecting native waterbirds is lacking with some of the last reports occurring over 50 years ago. The study aimed to characterise Echinostoma spp. infecting wild native Australian ducks found in the southern regions of the Murray Darling Basin (MDB). Ducks (n = 98) were collected from southern New South Wales within the MDB catchment. Three different species of native ducks were found including Anas superciliosa (n = 37), Anas gracilis (n = 47) and Chenonetta jubata (n = 14), of which 4.3 %, 2.7 % and 7.1 %, respectively, were found to be infected with adult stages Echinostoma spp. Examination of the parasites revealed the presence of two morphotypes. The 18S, 28S and ITS rRNA as well as the mitochondrial nad1 genes were sequenced for representative isolates of the two morphotypes. These sequences were then compared with existing sequences of Echinostoma spp. available in the GenBank. Phylogenetic analysis based on the ITS region indicated that the two morphotypes were genetically distinct. Although there are comparable sequences of Echinostoma spp. in Australia these morphotypes appear to be genetically distinct. Based on their distinct morphology and genetics we suggest that these two morphotypes are previously undescribed in Australia. This study sheds light on the presence of Echinostoma parasites in native Australian waterbirds and highlights the need for further research to better understand the diversity and prevalence of these parasites in the region.


Subject(s)
Ducks , Echinostoma , Phylogeny , Animals , Ducks/parasitology , Echinostoma/isolation & purification , Echinostoma/classification , Echinostoma/genetics , Australia , Bird Diseases/parasitology , Bird Diseases/epidemiology , Echinostomiasis/parasitology , New South Wales
12.
Parasitol Res ; 123(6): 254, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922478

ABSTRACT

The Americas hold the greatest bird diversity worldwide. Likewise, ectoparasite diversity is remarkable, including ticks of the Argasidae and Ixodidae families - commonly associated with birds. Considering that ticks have potential health implications for humans, animals, and ecosystems, we conducted a systematic review to evaluate the effects of bioclimatic, geographic variables, and bird species richness on tick infestation on wild birds across the Americas. We identified 72 articles that met our inclusion criteria and provided data on tick prevalence in wild birds. Using Generalized Additive Models, we assessed the effect of environmental factors, such as habitat type, climatic conditions, bird species richness, and geographic location, on tick infestation. Our findings show that most bird infestation case studies involved immature ticks, such as larvae or nymphs, while adult ticks represented only 13% of case studies. We found birds infested by ticks of the genera Amblyomma (68%), Ixodes (22%), Haemaphysalis (5%), Dermacentor (1%), and Rhipicephalus (0.8%) in twelve countries across the Americas. Our findings revealed that temperature variation and bird species richness were negatively associated with tick infestation, which also varied with geographic location, increasing in mid-latitudes but declining in extreme latitudes. Our results highlight the importance of understanding how environmental and bird community factors influence tick infestation in wild birds across the Americas and the dynamics of tick-borne diseases and their impact on biodiversity.


Subject(s)
Bird Diseases , Birds , Tick Infestations , Animals , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Birds/parasitology , Americas/epidemiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Animals, Wild/parasitology , Ecosystem , Ticks/physiology , Ticks/classification , Biodiversity , Environment , Prevalence
13.
Parasitol Res ; 123(6): 252, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922536

ABSTRACT

Avian haemosporidians of the genera Plasmodium and Haemoproteus are a group of widely distributed blood parasites that can negatively affect the fitness of their hosts. Colombia contains the greatest diversity of birds on the planet, but knowledge about the associations between haemosporidian and its avifauna is scarce and fragmented. We collected blood samples from 255 birds (203 residents and 52 neotropical migrants) belonging to 27 families and 108 species. The study was conducted in six localities in the inter-Andean valleys of the Cauca and Magdalena rivers. Parasites of the genera Plasmodium and Haemoproteus were identified in the samples by morphological and molecular analysis of a fragment of the mitochondrial gene cyt b. Among the samples, 9.3% (n = 24) were positive for Plasmodium or Haemoproteus. Co-infection with Plasmodium and Haemoproteus was found in Red-eyed Vireo. Seventeen haemosporidian lineages were identified, five of which were reported for the first time in resident birds (Common Ground Dove, Checker-throated Stipplethroat, Tropical Kingbird, Pale-breasted Thrush, and Ruddy-breasted Seedeater) and one in the Summer Tanager (neotropical migrant). The research results confirm the wide diversity of haemosporidian present in tropical lowlands and the possible role of neotropical migratory birds in dissemination on haemosporidian along their migratory routes.


Subject(s)
Bird Diseases , Birds , Haemosporida , Plasmodium , Protozoan Infections, Animal , Animals , Colombia/epidemiology , Haemosporida/classification , Haemosporida/isolation & purification , Haemosporida/genetics , Birds/parasitology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Plasmodium/classification , Plasmodium/isolation & purification , Plasmodium/genetics , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/epidemiology , Cytochromes b/genetics , Animal Migration , Phylogeny , Coinfection/parasitology , Coinfection/veterinary , Coinfection/epidemiology
14.
Sci Rep ; 14(1): 13815, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38877168

ABSTRACT

This study was aimed to investigate the frequency of PiCV recombination, the kinetics of PiCV viremia and shedding and the correlation between viral replication and host immune response in young pigeons subclinically infected with various PiCV variants and kept under conditions mimicking the OLR system. Fifteen racing pigeons originating from five breeding facilities were housed together for six weeks. Blood and cloacal swab samples were collected from birds every seven days to recover complete PiCV genomes and determine PiCV genetic diversity and recombination dynamics, as well as to assess virus shedding rate, level of viremia, expression of selected genes and level of anti-PiCV antibodies. Three hundred and eighty-eight complete PiCV genomes were obtained and thirteen genotypes were distinguished. Twenty-five recombination events were detected. Recombinants emerged during the first three weeks of the experiment which was consistent with the peak level of viremia and viral shedding. A further decrease in viremia and shedding partially corresponded with IFN-γ and MX1 gene expression and antibody dynamics. Considering the role of OLR pigeon rearing system in spreading infectious agents and allowing their recombination, it would be reasonable to reflect on the relevance of pigeon racing from both an animal welfare and epidemiological perspective.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Columbidae , Virus Shedding , Animals , Columbidae/virology , Circovirus/genetics , Circovirus/immunology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/epidemiology , Circoviridae Infections/immunology , Bird Diseases/virology , Bird Diseases/epidemiology , Bird Diseases/immunology , Viremia/epidemiology , Viremia/virology , Viremia/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Genome, Viral , Recombination, Genetic , Genotype , Virus Replication , Phylogeny
15.
Sci Rep ; 14(1): 13712, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877177

ABSTRACT

The family Acuariidae is a speciose group of parasitic nematodes, infecting mostly birds as definitive hosts. This study focused on the characterization of two species of acuariids, collected in two different species of piscivorous birds, the European great cormorant Phalacrocorax carbo sinensis from Italy, and the pygmy cormorant Microcarbo pygmaeus from Israel. Parasites were analyzed using light and scanning electron microscopy and by amplification and sequencing of the 28S rDNA. The results of morphological and molecular analyses showed that Ph. carbo sinensis was infected by the acuariid Syncuaria squamata (12 females) and Cosmocephalus obvelatus (1 female), whereas M. pygmaeus was infected by C. obvelatus (2 males, 12 females). The present results provide new data on the distribution of acuariid parasites of piscivorous birds, the first report of Acuariidae in Israel, and the first molecular data on S. squamata and C. obvelatus, which will be useful in future epidemiological and phylogenetic studies of these widely distributed, but less molecularly studied parasites.


Subject(s)
Birds , Phylogeny , Animals , Birds/parasitology , Female , Male , Bird Diseases/parasitology , Bird Diseases/epidemiology , Nematoda/genetics , Nematoda/classification , Israel , Italy , RNA, Ribosomal, 28S/genetics
16.
BMC Ecol Evol ; 24(1): 84, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926829

ABSTRACT

BACKGROUND: Accelerating biodiversity loss necessitates monitoring the potential pathogens of vulnerable species. With a third of New Zealand's avifauna considered at risk of extinction, a greater understanding of the factors that influence microbial transmission in this island ecosystem is needed. We used metatranscriptomics to determine the viruses, as well as other microbial organisms (i.e. the infectomes), of seven bird species, including the once critically endangered black robin (Petroica traversi), on two islands in the remote Chatham Islands archipelago, New Zealand. RESULTS: We identified 19 likely novel avian viruses across nine viral families. Black robins harboured viruses from the Flaviviridae, Herpesviridae, and Picornaviridae, while introduced starlings (Sturnus vulgaris) and migratory seabirds (Procellariiformes) carried viruses from six additional viral families. Potential cross-species virus transmission of a novel passerivirus (family: Picornaviridae) between native (black robins and grey-backed storm petrels) and introduced (starlings) birds was also observed. Additionally, we identified bacterial genera, apicomplexan parasites, as well as a novel megrivirus linked to disease outbreaks in other native New Zealand birds. Notably, island effects were outweighed by host taxonomy as a significant driver of viral composition, even among sedentary birds. CONCLUSIONS: These findings underscore the value of surveillance of avian populations to identify and minimise escalating threats of disease emergence and spread in these island ecosystems. Importantly, they contribute to our understanding of the potential role of introduced and migratory birds in the transmission of microbes and associated diseases, which could impact vulnerable island-endemic species.


Subject(s)
Bird Diseases , Birds , Islands , Animals , New Zealand/epidemiology , Birds/virology , Bird Diseases/virology , Bird Diseases/transmission , Bird Diseases/microbiology , Bird Diseases/epidemiology , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Biodiversity
17.
J Zoo Wildl Med ; 55(2): 341-354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875191

ABSTRACT

Parrot bornaviruses are responsible for proventricular dilatation disease (PDD) in psittacines. This study aimed to determine the occurrence and factors associated with Parrot bornaviruses infection in psittacines kept in captivity in a state in the southern region of Brazil. A cross-sectional study was carried out with 192 birds from two facilities (A and B) in 2019, using choanal, esophageal, and cloacal swabs and feathers, totaling 768 samples subjected to reverse-transcription polymerase chain reaction (RT-PCR), for the matrix (M) protein gene with a final product of 350 base pairs (bp). Genetic sequencing of three positive samples was performed by the Sanger method. In the study, the overall virus occurrence was 35.9% (69/192), with 40.4% (42/104) in Facility A and 30.7% (27/88) in Facility B. Sequencing analysis of the samples revealed the presence of Parrot bornavirus 2 (PaBV-2) in both facilities. Swab samples from the choanal (40/69), esophageal (30/69), cloacal (35/69), and feather (15/69) tested positive, facilitating the molecular diagnosis of Parrot bornaviruses. The results indicated that there is no single ideal sample type for antemortem molecular diagnosis of this virus. Simultaneously testing all four samples at the same time point yielded more diagnoses than testing any single sample among the four. Most of the 29 sampled psittacine species were native, and 46.9% of the birds (90/192) consisted of endangered species. Among the psittacines that tested positive, 88.4% (61/69) were clinically healthy, and 8.7% (6/69) exhibited clinical or behavioral signs, including behavioral changes, alterations in feathering, and changes in body score at the time of collection. This study showcases the application of minimally invasive sampling for diagnosing Parrot bornaviruses, enabling sample collection when the birds are restrained for clinical evaluation. This approach facilitates a prompt and effective antemortem diagnosis, thereby serving as an efficient screening method for parrots kept in captivity.


Subject(s)
Bird Diseases , Bornaviridae , Mononegavirales Infections , Animals , Brazil/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Bornaviridae/isolation & purification , Bornaviridae/genetics , Bornaviridae/classification , Mononegavirales Infections/veterinary , Mononegavirales Infections/virology , Mononegavirales Infections/epidemiology , Cross-Sectional Studies , Animals, Zoo , Parrots/virology , Psittaciformes/virology
18.
Vet Res Commun ; 48(4): 2841-2846, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38888630

ABSTRACT

Seabirds are one of the most threatened avian groups. Viruses, including herpesvirus, represent considerable threats to marine avifauna. Herein, our goal was to survey herpesvirus in Procellariiformes that stranded in Brazil between June and July 2021. We analyzed 12 Cory's shearwaters (Calonectris borealis), two Great Shearwaters (Ardenna gravis, syn. Puffinus gravis) and one Yellow-nosed Albatross (Thalassarche chlororynchos) found in an unusual mortality event in Bahía state, northeastern Brazil. After necropsy, selected tissue samples were tested for herpesvirus using a broad-range nested PCR. Overall, 20% (3/15) of the birds were herpesvirus-positive, i.e., two Cory's Shearwaters and one Great Shearwater. One alphaherpesvirus sequence type was identified in each shearwater species, classified into the genus Mardivirus. This study describes two likely novel herpesviruses in shearwaters, contributing to the currently very scarce data regarding infectious agents in Procellariiformes. Further studies are necessary to evaluate the presence and characteristics of herpesvirus in Procellariiformes, and the presence (or not) of related disease in order to understand the epidemiology of this infectious agent and eventually contribute to the conservation of this endangered seabird group.


Subject(s)
Bird Diseases , Birds , Herpesviridae Infections , Herpesviridae , Animals , Brazil/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Birds/virology , Herpesviridae/isolation & purification , Herpesviridae/classification , Herpesviridae/genetics , Animal Migration , Phylogeny
19.
Poult Sci ; 103(8): 103940, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909506

ABSTRACT

Migratory wild birds can carry various pathogens, such as influenza A virus, which can spread to globally and cause disease outbreaks and epidemics. Continuous epidemiological surveillance of migratory wild birds is of great significance for the early warning, prevention, and control of epidemics. To investigate the pathogen infection status of migratory wild birds in eastern China, fecal samples were collected from wetlands to conduct pathogen surveillance. The results showed that duck orthoreovirus (DRV) and goose parvovirus (GPV) nucleic acid were detected positive in the fecal samples collected from wild ducks, egrets, and swan. Phylogenetic analysis of the amplified viral genes reveals that the isolates were closely related to the prevalent strains in the regions involved in East Asian-Australasian (EAA) migratory flyway. Phylogenetic analysis of the amplified viral genes confirmed that they were closely related to circulating strains in the regions involved in the EAA migration pathway. The findings of this study have expanded the host range of the orthoreovirus and parvovirus, and revealed possible virus transmission between wild migratory birds and poultry.


Subject(s)
Animals, Wild , Bird Diseases , Orthoreovirus, Avian , Parvoviridae Infections , Parvovirus , Phylogeny , Reoviridae Infections , Animals , Reoviridae Infections/veterinary , Reoviridae Infections/epidemiology , Reoviridae Infections/virology , Orthoreovirus, Avian/isolation & purification , Orthoreovirus, Avian/genetics , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , China/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Animals, Wild/virology , Parvovirus/genetics , Parvovirus/isolation & purification , Feces/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Ducks/virology , Anseriformes/virology , Epidemiological Monitoring/veterinary
20.
J Parasitol ; 110(3): 206-209, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38802105

ABSTRACT

Toxoplasma gondii is a zoonotic protozoan parasite that infects most warm-blooded animals, including birds. Scavenging birds are epidemiologically important hosts because they can serve as indicators of environmental T. gondii levels. A rapid point-of-care (POC) test that detects antibodies to T. gondii in humans is commercially available. In this research, we assessed the ability of the human POC test to detect anti-T. gondii antibodies in 106 black vultures (Coragyps atratus) and 23 ring-billed gulls (Larus delawarensis) from Pennsylvania, USA. Serum samples were tested with the POC test and compared to the modified agglutination test (MAT) in a blinded study. Overall, anti-T. gondii antibodies were detected in 2.8% (3/106) of black vultures and 60.9% (14/23) of ring-billed gulls by the POC test. One false-positive POC test occurred in a black vulture that was negative by MAT. False-negative results were obtained in 2 black vultures and 4 ring-billed gulls that had MAT titers of 1:25 or 1:50. The sensitivity and specificity of the POC for both black vultures and ring-billed gulls combined were 95.7% and 95.5%, respectively. This is the first study using human POC tests to detect antibodies to T. gondii in birds. Further study of the rapid test as a screening tool for serological surveillance of T. gondii in birds is warranted.


Subject(s)
Agglutination Tests , Antibodies, Protozoan , Bird Diseases , Charadriiformes , Falconiformes , Toxoplasma , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Toxoplasma/immunology , Charadriiformes/parasitology , Pennsylvania/epidemiology , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/immunology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Bird Diseases/epidemiology , Bird Diseases/immunology , Falconiformes/parasitology , Agglutination Tests/veterinary , Sensitivity and Specificity , Point-of-Care Testing
SELECTION OF CITATIONS
SEARCH DETAIL