Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 769
Filter
1.
Mar Environ Res ; 198: 106539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718522

ABSTRACT

Nanoplastics and engineering nanomaterials (ENMs) are contaminants of emerging concern (CECs), increasingly being detected in the marine environment and recognized as a potential threat for marine biota at the global level including in polar areas. Few studies have assessed the impact of these anthropogenic nanoparticles in the microbiome of marine invertebrates, however combined exposure resembling natural scenarios has been overlooked. The present study aimed to evaluate the single and combined effects of polystyrene nanoparticles (PS NP) as proxy for nanoplastics and nanoscale titanium dioxide (nano-TiO2) on the prokaryotic communities associated with the gill tissue of the Antarctic soft-shell clam Laternula elliptica, a keystone species of marine benthos Wild-caught specimens were exposed to two environmentally relevant concentrations of carboxylated PS NP (PS-COOH NP, ∼62 nm size) and nano-TiO2 (Aeroxide P25, ∼25 nm) as 5 and 50 µg/L either single and combined for 96h in a semi-static condition.Our findings show a shift in microbiome composition in gills of soft-shell clams exposed to PS NP and nano-TiO2 either alone and in combination with a decrease in the relative abundance of OTU1 (Spirochaetaceae). In addition, an increase of gammaproteobacterial OTUs affiliated to MBAE14 and Methylophagaceae (involved in ammonia denitrification and associated with low-quality water), and the OTU Colwellia rossensis (previously recorded in polluted waters) was observed. Our results suggest that nanoplastics and nano-TiO2 alone and in combination induce alterations in microbiome composition by promoting the increase of negative taxa over beneficial ones in the gills of the Antarctic soft-shell clam. An increase of two low abundance OTUs in PS-COOH NPs exposed clams was also observed. A predicted gene function analysis revealed that sugar, lipid, protein and DNA metabolism were the main functions affected by either PS-COOH NP and nano-TiO2 exposure. The molecular functions involved in the altered affiliated OTUs are novel for nano-CEC exposures.


Subject(s)
Bivalvia , Gills , Microbiota , Water Pollutants, Chemical , Animals , Microbiota/drug effects , Gills/drug effects , Gills/microbiology , Bivalvia/drug effects , Bivalvia/microbiology , Water Pollutants, Chemical/toxicity , Antarctic Regions , Nanostructures/toxicity , Titanium/toxicity , Nanoparticles/toxicity
2.
PLoS Genet ; 20(5): e1011295, 2024 May.
Article in English | MEDLINE | ID: mdl-38820540

ABSTRACT

Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.


Subject(s)
Bivalvia , Gene Transfer, Horizontal , Nitrogen Fixation , Nitrogen , Phylogeny , Symbiosis , Symbiosis/genetics , Animals , Nitrogen Fixation/genetics , Nitrogen/metabolism , Bivalvia/microbiology , Bivalvia/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Adaptation, Physiological/genetics , Genome, Bacterial , Caribbean Region , Panama
3.
Sci Rep ; 14(1): 10540, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719945

ABSTRACT

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Subject(s)
Bacteriophages , Bivalvia , Gills , Metagenomics , Animals , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Gills/microbiology , Gills/virology , Gills/metabolism , Bivalvia/microbiology , Bivalvia/virology , Bivalvia/genetics , Gene Expression Profiling , Transcriptome , Virome/genetics , Bacteria/genetics , Bacteria/classification , Symbiosis/genetics , Metagenome
4.
Sci Rep ; 14(1): 11958, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796489

ABSTRACT

Freshwater mussels (Mollusca: Unionidae) play a crucial role in freshwater river environments where they live in multi-species aggregations and often serve as long-lived benthic ecosystem engineers. Many of these species are imperiled and it is imperative that we understand their basic needs to aid in the reestablishment and maintenance of mussel beds in rivers. In an effort to expand our knowledge of the diet of these organisms, five species of mussel were introduced into enclosed systems in two experiments. In the first, mussels were incubated in water from the Clinch River (Virginia, USA) and in the second, water from a manmade pond at the Commonwealth of Virginia's Aquatic Wildlife Conservation Center in Marion, VA. Quantitative PCR and eDNA metabarcoding were used to determine which planktonic microbes were present before and after the introduction of mussels into each experimental system. It was found that all five species preferentially consumed microeukaryotes over bacteria. Most microeukaryotic taxa, including Stramenopiles and Chlorophytes were quickly consumed by all five mussel species. We also found that they consumed fungi but not as quickly as the microalgae, and that one species of mussel, Ortmanniana pectorosa, consumed bacteria but only after preferred food sources were depleted. Our results provide evidence that siphon feeding Unionid mussels can select preferred microbes from mixed plankton, and mussel species exhibit dietary niche differentiation.


Subject(s)
Bacteria , Bivalvia , Fungi , Animals , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bivalvia/microbiology , Fresh Water/microbiology , Diet , Rivers/microbiology , Ecosystem , Virginia
5.
J Invertebr Pathol ; 204: 108110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631558

ABSTRACT

Disease is a major threat to the economic, ecological and cultural services provided by wild bivalve populations. Over the past decade anecdotal reports on declining health of native bivalve populations around Aotearoa New Zealand have been supported by increasing observations of mass die-offs. Causes of declining health and mass die-offs of wild bivalves are not clear and could be due to a number of interactive and cumulative factors, including declining water quality, climate change, or disease. Pipi/kokota (Paphies australis) within the Whangarei area (northern New Zealand) have suffered repeated die-offs and declining health since at least 2009. Baseline health data for wild native bivalve populations are scarce making it difficult to identify changes in pathogen infection prevalence and intensity and infer their importance to host health. This research aimed to examine and document the health of pipi in Whangarei with the objective of identifying factors that may contribute to their ill health and lack of population recovery. We sampled pipi from four sites within Whangarei, eight times across two years (total n = 640) to establish a health baseline using histopathology, general bacteriology, and qPCR for the intracellular bacteria Endozoicomonas spp. Three pipi mass die-offs occurred during the sampling window that were opportunistically sampled to compare against the health baseline established using healthy pipi. An increase in bacterial growth and a decrease in the abundance of Endozoicomonas spp. in mortality pipi was observed compared with the health baseline. Establishing a health baseline for pipi from Whangarei provided a benchmark to assess changes in a pipi population experiencing high mortality. Such data can help identify factors contributing to die-offs and to help inform what mitigation, if any, is possible in wild shellfish populations.


Subject(s)
Bivalvia , Animals , New Zealand , Bivalvia/microbiology , Bivalvia/parasitology
6.
Fish Shellfish Immunol ; 149: 109542, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579976

ABSTRACT

The interaction between environmental factors and Vibrio in bivalves is not well understood, despite the widely held belief that pathogen infection and seawater temperature significantly impact summer mortality. In the present study, we conducted simulated experiments to explore the effects of high temperature and Vibrio infection on the clam Meretrix petechialis. The survival curve analysis revealed that the combined challenge of high temperature and Vibrio infection (31°C-vibrio) led to significantly higher clam mortality compared to the groups exposed solely to Vibrio (27°C-vibrio), high temperature (31°C-control), and the control condition (27°C-control). Furthermore, PCoA analysis of 11 immune genes indicated that Vibrio infection predominated during the incubation period, with a gradual equilibrium between these factors emerging during the course of the infection. Additionally, our investigations into apoptosis and autophagy processes exhibited significant induction of mTOR and Bcl2 of the 31°C-vibrio group in the early challenge stage, followed by inhibition in the later stage. Oxidative stress analysis demonstrated a substantial additive effect on malondialdehyde (MDA) and glutathione (GSH) content in the combined challenge group compared to the control group. Comparative transcriptome analysis revealed a significant increase in differentially expressed genes related to immunity, such as complement C1q-like protein, C-type lectin, big defensin, and lysozyme, in the 31°C-vibrio group, suggesting that the synergistic effect of high temperature and Vibrio infection triggers more robust antibacterial immune responses. These findings provide critical insights for understanding the infection process and uncovering the causes of summer mortality.


Subject(s)
Apoptosis , Bivalvia , Hot Temperature , Oxidative Stress , Vibrio , Animals , Bivalvia/immunology , Bivalvia/microbiology , Bivalvia/genetics , Vibrio/physiology , Hot Temperature/adverse effects , Seasons , Immunity, Innate/genetics , Vibrio Infections/veterinary , Vibrio Infections/immunology
7.
Microb Pathog ; 190: 106641, 2024 May.
Article in English | MEDLINE | ID: mdl-38588925

ABSTRACT

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Subject(s)
Adjuvants, Immunologic , Antioxidants , Bivalvia , Kefir , Probiotics , Superoxide Dismutase , Vibrio alginolyticus , Animals , Probiotics/pharmacology , Bivalvia/chemistry , Bivalvia/microbiology , Antioxidants/metabolism , Kefir/microbiology , Superoxide Dismutase/metabolism , Spirulina/chemistry , Malondialdehyde/metabolism , Malondialdehyde/analysis , Animal Feed , Monophenol Monooxygenase/metabolism , Dietary Supplements , Alkaline Phosphatase/metabolism , Muramidase/metabolism , Vibrio Infections/prevention & control
8.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38609347

ABSTRACT

AIMS: This study investigated phenotypic and genotypic antimicrobial resistance profiles of Vibrio strains identified from Mytilus galloprovincialis farmed for human consumption in the Adriatic Sea Central Italy. METHODS AND RESULTS: A total of 475 mussels (M. galloprovincialis) were involved in the present study, and culture-dependent microbiological methods permitted to identify a total of 50 Vibrio strains that were tested for antibiotic susceptibility followed by the genetic determinant detections. Antibiograms showed resistance against ampicillin (36.0%), amoxicillin-clavulanic acid (30.0%), gentamycin (14.0%), and imipenem (18.0%). Biomolecular assays amplified a total of 264 antibiotic resistance genes harbored by both susceptible and resistant Vibrio species. Among resistance genes, aacC2 (62.0%) and aadA (58.0%) for aminoglycosides, blaTEM (54.0%) for beta-lactams, qnrS (24.0%) for quinolones, tetD (66.0%) for tetracyclines, and vanB (60.0%) for glycopeptides were mainly amplified by PCR assays. CONCLUSIONS: Vibrio genus is involved in the antibiotic resistance phenomenon diffusion in the aquatic environments, as demonstrated by the harboring of many genetic determinants representing a kind of genetic "dark world".


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Vibrio , Animals , Italy , Vibrio/genetics , Vibrio/drug effects , Vibrio/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Mytilus/microbiology , Bivalvia/microbiology , Aquaculture
9.
Mar Biotechnol (NY) ; 26(2): 389-403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483672

ABSTRACT

Bivalve mass mortalities have been reported worldwide, which not only can be explained as a result of pathogen infection, but may reflect changes in environments. Although these episodes were often reported, there was limited information concerning the molecular responses to various stressors leading to summer mortality. In the present work, RNA sequencing (RNA-seq), tandem mass tagging (TMT)-based quantitative proteomics, and 16S rRNA sequencing were used to explore the natural outbreak of summer mortality in the clam Meretrix petechialis. We identified a total of 172 differentially expressed genes (DEGs) and 222 differentially expressed proteins (DEPs) in the diseased group compared to the normal group. The inconsistent expression profiles of immune DEGs/DEPs may be due to the immune dysregulation of the diseased clams. Notably, 11 solute carrier family genes were found among the top 20 down-regulated genes in the diseased group, indicating that weakened transmembrane transport ability might occur in the diseased clams. Integration analysis of transcriptomic and proteomic results showed that many metabolic processes such as "arginine and proline metabolism" and "tyrosine metabolism" were inhibited in the diseased group, suggesting metabolic inhibition. Moreover, 16S rRNA sequencing revealed that the microbial composition of clam hepatopancreas was disordered in the diseased group. The comparison of DEGs expression between the natural summer mortality event and an artificial challenge experiment involving both Vibrio infection and heat stress revealed 9/15 genes showing similar expression trends between the two conditions, suggesting that the summer mortality might be caused by a combination of high temperature and Vibrio infection. These results would deepen our understanding of summer mortality and provide candidate resistance markers for clam resistance breeding.


Subject(s)
Bivalvia , Proteomics , RNA, Ribosomal, 16S , Seasons , Animals , Bivalvia/genetics , Bivalvia/microbiology , Bivalvia/metabolism , RNA, Ribosomal, 16S/genetics , Transcriptome , Gene Expression Profiling , Proteome/genetics , Proteome/metabolism , Hepatopancreas/metabolism , Multiomics
10.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38531780

ABSTRACT

Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.


Subject(s)
Bivalvia , Pectinidae , Animals , Symbiosis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria , Genomics , Bivalvia/microbiology , Pectinidae/genetics , Genome, Bacterial , Phylogeny
11.
Article in English | MEDLINE | ID: mdl-38522379

ABSTRACT

In this study, we investigate the mortality of the clam Meretrix petechialis facing a vibrio challenge under different temperatures and the underlying molecular mechanisms. Our experiment distinctly revealed that clam mortality was predominantly observed under high temperature, highlighting the critical impact of thermal stress on clam susceptibility to infection. Using RNA-seq, we further compared the global transcriptional response to vibrio in clam gills between high and low temperatures. Compared to other groups, the differentially expressed genes in vibrio-challenged group at high temperature associated with immunity, oxidative stress, and membrane transport. Key results show a weakened immune response in clams at high temperature, especially in the TNF signaling pathway, and a decrease in membrane transport efficiency, notably in SLC proteins. Additionally, high temperature enhanced pro-inflammatory related unsaturated fatty acid metabolism, leading to increased oxidative damage. This was further evidenced by our biochemical assays, which showed significantly higher levels of lipid peroxidation and protein carbonylation in clams at high temperature, indicating heightened oxidative damage. RT-PCR validation of selected DEGs corroborated the RNA-seq findings. Our findings contribute to the understanding of more frequent shellfish mortality in summer, emphasizing the role of temperature in pathogen response, elucidating the molecular mechanisms underlying the synergistic effect of pathogen and high temperature stresses. The key genes identified provide potential targets for resistance-assisted breeding. This research has significant implications for bivalve aquaculture and their physiology, particularly in light of global climate changes affecting marine ecosystems.


Subject(s)
Bivalvia , Transcriptome , Vibrio , Animals , Bivalvia/microbiology , Bivalvia/genetics , Vibrio/physiology , Hot Temperature , Oxidative Stress
12.
J Invertebr Pathol ; 201: 108014, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918657

ABSTRACT

The rapid spread of the protozoan Haplosporidium pinnae is having a strong negative effect on Pinna nobilis populations. A case study on a residual population in Lake Faro (Sicily, Central Mediterranean), whose long-term monitoring has revealed a dramatic decline following the 2018-2020 mass mortality event, is presented. In the framework of such monitoring, we performed tissue sampling on nine living P. nobilis, detecting the pathogen in seven of them. In contrast, other pathogens associated with P. nobilis disease in other areas, i.e., Mycobacterium spp. and Vibrio mediterranei, were not recorded. The surviving individuals (approximately twenty) showed that brackish areas only weakly mitigate the effects of H. pinnae disease and might not be resolutive. Nevertheless, the results show that Lake Faro may constitute one of the last Mediterranean P. nobilis sanctuaries.


Subject(s)
Bivalvia , Haplosporida , Mycobacterium , Humans , Animals , Lakes , Bivalvia/microbiology
13.
Appl Environ Microbiol ; 89(12): e0074423, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38009998

ABSTRACT

IMPORTANCE: This study highlights diversity in iron acquisition and regulation in bacteria. The mechanisms of iron acquisition and its regulation in Teredinibacter turnerae, as well as its connection to cellulose utilization, a hallmark phenotype of T. turnerae, expand the paradigm of bacterial iron acquisition. Two of the four TonB genes identified in T. turnerae exhibit functional redundancy and play a crucial role in siderophore-mediated iron transport. Unlike typical TonB genes in bacteria, none of the TonB genes in T. turnerae are clearly iron regulated. This unusual regulation could be explained by another important finding in this study, namely, that the two TonB genes involved in iron transport are also essential for cellulose utilization as a carbon source, leading to the expression of TonB genes even under iron-rich conditions.


Subject(s)
Bivalvia , Animals , Bivalvia/microbiology , Symbiosis , Bacteria/metabolism , Iron/metabolism , Cellulose/metabolism , Carbohydrates , Bacterial Proteins/metabolism
14.
J Appl Microbiol ; 134(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37516448

ABSTRACT

AIM: Assessment of the fate of microbial contamination driven from treated wastewater disposal at a highly productive zone on a South European coastal lagoon (Ria Formosa). METHODS AND RESULTS: Microbial indicators of contamination (Total coliforms, Escherichia coli, and Enterococci) were evaluated monthly during September 2018-September 2020 at three study areas (Faro, Olhão, and Tavira) under different wastewater discharge flows and hydrodynamic conditions. Additional data on E. coli monitoring in bivalves, available from the national institution responsible for their surveillance was also considered. The maximum microbial contamination was found at Faro, the highest-load and less-flushed study area, contrasting the lowest contamination at Olhão, a lower-load and strongly flushed area. The wastewater impact decreased along the spatial dispersal gradients and during high water, particularly at Faro and Tavira study areas, due to a considerable dilution effect. Microbial contamination at Olhão increased during the summer, while at the other study areas seasonal evidence was not clear. Data also indicate that E. coli in bivalves from bivalve production zones next to the three study areas reflected the differentiated impact of the wastewater treatment plants effluents on the water quality of those areas. CONCLUSIONS: Effluent loads together with local hydrodynamics, water temperature, solar radiation, precipitation, and land runoff as well as seabirds populations and environmentally adapted faecal or renaturelized bacterial communities, contributed to microbial contamination of the study areas.


Subject(s)
Bivalvia , Wastewater , Animals , Environmental Monitoring , Escherichia coli , Taiwan , Water Quality , Bivalvia/microbiology
15.
Vet Pathol ; 60(5): 560-577, 2023 09.
Article in English | MEDLINE | ID: mdl-37458195

ABSTRACT

Disease outbreaks in several ecologically or commercially important invertebrate marine species have been reported in recent years all over the world. Mass mortality events (MMEs) have affected the noble pen shell (Pinna nobilis), causing its near extinction. Our knowledge of the dynamics of diseases affecting this species is still unclear. Early studies investigating the causative etiological agent focused on a novel protozoan parasite, Haplosporidium pinnae, although further investigations suggested that concurrent polymicrobial infections could have been pivotal in some MMEs, even in the absence of H. pinnae. Indeed, moribund specimens collected during MMEs in Italy, Greece, and Spain demonstrated the presence of a bacteria from within the Mycobacterium simiae complex and, in some cases, species similar to Vibrio mediterranei. The diagnostic processes used for investigation of MMEs are still not standardized and require the expertise of veterinary and para-veterinary pathologists, who could simultaneously evaluate a variety of factors, from clinical signs to environmental conditions. Here, we review the available literature on mortality events in P. nobilis and discuss approaches to define MMEs in P. nobilis. The proposed consensus approach should form the basis for establishing a foundation for future studies aimed at preserving populations in the wild.


Subject(s)
Bivalvia , Haplosporida , Mycobacterium , Animals , Bivalvia/microbiology , Bivalvia/parasitology , Italy , Disease Outbreaks
16.
Water Sci Technol ; 87(9): 2142-2158, 2023 May.
Article in English | MEDLINE | ID: mdl-37186620

ABSTRACT

Microbial pollution in marine environments is one of the critical issues with regard to the sanitary status of recreational activities and seafood harvesting due to a potential contamination by pathogenic microorganisms. This review's objectives were to identify instances of bacterial, viral and protozoan parasite pollution in the Tunisian coastal region and to make recommendations for further research. Fecal indicators such as Escherichia coli and Salmonella spp. were detected in samples of clams and mussels. Vibrionaceae species were also recorded in seawater, sediment, fish and clams in different sites from north to south with the dominance of Vibrio alginolyticus. Bivalve mollusks collected from the Tunisian coast have been revealed to harbor viruses as well as protozoan parasites. Furthermore, the isolation of multidrug-resistant bacterial strains from Tunisian coastlines proves the significant spread and circulation of antibiotic resistance caused by the massive use of antibiotics. In conclusion, we suggest intensive monitoring and cutting-edge wastewater treatment technologies to enhance seawater quality and preserve the biodiversity of aquatic life. Rapid detection techniques for the most important pathogenic microorganisms in seafood and seawater must be also developed to reduce human health risk.


Subject(s)
Anti-Bacterial Agents , Bivalvia , Animals , Humans , Anti-Bacterial Agents/pharmacology , Seawater/microbiology , Bivalvia/microbiology , Escherichia coli , Drug Resistance, Microbial
17.
Fish Shellfish Immunol ; 137: 108774, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105426

ABSTRACT

There are many studies revealed that metal-based nanoparticles (NPs) possess excellent bactericidal effect on multitudinous bacteria and fungi. However, the control effect of NPs as antimicrobial agents to against Vibrio parahaemolyticus infection remain in poorly understood for blood clam, Tegillarca granosa. In order to evaluate the effect, the changes in six physiological parameters and the immune-related genes expression of clams exposed to V. parahaemolyticus alone or along with NPs (nZnO or nCuO) were investigated in present study. Results showed that both tested NPs exerted prominent redemptive or mitigative effect in an inverse dose-dependent way on physiological indexes of clam, especially in the total counts, phagocytosis and the cell viability of haemocytes, as well as the concentration and activity of lysozymes, when co-exposed with Vibrio. Gene expression analysis showed NPs at a concentration of 0.1 mg/L generally mitigated the downregulation of immune-related genes after clam exposure to V. parahaemolyticus. The combination of 0.1 mg/mL nZnO and nCuO additives has been shown to significantly enhance the humoral immunity of blood clam, suggesting its potential as a protective measure against V. parahaemolyticus infection in T. granosa.


Subject(s)
Arcidae , Bivalvia , Metal Nanoparticles , Vibrio parahaemolyticus , Animals , Bivalvia/microbiology , Phagocytosis
18.
Mar Environ Res ; 188: 105977, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37043840

ABSTRACT

Recently, P. nobilis populations have suffered a tremendous reduction, with pathogens potentially playing a crucial role. Considering its highly endangered status, mechanisms leading to mass mortalities were examined in one or multiple pathogens infected populations. Thus, seasonal antioxidant enzymatic activities, hsp70 and catalase mRNA levels, were investigated in two different Greek populations, during mass mortality events in summer of 2020. Samples were collected from Fthiotis and Lesvos during February (ToC 14 ± 1.2 and 15 ± 1 respectively), April (ToC 18 ± 1.2 and 17 ± 1.3 respectively), and June (ToC 24.5 ± 1.5 and 21.5 ± 1.5 respectively) 2020. In July of the same year (ToC 26.5 ± 1.7 in Fthiotis and 24.5 ± 1.7 in Lesvos), no live specimens were found. All biochemical parameters and phylogenetic analysis suggest that pathogen infection increases P. nobilis sensitivity to water temperature, subsequently leading to mass mortality. The latter was obvious in Fthiotis individuals, in which Haplosporidium pinnae was also observed with Mycobacterium spp., compared to Lesvos individuals.


Subject(s)
Antioxidants , Bivalvia , Animals , Humans , Phylogeny , Temperature , Seasons , Bivalvia/microbiology , Heat-Shock Response , Health Status
19.
J Food Prot ; 86(3): 100063, 2023 03.
Article in English | MEDLINE | ID: mdl-36916565

ABSTRACT

Oysters and mussels are known vectors of foodborne pathogens because of their immobile and filter-feeding nature leading to the accumulation of biological particles in their tissues. Accumulated bacteria which comes from the culture environment and unsanitary handling can cause food poisoning if these shellfish are consumed raw or partially processed. This study determined the incidence of bacterial pathogen contamination along the different channels of the oyster and mussel supply chain through a time-distribution simulation analysis. First, the route of the fresh bivalve products from a local farm to its market was established through interviews. From the data gathered, a simulation experiment was conducted following the observed time-temperature conditions and the actual bulk packaging material used by the traders. The presence of target pathogens Escherichia coli, Salmonella spp., Vibrio parahaemolyticus, and Vibrio cholerae were detected using standard conventional culture techniques. Initial E. coli counts in both mussels and oysters were higher than the safety limit of 330 MPN in 100 g tissue. Interestingly, E. coli counts in mussels decreased after 6 h and maintained low numbers after more than 24 h postharvest. Counts in oysters however increased to 1000 MPN in 100 g tissue. V. parahaemolyticus in mussels and oysters showed a gradual increase in counts with increasing holding time albeit in numbers that are lower than the safety limit of 1000 cfu g-1 tissue. Qualitative detection of Salmonella and V. cholerae showed the presence of both pathogens in all the sampling points. All four pathogens were also detected in the culture waters and in the sediment. Results of the study showed that the culture environment and the handling practices contribute greatly to the pathogen contamination in oysters and mussels.


Subject(s)
Bivalvia , Ostreidae , Vibrio cholerae , Vibrio parahaemolyticus , Animals , Food Contamination/analysis , Escherichia coli , Bivalvia/microbiology , Ostreidae/microbiology , Seafood/microbiology , Bacteria , Colony Count, Microbial
20.
J Food Prot ; 86(1): 100005, 2023 01.
Article in English | MEDLINE | ID: mdl-36916582

ABSTRACT

Vibrio parahaemolyticus is a common foodborne pathogen in seafood, which often causes seafood borne bacterial gastroenteritis or food poisoning. Thermostable direct hemolysin (TDH) is considered to be one of the main virulence factors involved in this pathogen. The most clinical V. parahaemolyticus isolates produce TDH. Therefore, high sensitivity and specificity detection of TDH are of great significance for food safety and early diagnosis of diseases caused by V. parahaemolyticus. In this study, we developed a rapid, sensitive immunochromatographic test paper assay for the quantitative detection of TDH in seafood samples using time-resolved fluorescence techniques. First, we completed the preparation of fluorescent detection antibodies by coupling lanthanide fluorescent nanospheres with homemade high-affinity polyclonal antibodies based on the principle of the double-antibody sandwich. The lanthanide fluorescent nanospheres used in this study are characterized by a large stokes shift and a long fluorescence lifetime, which effectively reduces background noise and improves detection sensitivity. In addition, the method can be completed within 15 min for the detection of TDH, has a detection limit below 50 ng/mL and good linearity in the range of 50-5000 ng/mL. Moreover, it has good specificity and no cross-reactivity with Vibrio vulnificus hemolysin (VVH), Clostridium perfringens α toxin (CPA) or C. perfringens ε toxin (ETX). Finally, the sensitivity of this method was unchanged when the three simulated samples of Patinopecten yessoensis, Ruditapes philippinarum, and Scapharca broughtonii tested, indicating that the method is not affected by samples in a complex matrix. In conclusion, this study establishes a practical new method for on-site rapid detection of TDH, which is easy to operate, fast response, easy to carry and can be implemented under the field conditions without expensive equipment and professional person.


Subject(s)
Bivalvia , Vibrio parahaemolyticus , Animals , Humans , Hemolysin Proteins/analysis , Vibrio parahaemolyticus/genetics , Polymerase Chain Reaction/methods , Bivalvia/microbiology , Bacterial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...