Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.949
Filter
1.
Stem Cell Res Ther ; 15(1): 245, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113095

ABSTRACT

BACKGROUND: The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS: We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS: The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS: These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.


Subject(s)
Embryonic Stem Cells , Animals , Culture Media, Serum-Free/pharmacology , Swine , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Cell Differentiation , Feeder Cells/cytology , Feeder Cells/metabolism , Cell Culture Techniques/methods , Cell Proliferation , Blastocyst/cytology , Blastocyst/metabolism , Cells, Cultured
2.
Methods Mol Biol ; 2818: 81-91, 2024.
Article in English | MEDLINE | ID: mdl-39126468

ABSTRACT

Homologous recombination plays pivotal roles in physical attachments and genetic diversity. In the past, it was studied among individuals from different populations. However, only few gametes from individual could generate offspring, which limits its exploration in nature selection. In the last few years, preimplantation blastocysts based on trio SNP-chip data were available in individuals for preimplantation genetic testing (PGT). In this protocol, we demonstrate how to detect meiotic recombination events and construct the genetic map based on trio SNP-chip data, obtained from biopsied blastocysts and their related individuals in PGT cycles, which may allow better understanding of recombination events in nature selection.


Subject(s)
Blastocyst , Meiosis , Polymorphism, Single Nucleotide , Humans , Meiosis/genetics , Blastocyst/metabolism , Blastocyst/cytology , Female , Preimplantation Diagnosis/methods , Chromosome Mapping/methods , Homologous Recombination , Oligonucleotide Array Sequence Analysis/methods , Recombination, Genetic
3.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38991843

ABSTRACT

Pronuclear transfer has been successfully used in human-assisted reproduction to suppress the adverse effects of a defective oocyte cytoplasm or to bypass an idiopathic developmental arrest. However, the effects of the initial parental genome remodelling in a defective cytoplasm on the subsequent development after pronucleus transfer have not been systematically studied. By performing pronuclear transfer in pre-replication and post-replication mouse embryos, we show that the timing of the procedure plays a critical role. Although apparently morphologically normal blastocysts were obtained in both pre- and post-replication pronuclear transfer groups, post-replication pronuclear transfer led to a decrease in developmental competence and profound changes in embryonic gene expression. By inhibiting the replication in the abnormal cytoplasm before pronuclear transfer into a healthy cytoplasm, the developmental potential of embryos could be largely restored. This shows that the conditions under which the first embryonic replication occurs strongly influence developmental potential. Although pronuclear transfer is the method of choice for mitigating the impact of a faulty oocyte cytoplasm on early development, our results show that the timing of this intervention should be restricted to the pre-replication phase.


Subject(s)
Blastocyst , Embryonic Development , Nuclear Transfer Techniques , Animals , Mice , Female , Blastocyst/metabolism , Blastocyst/cytology , Cytoplasm/metabolism , Oocytes/metabolism , Oocytes/cytology , Cell Nucleus/metabolism , Gene Expression Regulation, Developmental , Time Factors , Embryo, Mammalian
4.
J Vis Exp ; (208)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975749

ABSTRACT

Embryo implantation is the first step in the establishment of a successful pregnancy. An in vitro model for embryo implantation is critical for basic biological research, drug development, and screening. This paper presents a simple, rapid, and highly efficient in vitro model for embryo implantation. In this protocol, we first introduce mouse blastocyst acquisition and human endometrial adenocarcinoma cells (Ishikawa) preparation for implantation, followed by the co-culture method for mouse embryos and Ishikawa cells. Finally, we conducted a study to assess the impact of varying concentrations of 17-ß-estradiol (E2) and progesterone (P4) on embryo adhesion rates based on this model. Our findings revealed that high concentrations of E2 significantly reduced embryo adhesion, whereas the addition of progesterone could restore the adhesion rate. This model offers a simple and fast platform for evaluating and screening molecules involved in the adhesion process, such as cytokines, drugs, and transcription factors controlling implantation and endometrial receptivity.


Subject(s)
Coculture Techniques , Embryo Implantation , Estradiol , Progesterone , Embryo Implantation/physiology , Embryo Implantation/drug effects , Female , Animals , Mice , Humans , Coculture Techniques/methods , Progesterone/pharmacology , Estradiol/pharmacology , Cell Line, Tumor , Blastocyst/cytology , Blastocyst/drug effects , Pregnancy , Endometrial Neoplasms/pathology
5.
Zhonghua Fu Chan Ke Za Zhi ; 59(7): 548-558, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39056132

ABSTRACT

Objective: To explore the correlation between blastomere count variations "skip value" which extracted from by time-lapse technology (TLT) combined with artificial intelligence (AI) and morphological features of in vitro fertilization (IVF) embryo, and to test its feasibility in clinical applications. Methods: This study was a diagnostic experiment (AI reassessment of embryo transferred patients), a total of 6 545 embryos from 1 226 patients who underwent IVF at the Women and Children's Hospital of Chongqing Medical University from December 2020 to December 2021 were retrospectively analyzed, of which 2 869 embryos were attempted to cultured to blastocyst stage by TLT. The embryo dynamic map (EDM) was drawn by Embryo Viewer, a TLT recording software, based on embryo developmental kinetics. The self-developed AI embryo evaluation software identified and recorded the number of cleavages in real time during embryonic development, and compared with the EDM, the correlation between the skip value formed by the change of cleavage sphere counts and the outcomes of the embryos was analyzed. The correlation among skip value, morphological score of embryo, implantation rate and live birth rate were performed by Spearman and step-up logistic regression. The receiver operating characteristic (ROC) curve was selected for reporting there relationship of skip value and morphology. Finally, predicting power of skip value for implantation and live birth rate were performed by ROC analysis. Results: The total skip values extracted from the blastomere count of embryos (72 hours post-fertilization) were negatively correlated with abnormal cleavage, blastocyst formation rate, day 3 (D3)-cell score, uneven size and fragmentation (the ß values were -0.268, -0.116, -0.213, -0.159 and -0.222, respectively; all P<0.001); positively correlated with D3-cell number (ß=0.034; P<0.001); negatively correlated with blastocyst formation rate and implantation rate (OR=0.97, 95%CI: 0.93-0.99, P=0.034; OR=0.96, 95%CI: 0.93-0.98, P=0.044). The power of predicting implantation were similar between the order selection of skip values and traditional morphology criteria [area under curve (AUC): 0.679 vs 0.620]. Live birth rate were negatively correlated with female age (OR=0.91, 95%CI: 0.88-0.93; P<0.001), D3 general score (OR=0.77, 95%CI: 0.59-0.99; P=0.045) and order selection of skip values (OR=0.98, 95%CI: 0.96-0.99; P=0.038), while positively correlated with retrieved oocyte number and endometrial thickness in embryo transferred (OR=1.08, 95%CI:1.05-1.11, P<0.001; OR=1.09, 95%CI:1.06-0.12, P<0.001, respectively) from multivariate regression analysis, and the power of predicting live birth was 0.666 for AUC. Conclusions: The skip value and its order form is a systematic quantification of embryo development, correlated with embryo developmental quality and clinical outcome. It could be an addition parameter for embryo culture and selection.


Subject(s)
Artificial Intelligence , Blastocyst , Blastomeres , Embryo Culture Techniques , Embryonic Development , Fertilization in Vitro , Humans , Fertilization in Vitro/methods , Retrospective Studies , Female , Blastomeres/cytology , Pregnancy , Embryo Culture Techniques/methods , Blastocyst/cytology , Embryo Transfer/methods , Pregnancy Rate , Embryo Implantation , Adult , Software , Embryo, Mammalian/cytology
6.
Reprod Biol Endocrinol ; 22(1): 89, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080754

ABSTRACT

BACKGROUND: For in vitro fertilization (IVF), mitochondrial DNA (mtDNA) levels in the trophectodermal (TE) cells of biopsied blastocysts have been suggested to be associated with the cells' developmental potential. However, scholars have reached differing opinions regarding the use of mtDNA levels as a reliable biomarker for predicting IVF outcomes. Therefore, this study aims to assess the association of mitochondrial copy number measured by mitoscore associated with embryonic developmental characteristics and ploidy. METHODS: This retrospective study analyzed the developmental characteristics of embryos and mtDNA levels in biopsied trophectodermal cells. The analysis was carried out using time-lapse monitoring and next-generation sequencing from September 2021 to September 2022. Five hundred and fifteen blastocysts were biopsied from 88 patients undergoing IVF who met the inclusion criteria. Embryonic morphokinetics and morphology were evaluated at 118 h after insemination using all recorded images. Blastocysts with appropriate morphology on day 5 or 6 underwent TE biopsy and preimplantation genetic testing for aneuploidy (PGT-A). Statistical analysis involved generalized estimating equations, Pearson's chi-squared test, Fisher's exact test, and Kruskal-Wallis test, with a significance level set at P < 0.05. RESULTS: To examine differences in embryonic characteristics between blastocysts with low versus high mitoscores, the blastocysts were divided into quartiles based on their mitoscore. Regarding morphokinetic characteristics, no significant differences in most developmental kinetics and observed cleavage dysmorphisms were discovered. However, blastocysts in mitoscore group 1 had a longer time for reaching 3-cell stage after tPNf (t3; median: 14.4 h) than did those in mitoscore group 2 (median: 13.8 h) and a longer second cell cycle (CC2; median: 11.7 h) than did blastocysts in mitoscore groups 2 (median: 11.3 h) and 4 (median: 11.4 h; P < 0.05). Moreover, blastocysts in mitoscore group 4 had a lower euploid rate (22.6%) and a higher aneuploid rate (59.1%) than did those in the other mitoscore groups (39.6-49.3% and 30.3-43.2%; P < 0.05). The rate of whole-chromosomal alterations in mitoscore group 4 (63.4%) was higher than that in mitoscore groups 1 (47.3%) and 2 (40.1%; P < 0.05). A multivariate logistic regression model was used to analyze associations between the mitoscore and euploidy of elective blastocysts. After accounting for factors that could potentially affect the outcome, the mitoscore still exhibited a negative association with the likelihood of euploidy (adjusted OR = 0.581, 95% CI: 0.396-0.854; P = 0.006). CONCLUSIONS: Blastocysts with varying levels of mitochondrial DNA, identified through biopsies, displayed similar characteristics in their early preimplantation development as observed through time-lapse imaging. However, the mitochondrial DNA level determined by the mitoscore can be used as a standalone predictor of euploidy.


Subject(s)
Blastocyst , Embryonic Development , Fertilization in Vitro , Time-Lapse Imaging , Humans , Blastocyst/cytology , Female , Retrospective Studies , Time-Lapse Imaging/methods , Adult , Embryonic Development/genetics , Embryonic Development/physiology , Fertilization in Vitro/methods , Pregnancy , DNA, Mitochondrial/genetics , Preimplantation Diagnosis/methods , Aneuploidy , Biopsy , Mitochondria/genetics , DNA Copy Number Variations , Embryo Culture Techniques
7.
Anal Chem ; 96(29): 11832-11844, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38979898

ABSTRACT

An effective tool to assess embryo quality in the assisted reproduction clinical practice will enhance successful implantation rates and mitigate high risks of multiple pregnancies. Potential biomarkers secreted into culture medium (CM) during embryo development enable rapid and noninvasive methods of assessing embryo quality. However, small volumes, low biomolecule concentrations, and impurity interference collectively preclude the identification of quality-related biomarkers in single blastocyst CM. Here, we developed a noninvasive trace multiomics approach to screen for potential markers in individual human blastocyst CM. We collected 84 CM samples and divided them into high-quality (HQ) and low-quality (LQ) groups. We evaluated the differentially expressed proteins (DEPs) and metabolites (DEMs) in HQ and LQ CM. A total of 504 proteins and 189 metabolites were detected in individual blastocyst CM. Moreover, 9 DEPs and 32 DEMs were identified in different quality embryo CM. We also categorized HQ embryos into positive implantation (PI) and negative implantation (NI) groups based on ultrasound findings on day 28. We identified 41 DEPs and 4 DEMs associated with clinical implantation outcomes in morphologically HQ embryos using a multiomics analysis approach. This study provides a noninvasive multiomics analysis technique and identifies potential biomarkers for clinical embryo developmental quality assessment.


Subject(s)
Biomarkers , Culture Media , Metabolomics , Proteomics , Humans , Biomarkers/metabolism , Biomarkers/analysis , Proteomics/methods , Metabolomics/methods , Culture Media/chemistry , Culture Media/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Embryo Culture Techniques , Embryo, Mammalian/metabolism , Multiomics
8.
Cell Mol Life Sci ; 81(1): 297, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992309

ABSTRACT

Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.


Subject(s)
Blastocyst , Cell Differentiation , Stage-Specific Embryonic Antigens , Umbilical Cord , Humans , Stage-Specific Embryonic Antigens/metabolism , Umbilical Cord/cytology , Blastocyst/cytology , Blastocyst/metabolism , Antigens, Tumor-Associated, Carbohydrate/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Single-Cell Analysis , Telomerase/metabolism , Telomerase/genetics , Female
9.
Chin Med J (Engl) ; 137(16): 1939-1949, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38997251

ABSTRACT

BACKGROUND: In vitro fertilization (IVF) has emerged as a transformative solution for infertility. However, achieving favorable live-birth outcomes remains challenging. Current clinical IVF practices in IVF involve the collection of heterogeneous embryo data through diverse methods, including static images and temporal videos. However, traditional embryo selection methods, primarily reliant on visual inspection of morphology, exhibit variability and are contingent on the experience of practitioners. Therefore, an automated system that can evaluate heterogeneous embryo data to predict the final outcomes of live births is highly desirable. METHODS: We employed artificial intelligence (AI) for embryo morphological grading, blastocyst embryo selection, aneuploidy prediction, and final live-birth outcome prediction. We developed and validated the AI models using multitask learning for embryo morphological assessment, including pronucleus type on day 1 and the number of blastomeres, asymmetry, and fragmentation of blastomeres on day 3, using 19,201 embryo photographs from 8271 patients. A neural network was trained on embryo and clinical metadata to identify good-quality embryos for implantation on day 3 or day 5, and predict live-birth outcomes. Additionally, a 3D convolutional neural network was trained on 418 time-lapse videos of preimplantation genetic testing (PGT)-based ploidy outcomes for the prediction of aneuploidy and consequent live-birth outcomes. RESULTS: These two approaches enabled us to automatically assess the implantation potential. By combining embryo and maternal metrics in an ensemble AI model, we evaluated live-birth outcomes in a prospective cohort that achieved higher accuracy than experienced embryologists (46.1% vs. 30.7% on day 3, 55.0% vs. 40.7% on day 5). Our results demonstrate the potential for AI-based selection of embryos based on characteristics beyond the observational abilities of human clinicians (area under the curve: 0.769, 95% confidence interval: 0.709-0.820). These findings could potentially provide a noninvasive, high-throughput, and low-cost screening tool to facilitate embryo selection and achieve better outcomes. CONCLUSIONS: Our study underscores the AI model's ability to provide interpretable evidence for clinicians in assisted reproduction, highlighting its potential as a noninvasive, efficient, and cost-effective tool for improved embryo selection and enhanced IVF outcomes. The convergence of cutting-edge technology and reproductive medicine has opened new avenues for addressing infertility challenges and optimizing IVF success rates.


Subject(s)
Artificial Intelligence , Fertilization in Vitro , Humans , Fertilization in Vitro/methods , Female , Pregnancy , Adult , Preimplantation Diagnosis/methods , Embryo Transfer/methods , Blastocyst/physiology , Blastocyst/cytology , Aneuploidy
10.
Nat Genet ; 56(7): 1468-1481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839885

ABSTRACT

Aneuploidy is frequently detected in early human embryos as a major cause of early pregnancy failure. However, how aneuploidy affects cellular function remains elusive. Here, we profiled the transcriptomes of 14,908 single cells from 203 human euploid and aneuploid blastocysts involving autosomal and sex chromosomes. Nearly all of the blastocysts contained four lineages. In aneuploid chromosomes, 19.5% ± 1.2% of the expressed genes showed a dosage effect, and 90 dosage-sensitive domains were identified. Aneuploidy leads to prevalent genome-wide transcriptome alterations. Common effects, including apoptosis, were identified, especially in monosomies, partially explaining the lower cell numbers in autosomal monosomies. We further identified lineage-specific effects causing unstable epiblast development in aneuploidies, which was accompanied by the downregulation of TGF-ß and FGF signaling, which resulted in insufficient trophectoderm maturation. Our work provides crucial insights into the molecular basis of human aneuploid blastocysts and may shed light on the cellular interaction during blastocyst development.


Subject(s)
Aneuploidy , Blastocyst , Single-Cell Analysis , Transcriptome , Humans , Blastocyst/metabolism , Blastocyst/cytology , Single-Cell Analysis/methods , Female , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Gene Expression Profiling/methods , Pregnancy , Signal Transduction/genetics , Apoptosis/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Cell Lineage/genetics
11.
Proc Natl Acad Sci U S A ; 121(27): e2317316121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917013

ABSTRACT

A dispersed cytoplasmic distribution of mitochondria is a hallmark of normal cellular organization. Here, we have utilized the expression of exogenous Trak2 in mouse oocytes and embryos to disrupt the dispersed distribution of mitochondria by driving them into a large cytoplasmic aggregate. Our findings reveal that aggregated mitochondria have minimal impact on asymmetric meiotic cell divisions of the oocyte. In contrast, aggregated mitochondria during the first mitotic division result in daughter cells with unequal sizes and increased micronuclei. Further, in two-cell embryos, microtubule-mediated centering properties of the mitochondrial aggregate prevent nuclear centration, distort nuclear shape, and inhibit DNA synthesis and the onset of embryonic transcription. These findings demonstrate the motor protein-mediated distribution of mitochondria throughout the cytoplasm is highly regulated and is an essential feature of cytoplasmic organization to ensure optimal cell function.


Subject(s)
Blastocyst , Cell Nucleus , Mitochondria , Oocytes , Animals , Mitochondria/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Mice , Cell Nucleus/metabolism , Oocytes/metabolism , Oocytes/cytology , Female , Embryonic Development/physiology , Microtubules/metabolism , Mitosis , Meiosis/physiology
12.
Cell Stem Cell ; 31(7): 1058-1071.e5, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38823388

ABSTRACT

The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.


Subject(s)
Cell Differentiation , Cell Lineage , Fibroblast Growth Factors , Pluripotent Stem Cells , Humans , Fibroblast Growth Factors/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Blastocyst/metabolism , Blastocyst/cytology , Animals , Signal Transduction , Mice , Models, Biological , Germ Layers/metabolism , Germ Layers/cytology
13.
Cell ; 187(15): 4010-4029.e16, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38917790

ABSTRACT

Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.


Subject(s)
Blastocyst , Cell Differentiation , Endoderm , Animals , Endoderm/metabolism , Endoderm/cytology , Mice , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Signal Transduction , Embryonic Development , Janus Kinases/metabolism , Gene Expression Regulation, Developmental , STAT Transcription Factors/metabolism , Transcription Factors/metabolism , Female , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology
14.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38843832

ABSTRACT

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Subject(s)
Cell Differentiation , Spliceosomes , Animals , Humans , Mice , Blastocyst/metabolism , Blastocyst/cytology , Blastomeres/metabolism , Blastomeres/cytology , Cellular Reprogramming , Embryonic Development/genetics , Germ Layers/metabolism , Germ Layers/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , RNA Splicing , Spliceosomes/metabolism , Totipotent Stem Cells/metabolism , Totipotent Stem Cells/cytology , Zygote/metabolism , Cells, Cultured , Models, Molecular , Protein Structure, Tertiary , Genome, Human , Single-Cell Analysis , Growth Differentiation Factor 15/chemistry , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Epigenomics , Cell Lineage
15.
Theriogenology ; 226: 141-150, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38885555

ABSTRACT

The efficiency of in vitro embryo production in mammals is influenced by variables associated with culture conditions during maturation, fertilization, and embryonic development. The embryos obtained often exhibit low quality due to suboptimal in vitro culture conditions compared to the in vivo environment. Co-culturing gametes and embryos with somatic cells has been developed to enhance in vitro culture conditions. This study aimed to assess the impact of coculturing in vitro-produced porcine embryos with porcine oviductal epithelial cells (POEC) on embryo development and quality. Firstly, a pure culture of POEC suitable for coculture systems was established. The epithelial origin of the cells was confirmed by the expression of E-cadherin and cytokeratin. The expression pattern of hormone receptors aligned with the diestrous oviduct, and POEC also secreted oviductal glycoprotein type 1 (OVGP-1). Secondly, POEC from passage 1 (POEC-1) were used to coculture with in vitro-produced porcine embryos. A successful coculture system was established without the addition of fetal bovine serum as a supplement. Coculturing POEC-1 in monolayers with in vitro-produced porcine embryos during the initial two days of culture enhanced the percentage of blastocysts and their hatching. Although the coculture did not alter the number of cells in the blastocysts or apoptosis assessed by TUNEL, it significantly reduced reactive oxygen species (ROS) levels in cleaved porcine embryos. This study represents the first report evaluating the quality of porcine embryos produced by IVF in coculture systems and assessing ROS levels in cleaved porcine embryos obtained by IVF.


Subject(s)
Blastocyst , Coculture Techniques , Embryo Culture Techniques , Epithelial Cells , Fertilization in Vitro , Animals , Coculture Techniques/veterinary , Swine/embryology , Female , Embryo Culture Techniques/veterinary , Fertilization in Vitro/veterinary , Epithelial Cells/cytology , Epithelial Cells/physiology , Blastocyst/physiology , Blastocyst/cytology , Embryonic Development/physiology , Fallopian Tubes/cytology , Oviducts/cytology , Embryo, Mammalian/physiology
16.
Cell Mol Life Sci ; 81(1): 270, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886218

ABSTRACT

Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.


Subject(s)
Cell Differentiation , DNA Methylation , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Trophoblasts , Female , Humans , Pregnancy , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/cytology
17.
Cell Rep ; 43(6): 114340, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865239

ABSTRACT

Whole salivary gland generation and transplantation offer potential therapies for salivary gland dysfunction. However, the specific lineage required to engineer complete salivary glands has remained elusive. In this study, we identify the Foxa2 lineage as a critical lineage for salivary gland development through conditional blastocyst complementation (CBC). Foxa2 lineage marking begins at the boundary between the endodermal and ectodermal regions of the oral epithelium before the formation of the primordial salivary gland, thereby labeling the entire gland. Ablation of Fgfr2 within the Foxa2 lineage in mice leads to salivary gland agenesis. We reversed this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts, resulting in mice that survived to adulthood with salivary glands of normal size, comparable to those of their littermate controls. These findings demonstrate that CBC-based salivary gland regeneration serves as a foundational experimental approach for future advanced cell-based therapies.


Subject(s)
Blastocyst , Hepatocyte Nuclear Factor 3-beta , Pluripotent Stem Cells , Salivary Glands , Animals , Salivary Glands/cytology , Salivary Glands/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Mice , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Cell Lineage , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics
18.
Front Endocrinol (Lausanne) ; 15: 1415865, 2024.
Article in English | MEDLINE | ID: mdl-38894739

ABSTRACT

Objectives: To explore the correlation between mitochondrial quantity and the blastocyst development timeline as well as their respective contributions to early pregnancy. Methods: A retrospective study was conducted using a dataset comprising 2,633 embryos that underwent preimplantation genetic testing for aneuploidy (PGT-A) between January 2016 and December 2023. The study was divided into three subsets to address distinct aspects: the representativeness of a single trophectoderm (TE) biopsy for mitochondrial quantity (n=43), the correlation between morphokinetic features and mitochondrial quantity (n=307), and the association analysis among mitochondrial quantity, blastocyst timeline factor, and reproductive outcomes (n=2,283). Distribution assessment of mitochondrial quantity across an individual blastocyst involved the identification within multiple biopsies and spent culture media. Timeline evaluation included correlating mitochondrial quantity with time-lapse datasets. Finally, multivariate logistic regression models, incorporating potential effectors alongside mitochondrial quantity, were employed to analyze their respective contributions to early pregnancy endpoints. Results: Of distribution assessment, mitochondrial quantity exhibited an even distribution across the entire trophectoderm (Spearman's ρ=0.82), while no detectable mtDNAs in the corresponding spent culture media. Then the timeline correlation study revealed significant association between mitochondrial quantity and blastocyst features of both the day of expanded blastocyst formation (95% Confidence intervals, CIs: 0.27~4.89, p=0.03) and the timing of expanded blastocyst formation (tEB) (95% CIs: -0.24~-0.01, p=0.04) in the regression model, indicating a strong dependency between mitochondrial quantity and the blastocyst development timeline. For the contribution to early pregnancy, multivariate logistic regression models showed that the day of expanded blastocyst formation contributed to four endpoints persistently: positive for HCG (odd ratio, OR: 0.71, p=0.006), gestational sac (OR: 0.78, p=0.04), fetal heartbeat (OR: 0.71, p=0.004), and progression to 14 weeks (OR: 0.69, p=0.002). Contrastingly, no notable correlation was observed between the mitochondrial quantity and these endpoints. Conclusions: Strong interaction was observed between mitochondrial quantity and the blastocyst timeline, particularly the timing of expanded blastocyst formation. It suggests that the primary determinant influencing pregnancy outcomes lies in the time-dependent parameter of blastocyst rather than in the specific mitochondrial quantity.


Subject(s)
Blastocyst , Embryonic Development , Mitochondria , Pregnancy Outcome , Humans , Female , Pregnancy , Blastocyst/cytology , Blastocyst/physiology , Blastocyst/metabolism , Retrospective Studies , Mitochondria/metabolism , Embryonic Development/physiology , Adult , Embryo Culture Techniques , Embryo Transfer/methods , Preimplantation Diagnosis/methods , Fertilization in Vitro/methods
19.
Cells ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38920627

ABSTRACT

Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.


Subject(s)
Embryo Culture Techniques , Embryo, Mammalian , Animals , Humans , Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Embryonic Development , Pregnancy , Female , Blastocyst/cytology , Blastocyst/metabolism
20.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892233

ABSTRACT

In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.


Subject(s)
Retina , Retinal Pigment Epithelium , Animals , Dogs , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Nestin/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Biomarkers/metabolism , SOXB1 Transcription Factors/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Immunohistochemistry , Dog Diseases/metabolism , Dog Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL