Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.110
Filter
1.
Can Vet J ; 65(7): 692-697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952758

ABSTRACT

Objective: To determine if short-duration peripherally inserted central catheters (PICCs) cause a hypercoagulable state in healthy dogs, based on point-of-care viscoelastic coagulation monitor (VCM). Animals: Ten beagle dogs were randomly and equally allocated into control and PICC groups. Procedure: Control dogs had VCM analysis on whole blood following direct venipuncture before sedation (T0) and 2 h after sedation (T2). In the experimental group, a PICC was placed (medial saphenous or femoral vein) under sedation and removed after 4 h, with measurements before placement (T0) and 2 and 6 h after placement (T2 and T6, respectively). Parametric data were analyzed using 1-way ANOVA with Holm-Sídák test for multiple comparisons and paired or unpaired Student's t-test. Nonparametric data were analyzed using Friedman test with Dunn multiple comparison test for Wilcoxon matched-pairs signed-rank test, and Mann-Whitney U test for PICC group, control group, and to compare PICC versus control groups, respectively. Results: Clot formation time was longer at T2 versus T6 (P = 0.0342, but not clinically relevant) in the PICC group, with no significant differences between the PICC and control groups. Conclusion and clinical relevance: Short-term placement of a PICC line did not alter viscoelastic endpoints in healthy beagles.


L'utilisation de courte durée d'un cathéter central inséré par voie périphérique n'affecte pas les paramètres viscoélastiques chez les chiens sains. Objectif: Déterminer si les cathéters centraux insérés par voie périphérique (CCIP) pour une courte durée provoque un état d'hypercoagulabilité chez des chiens en bonne santé sur la base des mesures du Viscoelastic Coagulation Monitor (VCM) au point de soins. Animaux: Dix chiens sains de race beagle ont été choisis et répartis de façon égale et aléatoire dans un groupe témoin et un groupe de CCIP. Procédure: Les chiens témoins ont eu une prise de sang et analyse par VCM avant sédation (T0) et 2 heures après la sédation (T2). Dans le groupe expérimental, un CCIP a été mis en place (veines saphènes ou fémorales médiales) sous sédation et retiré après 4 heures. Les mesures viscoélastiques sur le sang frais ont été effectuées avant la pose du CCIP (T0), 2 heures après la pose (T2) et 2 heures après le retrait/6 heures après la pose du cathéter (T6). L'analyse statistique des données paramétriques a été faite par le test ANOVA à un facteur avec un test de comparaisons multiples de Holm-Sídák pour le groupe CCIP, un test t de Student apparié pour le groupe témoin, et un test t de Student non apparié pour comparer les groupes CCIP et témoin. Les données non paramétriques ont été analysées à l'aide du test de Friedman avec un test de comparaison multiple de Dunn pour le groupe CCIP, du test de rang signé de Wilcoxon pour le groupe témoin et du test de Mann-Whitney U pour comparer les groupes CCIP et témoin. Résultats: Pour le groupe CCIP, le temps de formation du caillot à T2 était plus long mais non cliniquement pertinent. comparativement à T6 (P = 0,0342) et il n'y avait aucune différence significative entre les groupes CCIP et témoin. Conclusion et pertinence clinique: La pose d'un CCIP pour une courte durée n'a pas modifié les variables viscoélastiques chez les chiens beagle en bonne santé.(Traduit par les auteurs).


Subject(s)
Catheterization, Peripheral , Animals , Dogs , Male , Female , Catheterization, Peripheral/veterinary , Catheterization, Central Venous/veterinary , Blood Coagulation/drug effects , Time Factors
2.
Trials ; 25(1): 432, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956697

ABSTRACT

BACKGROUND: Norepinephrine and phenylephrine are commonly used vasoactive drugs to treat hypotension during the perioperative period. The increased release of endogenous norepinephrine elicits prothrombotic changes, while parturients are generally in a hypercoagulable state. Therefore, this trial aims to investigate whether there is a disparity between equivalent doses of prophylactic norepinephrine infusion and phenylephrine infusion on prothrombotic response in patients undergoing cesarean section under spinal anesthesia. METHODS: Sixty-six eligible parturients will be recruited for this trial and randomly assigned to the norepinephrine or phenylephrine group. The "study drug" will be administered at a rate of 15 ml/h starting from the intrathecal injection. The primary outcome are plasma coagulation factor VIII activity (FVIII: C), fibrinogen, and D-dimer levels. The secondary outcomes include hemodynamic variables and umbilical artery blood pH value. DISCUSSION: Our study is the first trial comparing the effect of norepinephrine and phenylephrine on prothrombotic response in patients undergoing cesarean section under spinal anesthesia. Positive or negative results will all help us better understand the impact of vasoactive drugs on patients. If there are any differences, this trial will provide new evidence for maternal choice of vasoactive medications in the perioperative period. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300077164. Registered on 1 November 2023. https://www.chictr.org.cn/ .


Subject(s)
Anesthesia, Obstetrical , Anesthesia, Spinal , Cesarean Section , Norepinephrine , Phenylephrine , Randomized Controlled Trials as Topic , Vasoconstrictor Agents , Humans , Cesarean Section/adverse effects , Anesthesia, Spinal/adverse effects , Female , Norepinephrine/blood , Double-Blind Method , Pregnancy , Phenylephrine/administration & dosage , Vasoconstrictor Agents/therapeutic use , Anesthesia, Obstetrical/adverse effects , Anesthesia, Obstetrical/methods , Adult , Fibrin Fibrinogen Degradation Products/metabolism , Fibrin Fibrinogen Degradation Products/analysis , Factor VIII , Treatment Outcome , Blood Coagulation/drug effects , Hemodynamics/drug effects
3.
PLoS One ; 19(7): e0303165, 2024.
Article in English | MEDLINE | ID: mdl-38991044

ABSTRACT

BACKGROUND: The outcome of patients undergoing major surgery treated with HES for hemodynamic optimization is unclear. This post-hoc analysis of a randomized clinical pilot trial investigated the impact of low-molecular balanced HES solutions on the coagulation system, blood loss and transfusion requirements. METHODS: The Trial was registered: EudraCT 2008-004175-22 and ethical approval was provided by the ethics committee of Berlin. Patients were randomized into three groups receiving either a 10% HES 130/0.42 solution, a 6% HES 130/0.42 solution or a crystalloid following a goal-directed hemodynamic algorithm. Endpoints were parameters of standard and viscoelastic coagulation laboratory, blood loss and transfusion requirements at baseline, at the end of surgery (EOS) and the first postoperative day (POD 1). RESULTS: Fifty-two patients were included in the analysis (HES 10% (n = 15), HES 6% (n = 17) and crystalloid (n = 20)). Fibrinogen decreased in all groups at EOS (HES 10% 338 [298;378] to 192 [163;234] mg dl-1, p<0.01, HES 6% 385 [302;442] to 174 [163;224] mg dl-1, p<0.01, crystalloids 408 [325;458] to 313 [248;370] mg dl-1, p = 0.01). MCF FIBTEM was decreased for both HES groups at EOS (HES 10%: 20.5 [16.0;24.8] to 6.5 [5.0;10.8] mm, p = <0.01; HES 6% 27.0 [18.8;35.2] to 7.0 [5.0;19.0] mm, p = <0.01). These changes did not persist on POD 1 for HES 10% (rise to 16.0 [13.0;24.0] mm, p = 0.88). Blood loss was not different in the groups nor transfusion requirements. CONCLUSION: Our data suggest a stronger but transient effect of balanced, low-molecular HES on the coagulation system. Despite the decline of the use of artificial colloids in clinical practice, these results may help to inform clinicians who use HES solutions.


Subject(s)
Blood Coagulation , Crystalloid Solutions , Hydroxyethyl Starch Derivatives , Humans , Female , Male , Crystalloid Solutions/administration & dosage , Blood Coagulation/drug effects , Aged , Double-Blind Method , Middle Aged , Prospective Studies , Pancreas/surgery , Blood Transfusion/statistics & numerical data , Blood Loss, Surgical/prevention & control , Pilot Projects , Isotonic Solutions
4.
Nutrients ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999733

ABSTRACT

Natural and synthetic colorants present in food can modulate hemostasis, which includes the coagulation process and blood platelet activation. Some colorants have cardioprotective activity as well. However, the effect of genipin (a natural blue colorant) and synthetic blue colorants (including patent blue V and brilliant blue FCF) on hemostasis is not clear. In this study, we aimed to investigate the effects of three blue colorants-genipin, patent blue V, and brilliant blue FCF-on selected parameters of hemostasis in vitro. The anti- or pro-coagulant potential was assessed in human plasma by measuring the following coagulation times: thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (APTT). Moreover, we used the Total Thrombus formation Analysis System (T-TAS, PL-chip) to evaluate the anti-platelet potential of the colorants in whole blood. We also measured their effect on the adhesion of washed blood platelets to fibrinogen and collagen. Lastly, the cytotoxicity of the colorants against blood platelets was assessed based on the activity of extracellular lactate dehydrogenase (LDH). We observed that genipin (at all concentrations (1-200 µM)) did not have a significant effect on the coagulation times (PT, APTT, and TT). However, genipin at the highest concentration (200 µM) and patent blue V at the concentrations of 1 and 10 µM significantly prolonged the time of occlusion measured using the T-TAS, which demonstrated their anti-platelet activity. We also observed that genipin decreased the adhesion of platelets to fibrinogen and collagen. Only patent blue V and brilliant blue FCF significantly shortened the APTT (at the concentration of 10 µM) and TT (at concentrations of 1 and 10 µM), demonstrating pro-coagulant activity. These synthetic blue colorants also modulated the process of human blood platelet adhesion, stimulating the adhesion to fibrinogen and inhibiting the adhesion to collagen. The results demonstrate that genipin is not toxic. In addition, because of its ability to reduce blood platelet activation, genipin holds promise as a novel and valuable agent that improves the health of the cardiovascular system and reduces the risk of cardiovascular diseases. However, the mechanism of its anti-platelet activity remains unclear and requires further studies. Its in vivo activity and interaction with various anti-coagulant and anti-thrombotic drugs, including aspirin and its derivatives, should be examined as well.


Subject(s)
Blood Coagulation , Blood Platelets , Food Coloring Agents , Iridoids , Humans , Iridoids/pharmacology , Blood Coagulation/drug effects , Food Coloring Agents/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Hemostasis/drug effects , Partial Thromboplastin Time , Platelet Adhesiveness/drug effects , Fibrinogen/metabolism , Benzenesulfonates/pharmacology , Prothrombin Time , Rosaniline Dyes/pharmacology , Hemostatics/pharmacology , Platelet Activation/drug effects , Thrombin Time
5.
Nutrients ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999771

ABSTRACT

The study aimed to evaluate the antithrombotic action of Acrocomia aculeata pulp oil (AAPO) in natura, in an in vitro experimental model. AAPO was obtained by solvent extraction, and its chemical characterization was performed by gas chromatography coupled to a mass spectrometer (GC-MS). In vitro toxicity was evaluated with the Trypan Blue exclusion test and in vivo by the Galleria mellonella model. ADP/epinephrine-induced platelet aggregation after treatment with AAPO (50, 100, 200, 400, and 800 µg/mL) was evaluated by turbidimetry, and coagulation was determined by prothrombin activity time (PT) and activated partial thromboplastin time (aPTT). Platelet activation was measured by expression of P-selectin on the platelet surface by flow cytometry and intraplatelet content of reactive oxygen species (ROS) by fluorimetry. The results showed that AAPO has as major components such as oleic acid, palmitic acid, lauric acid, caprylic acid, and squalene. AAPO showed no toxicity in vitro or in vivo. Platelet aggregation decreased against agonists using treatment with different concentrations of AAPO. Oil did not interfere in PT and aPTT. Moreover, it expressively decreased ROS-induced platelet activation and P-selectin expression. Therefore, AAPO showed antiplatelet action since it decreased platelet activation verified by the decrease in P-selectin expression as well as in ROS production.


Subject(s)
Fibrinolytic Agents , P-Selectin , Plant Oils , Platelet Aggregation , Reactive Oxygen Species , Animals , Platelet Aggregation/drug effects , P-Selectin/metabolism , Humans , Plant Oils/pharmacology , Plant Oils/chemistry , Reactive Oxygen Species/metabolism , Fibrinolytic Agents/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Blood Coagulation/drug effects , Platelet Activation/drug effects
6.
Sci Rep ; 14(1): 16139, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997417

ABSTRACT

Rapid and safe hemostasis is crucial for the survival of bleeding patients in prehospital care. It is urgent to develop high performance hemostatic material to control the massive hemorrhage in the military field and accidental trauma. In this work, an efficient protein hemostat of thrombin was immobilized onto commercial gauze, which was mediated by self-polymerization and anchoring of tannic acid (TA). Through TA treatment, the efficient immobilization of thrombin was achieved, preserving both the biological activity of thrombin and the physical properties of the dressing, including absorbency, breathability, and mechanical performance. Moreover, in the presence of TA coating and thrombin, Gau@TA/Thr could obviously shortened clotting time and enriched blood components such as plasma proteins, platelets, and red blood cells, thereby exhibiting an enhanced in vitro coagulation effect. In SD rat liver volume defect and artery transection hemorrhage models, Gau@TA/Thr still had outstanding hemostatic performance. Besides, the Gau@TA/Thr gauze had inherent antibacterial property and demonstrated excellent biocompatibility. All results suggested that Gau@TA/Thr would be a potential candidate for treating uncontrollable hemorrhage in prehospital care.


Subject(s)
Bandages , Blood Coagulation , Hemorrhage , Hemostatics , Tannins , Thrombin , Tannins/chemistry , Tannins/pharmacology , Animals , Hemorrhage/drug therapy , Thrombin/metabolism , Blood Coagulation/drug effects , Rats , Hemostatics/pharmacology , Hemostatics/chemistry , Rats, Sprague-Dawley , Male , Anti-Infective Agents/pharmacology , Humans , Immobilized Proteins/pharmacology , Immobilized Proteins/chemistry , Disease Models, Animal , Polyphenols
9.
ACS Appl Mater Interfaces ; 16(27): 34783-34797, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38949260

ABSTRACT

Trauma is the leading cause of death for adults under the age of 44. Internal bleeding remains a significant challenge in medical emergencies, necessitating the development of effective hemostatic materials that could be administered by paramedics before a patient is in the hospital and treated by surgeons. In this study, we introduce a graphene oxide (GO)-based PEGylated synthetic hemostatic nanomaterial with an average size of 211 ± 83 nm designed to target internal bleeding by mimicking the role of fibrinogen. Functionalization of GO-g-PEG with peptides derived from the α-chain of fibrinogen, such as GRGDS, or the γ-chain of fibrinogen, such as HHLGGAKQAGDV:H12, was achieved with peptide loadings of 72 ± 6 and 68 ± 15 µM, respectively. In vitro studies with platelet-rich plasma (PRP) under confinement demonstrated aggregation enhancement of 39 and 24% for GO-g-PEG-GRGDS and GO-g-PEG-H12, respectively, compared to buffer, while adenosine diphosphate (ADP) alone induced a 5% aggregation. Compared to the same materials in the absence of ADP, GO-g-PEG-GRGDS achieved a 47% aggregation enhancement, while GO-g-PEG-H12 a 25% enhancement. This is particularly important for injectable hemostats and highlights the fact that our nanographene-based materials can only act as hemostats in the presence of agonists, reducing the possibility of unwanted clotting during circulation. Further studies on collagen-coated wells under dynamic flow revealed statistically significant augmentation of PRP fluorescence signal using GRGDS- or H12-coated GO-g-PEG compared to controls. Hemolysis studies showed <1% lysis of red blood cells (RBCs) at the highest PEGylated nanographene concentration. Finally, whole human blood coagulation studies reveal faster and more pronounced clotting using our nanohemostats vs PBS control from 3 min and below (blood is clotted with 10% CaCl2 within 4-5 min), with the biggest differences to be shown at 2 and 1 min. At 1 min, the clot weight was found to be ∼45% of that between 4 and 5 min, while no clot was formed in PBS-treated blood. Reduction of CaCl2 to 5 and 3%, or utilization of prostaglandin E1, an anticoagulant, still leads to clots but of smaller weight. The findings highlight the potential of our fibrinogen-mimic PEGylated nanographene as a promising non-hemolytic injectable scaffold for targeting internal bleeding, offering insights into its platelet aggregation capabilities under confinement and under dynamic flow as well as its pronounced coagulation abilities.


Subject(s)
Fibrinogen , Graphite , Hemostatics , Graphite/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Humans , Fibrinogen/chemistry , Fibrinogen/metabolism , Polyethylene Glycols/chemistry , Blood Coagulation/drug effects , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Hemorrhage/drug therapy
10.
BMC Cardiovasc Disord ; 24(1): 361, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014359

ABSTRACT

BACKGROUND: This retrospective cohort study aims to compare the effectiveness and safety of warfarin, rivaroxaban, and dabigatran in atrial fibrillation (AF) patients with different CHA2DS2-VASc scores in northern China. METHODS: A retrospective cohort study was performed to evaluate anticoagulation in AF patients at the second affiliated hospital of Harbin Medical University from September 2018 to August 2019. Patients included in this study (n = 806) received warfarin (n = 300), or rivaroxaban (n = 203), or dabigatran (n = 303). Baseline characteristics and follow-up data including adherence, bleeding events and ischemic stroke (IS) events were collected. RESULTS: Patients receiving rivaroxaban (73.9%) or dabigatran (73.6%) showed better adherence than those receiving warfarin (56.7%). Compared with warfarin-treated patients, dabigatran-treated patients had lower incidence of bleeding events (10.9% vs 19.3%, χ2 = 8.385, P = 0.004) and rivaroxaban-treated patients had lower incidence of major adverse cardiovascular events (7.4% vs 13.7%, χ2 = 4.822, P = 0.028). We classified patients into three groups based on CHA2DS2-VASc score (0-1, 2-3, ≥ 4). In dabigatran intervention, incidence of bleeding events was higher in patients with score 0-1 (20.0%) than those with score 2-3 (7.9%, χ2 = 5.772, P = 0.016) or score ≥ 4 (8.6%, χ2 = 4.682, P = 0.030). Patients with score 0-1 in warfarin or rivaroxaban therapy had a similar but not significant increase of bleeding compared with patients with score 2-3 or score ≥ 4, respectively. During the follow-up, 33 of 806 patients experienced IS and more than half (19, 57.6%) were patients with score ≥ 4. Comparing patients with score 0-1 and 2-3, the latter had an significant reduction of IS in patients prescribed warfarin and non-significant reduction in rivaroxaban and dabigatran therapy. CONCLUSION: Compared with warfarin therapy, patients with different CHA2DS2-VASc scores receiving either rivaroxaban or dabigatran were associated with higher persistence. AF patients with score ≥ 4 were more likely to experience IS events while hemorrhagic tendency preferred patients with low score 0-1.


Subject(s)
Anticoagulants , Atrial Fibrillation , Dabigatran , Hemorrhage , Rivaroxaban , Warfarin , Humans , Atrial Fibrillation/drug therapy , Atrial Fibrillation/diagnosis , Atrial Fibrillation/complications , Dabigatran/adverse effects , Dabigatran/therapeutic use , Dabigatran/administration & dosage , Rivaroxaban/adverse effects , Rivaroxaban/therapeutic use , Rivaroxaban/administration & dosage , Retrospective Studies , Warfarin/adverse effects , Warfarin/therapeutic use , Male , Female , Aged , Hemorrhage/chemically induced , Middle Aged , Treatment Outcome , Risk Assessment , Risk Factors , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , China/epidemiology , Time Factors , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/administration & dosage , Antithrombins/adverse effects , Antithrombins/therapeutic use , Antithrombins/administration & dosage , Aged, 80 and over , Medication Adherence , Decision Support Techniques , Blood Coagulation/drug effects
11.
PLoS One ; 19(6): e0302269, 2024.
Article in English | MEDLINE | ID: mdl-38843177

ABSTRACT

Intravenous thrombolysis with a recombinant tissue plasminogen activator (rt-PA) is the first-line treatment of acute ischemic stroke. However, successful recanalization is relatively low and the underlying processes are not completely understood. The goal was to provide insights into clinically important factors potentially limiting rt-PA efficacy such as clot size, rt-PA concentration, clot age and also rt-PA in combination with heparin anticoagulant. We established a static in vitro thrombolytic model based on red blood cell (RBC) dominant clots prepared using spontaneous clotting from the blood of healthy donors. Thrombolysis was determined by clot mass loss and by RBC release. The rt-PA became increasingly less efficient for clots larger than 50 µl at a clinically relevant concentration of 1.3 mg/l. A tenfold decrease or increase in concentration induced only a 2-fold decrease or increase in clot degradation. Clot age did not affect rt-PA-induced thrombolysis but 2-hours-old clots were degraded more readily due to higher activity of spontaneous thrombolysis, as compared to 5-hours-old clots. Finally, heparin (50 and 100 IU/ml) did not influence the rt-PA-induced thrombolysis. Our study provided in vitro evidence for a clot size threshold: clots larger than 50 µl are hard to degrade by rt-PA. Increasing rt-PA concentration provided limited thrombolytic efficacy improvement, whereas heparin addition had no effect. However, the higher susceptibility of younger clots to thrombolysis may prompt a shortened time from the onset of stroke to rt-PA treatment.


Subject(s)
Heparin , Ischemic Stroke , Recombinant Proteins , Thrombolytic Therapy , Tissue Plasminogen Activator , Tissue Plasminogen Activator/therapeutic use , Humans , Ischemic Stroke/drug therapy , Recombinant Proteins/therapeutic use , Heparin/therapeutic use , Thrombolytic Therapy/methods , Fibrinolytic Agents/therapeutic use , Blood Coagulation/drug effects , Erythrocytes/drug effects , Erythrocytes/metabolism , Stroke/drug therapy
13.
ACS Nano ; 18(24): 15517-15528, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836363

ABSTRACT

Disseminated intravascular coagulation (DIC) is a pathologic state that follows systemic injury and other diseases. Often a complication of sepsis or trauma, DIC causes coagulopathy associated with paradoxical thrombosis and hemorrhage. DIC upregulates the thrombotic pathways while simultaneously downregulating the fibrinolytic pathways that cause excessive fibrin deposition, microcirculatory thrombosis, multiorgan dysfunction, and consumptive coagulopathy with excessive bleeding. Given these opposing disease phenotypes, DIC management is challenging and includes treating the underlying disease and managing the coagulopathy. Currently, no therapies are approved for DIC. We have developed clot-targeted therapeutics that inhibit clot polymerization and activate clot fibrinolysis to manage DIC. We hypothesize that delivering both an anticoagulant and a fibrinolytic agent directly to clots will inhibit active clot polymerization while also breaking up pre-existing clots; therefore, reversing consumptive coagulopathy and restoring hemostatic balance. To test this hypothesis, we single- and dual-loaded fibrin-specific nanogels (FSNs) with antithrombinIII (ATIII) and/or tissue plasminogen activator (tPA) and evaluated their clot preventing and clot lysing abilities in vitro and in a rodent model of DIC. In vivo, single-loaded ATIII-FSNs decreased fibrin deposits in DIC organs and reduced blood loss when DIC rodents were injured. We also observed that the addition of tPA in dual-loaded ATIII-tPA-FSNs intensified the antithrombotic and fibrinolytic mechanisms, which proved advantageous for clot lysis and restoring platelet counts. However, the addition of tPA may have hindered wound healing capabilities when an injury was introduced. Our data supports the benefits of delivering both anticoagulants and fibrinolytic agents directly to clots to reduce the fibrin load and restore hemostatic balance in DIC.


Subject(s)
Disseminated Intravascular Coagulation , Tissue Plasminogen Activator , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/chemistry , Animals , Disseminated Intravascular Coagulation/drug therapy , Nanogels/chemistry , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/administration & dosage , Humans , Rats , Fibrin/metabolism , Fibrin/chemistry , Antithrombins/pharmacology , Antithrombins/chemistry , Antithrombins/administration & dosage , Mice , Male , Thrombosis/drug therapy , Drug Delivery Systems , Blood Coagulation/drug effects
15.
Bull Exp Biol Med ; 176(6): 731-735, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38904932

ABSTRACT

We studied the effectiveness of Xe/O2 mixture inhalation (30% Xe and 70% O2, 20 min for 5 days) in a model of experimental thromboplastin pneumonitis. Inhalation of the studied mixture decreased the intensity of the inflammatory process in the lung tissue assessed by the temperature response of animals, changed lung weight and lung weight coefficient. At acute stage of pneumonitis, an increase in xenon consumption was recorded due to its retention in the gas exchange zone and a natural decrease in oxygen consumption due to partial alveolar/capillary block. The formation of pneumonitis was accompanied by a pronounced procoagulant shift in the regulation system of the aggregate state of blood. The Xe/O2 inhalations ensured physiologically optimal levels of prothrombin and activated partial thromboplastin time against the background of a moderate decrease in fibrinogen level throughout the experiment. At the same time, the activity of the natural anticoagulant antithrombin III increased from day 5 to day 14.


Subject(s)
Oxygen , Pneumonia , Xenon , Animals , Pneumonia/blood , Pneumonia/pathology , Male , Oxygen/metabolism , Xenon/administration & dosage , Xenon/pharmacology , Hemostasis/drug effects , Administration, Inhalation , Fibrinogen/metabolism , Partial Thromboplastin Time , Lung/drug effects , Lung/metabolism , Antithrombin III/metabolism , Rats , Thromboplastin/metabolism , Prothrombin/metabolism , Oxygen Consumption/drug effects , Blood Coagulation/drug effects
16.
Toxins (Basel) ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38922177

ABSTRACT

Despite their evolutionary novelty, lizard venoms are much less studied in comparison to the intense research on snake venoms. While the venoms of helodermatid lizards have long been assumed to be for defensive purposes, there is increasing evidence of toxic activities more useful for predation than defence (such as paralytic neurotoxicity). This study aimed to ascertain the effects of Heloderma, Lanthanotus, and Varanus lizard venoms on the coagulation and cardiovascular systems. Anticoagulant toxicity was demonstrated for the Varanus species studied, with the venoms prolonging clotting times in human and bird plasma due to the destructive cleavage of fibrinogen. In contrast, thromboelastographic analyses on human and bird plasmas in this study demonstrated a procoagulant bioactivity for Heloderma venoms. A previous study on Heloderma venom using factor-depleted plasmas as a proxy model suggested a procoagulant factor was present that activated either Factor XI or Factor XII, but could not ascertain the precise target. Our activation studies using purified zymogens confirmed FXII activation. Comparisons of neonate and adult H. exasperatum, revealed the neonates to be more potent in the ability to activate FXII, being more similar to the venom of the smaller species H. suspectum than the adult H. exasperatum. This suggests potent FXII activation a basal trait in the genus, present in the small bodied last common ancestor. This also indicates an ontogenetic difference in prey preferences in the larger Heloderma species paralleing the change in venom biochemistry. In addition, as birds lack Factor XII, the ability to clot avian plasma suggested an additional procoagulant site of action, which was revealed to be the activation of Factor VII, with H. horridum being the most potent. This study also examined the effects upon the cardiovascular system, including the liberation of kinins from kininogen, which contributes to hypotension induction. This form of toxicity was previously described for Heloderma venoms, and was revealed in this study was to also be a pathophysiological effect of Lanthanotus and Varanus venoms. This suggests that this toxic activity was present in the venom of the last common ancestor of the anguimorph lizards, which is consistent with kallikrein enzymes being a shared toxin trait. This study therefore uncovered novel actions of anguimorph lizard venoms, not only contributing to the evolutionary biology body of knowledge but also revealing novel activities to mine for drug design lead compounds.


Subject(s)
Blood Coagulation , Lizards , Animals , Lizards/physiology , Blood Coagulation/drug effects , Humans , Anticoagulants/toxicity , Birds , Venoms/toxicity , Cardiotoxins/toxicity , Thrombelastography , Cardiotoxicity
17.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927049

ABSTRACT

We recently reported the potential application of recombinant prothrombin activator ecarin (RAPClot™) in blood diagnostics. In a new study, we describe RAPClot™ as an additive to develop a novel blood collection prototype tube that produces the highest quality serum for accurate biochemical analyte determination. The drying process of the RAPClot™ tube generated minimal effect on the enzymatic activity of the prothrombin activator. According to the bioassays of thrombin activity and plasma clotting, γ-radiation (>25 kGy) resulted in a 30-40% loss of the enzymatic activity of the RAPClot™ tubes. However, a visual blood clotting assay revealed that the γ-radiation-sterilized RAPClot™ tubes showed a high capacity for clotting high-dose heparinized blood (8 U/mL) within 5 min. This was confirmed using Thrombelastography (TEG), indicating full clotting efficiency under anticoagulant conditions. The storage of the RAPClot™ tubes at room temperature (RT) for greater than 12 months resulted in the retention of efficient and effective clotting activity for heparinized blood in 342 s. Furthermore, the enzymatic activity of the RAPClot™ tubes sterilized with an electron-beam (EB) was significantly greater than that with γ-radiation. The EB-sterilized RAPClot™ tubes stored at RT for 251 days retained over 70% enzyme activity and clotted the heparinized blood in 340 s after 682 days. Preliminary clinical studies revealed in the two trials that 5 common analytes (K, Glu, lactate dehydrogenase (LD), Fe, and Phos) or 33 analytes determined in the second study in the γ-sterilized RAPClot™ tubes were similar to those in commercial tubes. In conclusion, the findings indicate that the novel RAPClot™ blood collection prototype tube has a significant advantage over current serum or lithium heparin plasma tubes for routine use in measuring biochemical analytes, confirming a promising application of RAPClot™ in clinical medicine.


Subject(s)
Recombinant Proteins , Humans , Blood Coagulation/drug effects , Serum/chemistry , Serum/metabolism , Thromboplastin/metabolism , Blood Specimen Collection/methods , Thrombelastography/methods , Gamma Rays , Anticoagulants/pharmacology , Anticoagulants/chemistry
18.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928044

ABSTRACT

Eastern Diamondback Rattlesnake (Crotalus adamanteus) envenomation is a medical emergency encountered in the Southeastern United States. The venom contains a snake venom thrombin-like enzyme (SVTLE) that is defibrinogenating, causing coagulopathy without effects on platelets in humans. This investigation utilized thrombelastographic methods to document this coagulopathy kinetically on the molecular level in a rabbit model of envenomation via the analyses of whole blood samples without and with platelet inhibition. Subsequently, the administration of a novel ruthenium compound containing site-directed antivenom abrogated the coagulopathic effects of envenomation in whole blood without platelet inhibition and significantly diminished loss of coagulation in platelet-inhibited samples. This investigation provides coagulation kinetic insights into the molecular interactions and results of SVTLE on fibrinogen-dependent coagulation and confirmation of the efficacy of a ruthenium antivenom. These results serve as a rationale to investigate the coagulopathic effects of other venoms with this model and assess the efficacy of this site-directed antivenom.


Subject(s)
Antivenins , Blood Coagulation , Crotalid Venoms , Crotalus , Animals , Rabbits , Antivenins/pharmacology , Crotalid Venoms/pharmacology , Crotalid Venoms/antagonists & inhibitors , Blood Coagulation/drug effects , Thrombelastography , Ruthenium/chemistry , Ruthenium/pharmacology , Snake Bites/drug therapy , Male , Venomous Snakes
19.
Mar Drugs ; 22(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38921576

ABSTRACT

Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing ß-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-ß(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight.


Subject(s)
Anticoagulants , Molecular Weight , Oligosaccharides , Polysaccharides , Animals , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Oligosaccharides/isolation & purification , Stichopus/chemistry , Sea Cucumbers/chemistry , Sulfates/chemistry , Magnetic Resonance Spectroscopy , Blood Coagulation/drug effects
20.
J Ethnopharmacol ; 333: 118475, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38908496

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The pathophysiological mechanism of thromboinflammation involves the intricate interplay between the inflammatory responses and coagulation cascades. Rhubarb is frequently used in traditional Chinese medicine to treat thromboinflammatory diseases. The scorched rhubarb (prepared by stir-baking the dried raw rhubarb till it partly turns to charcoal) is believed to possess enhanced blood-cooling and stasis-removing functions compared to the raw rhubarb, thereby augmenting the therapeutic effects on thromboinflammation. AIM OF THE STUDY: This study aimed to explore the chemical and pharmacological foundations of the scorch processing of rhubarb in order to ensure and enhance the efficacy and safety of the scorched rhubarb for treating thromboinflammatory diseases. MATERIALS AND METHODS: The dried raw rhubarb pieces were subjected to stir-baking at 180 °C for 10∼80 min to obtain the rhubarbs with varying degrees of scorching. Typical ingredients present in rhubarb pieces and extracts were determined by high-performance liquid chromatography. The therapeutic effects of the raw and scorched rhubarb on thromboinflammation were evaluated using a rat model. Proteomics analysis was employed to screen potential biological pathways associated with thromboinflammation treatment by the raw and scorched rhubarb, which were further verified using a cell model. RESULTS: Morphological properties indicated that the rhubarb baked at 180 °C for 50 min in this research showed the optimal degree of scorching. Compared to the raw rhubarb, the properly scorched rhubarb exhibited lower levels of anthraquinone glucosides, higher levels of anthraquinone aglycones, superior anti-thromboinflammatory effects, and no purgative side effects. Proteomics analysis revealed that the complement and coagulation cascades pathway played a significant role in mediating the therapeutic effects of the raw and scorched rhubarb on thromboinflammation. Furthermore, it was found that anthraquinone aglycones were more effective than their glucoside counterparts in restoring the impaired vascular endothelial cells as well as regulating the complement and coagulation cascades pathway. CONCLUSIONS: Proper scorch processing may augment the therapeutic effects of rhubarb on thromboinflammation via relieving inflammation and oxidative stress, repairing vascular endothelial cells, restoring coagulation cascades and blood rheology, and regulating some other biological processes. This may be partly caused by the scorch-induced thermolysis of anthraquinone glucosides into their aglycone counterparts that seemed to perform better in regulating the complement and coagulation cascades pathway.


Subject(s)
Anthraquinones , Blood Coagulation , Glucosides , Rats, Sprague-Dawley , Rheum , Animals , Rheum/chemistry , Anthraquinones/pharmacology , Blood Coagulation/drug effects , Male , Glucosides/pharmacology , Glucosides/chemistry , Rats , Inflammation/drug therapy , Thrombosis/drug therapy , Anti-Inflammatory Agents/pharmacology , Complement System Proteins/metabolism , Disease Models, Animal , Plant Extracts/pharmacology , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL