Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.118
Filter
1.
Vet Med Sci ; 10(4): e1533, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952278

ABSTRACT

BACKGROUND: Although research on the mechanism and control of pain and inflammation in fish has increased in recent years, the use of analgesic drugs is limited due to the lack of pharmacological information about analgesic drugs. Tolfenamic acid is a non-steroidal anti-inflammatory drug and can be used in fish due to its low side effect profile and superior pharmacokinetic properties. OBJECTIVES: The pharmacokinetics, bioavailability and plasma protein binding of tolfenamic acid were investigated following single intravascular (IV), intramuscular (IM) and oral administration of 2 mg/kg in rainbow trout at 13 ± 0.5°C. METHODS: The experiment was carried out on a total of 234 rainbow trout (Oncorhynchus mykiss). Tolfenamic acid was administered to fish via IV, IM and oral route at a dose of 2 mg/kg. Blood samples were taken at 13 different sampling times until the 72 h after drug administration. The plasma concentrations of tolfenamic acid were quantified using high pressure liquid chromatography-ultraviolet (UV) and pharmacokinetic parameters were assessed using non-compartmental analysis. RESULTS: The elimination half-life (t1/2ʎz) of tolfenamic acid for IV, IM and oral routes was 3.47, 6.75 and 9.19 h, respectively. For the IV route, the volume of distribution at a steady state and total body clearance of tolfenamic acid were 0.09 L/kg and 0.03 L/h/kg, respectively. The peak plasma concentration and bioavailability for IM and oral administration were 8.82 and 1.24 µg/mL, and 78.45% and 21.48%, respectively. The mean plasma protein binding ratio of tolfenamic acid in rainbow trout was 99.48% and was not concentration dependent. CONCLUSIONS: While IM route, which exhibits both the high plasma concentration and bioavailability, can be used in rainbow trout, oral route is not recommended due to low plasma concentration and bioavailability. However, there is a need to demonstrate the pharmacodynamic activity of tolfenamic acid in rainbow trout.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Biological Availability , Blood Proteins , Oncorhynchus mykiss , ortho-Aminobenzoates , Animals , Oncorhynchus mykiss/metabolism , Oncorhynchus mykiss/blood , ortho-Aminobenzoates/pharmacokinetics , ortho-Aminobenzoates/blood , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/blood , Administration, Oral , Blood Proteins/metabolism , Injections, Intramuscular/veterinary , Protein Binding , Injections, Intravenous/veterinary , Half-Life
2.
Sci Rep ; 14(1): 14871, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937570

ABSTRACT

Circulating proteins may provide insights into the varying biological mechanisms involved in heart failure (HF) with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). We aimed to identify specific proteomic patterns for HF, by comparing proteomic profiles across the ejection fraction spectrum. We investigated 4210 circulating proteins in 739 patients with normal (Stage A/Healthy) or elevated (Stage B) filling pressures, HFpEF, or ischemic HFrEF (iHFrEF). We found 2122 differentially expressed proteins between iHFrEF-Stage A/Healthy, 1462 between iHFrEF-HFpEF and 52 between HFpEF-Stage A/Healthy. Of these 52 proteins, 50 were also found in iHFrEF vs. Stage A/Healthy, leaving SLITRK6 and NELL2 expressed in lower levels only in HFpEF. Moreover, 108 proteins, linked to regulation of cell fate commitment, differed only between iHFrEF-HFpEF. Proteomics across the HF spectrum reveals overlap in differentially expressed proteins compared to stage A/Healthy. Multiple proteins are unique for distinguishing iHFrEF from HFpEF, supporting the capacity of proteomics to discern between these conditions.


Subject(s)
Heart Failure , Proteomics , Stroke Volume , Humans , Heart Failure/blood , Heart Failure/metabolism , Heart Failure/physiopathology , Female , Proteomics/methods , Male , Aged , Middle Aged , Proteome/metabolism , Proteome/analysis , Biomarkers/blood , Blood Proteins/metabolism
3.
Sci Rep ; 14(1): 14654, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918423

ABSTRACT

This study aimed to identify plasma proteins that could serve as potential biomarkers for microbial invasion of the amniotic cavity (MIAC) or intra-amniotic inflammation (IAI) in women with preterm labor (PTL). A retrospective cohort comprised singleton pregnant women with PTL (24-34 weeks) who underwent amniocentesis. Pooled plasma samples were analyzed by label-free liquid chromatography-tandem mass spectrometry for proteome profiling in a nested case-control study (concomitant MIAC/IAI cases vs. non-MIAC/IAI controls [n = 10 per group]). Eight target proteins associated with MIAC/IAI were further verified by immunoassays in a large cohort (n = 230). Shotgun proteomic analysis revealed 133 differentially expressed proteins (fold change > 1.5, P < 0.05) in the plasma of MIAC/IAI cases. Further quantification confirmed that the levels of AFP were higher and those of kallistatin and TGFBI were lower in the plasma of women with MIAC and that the levels of kallistatin and TGFBI were lower in the plasma of women with IAI than in those without these conditions. The area under the curves of plasma AFP, kallistatin, and TGFBI ranged within 0.67-0.81 with respect to each endpoint. In summary, plasma AFP, kallistatin, and TGFBI may represent valuable non-invasive biomarkers for predicting MIAC or IAI in women with PTL.


Subject(s)
Biomarkers , Blood Proteins , Obstetric Labor, Premature , Proteomics , Humans , Female , Pregnancy , Obstetric Labor, Premature/blood , Adult , Blood Proteins/analysis , Blood Proteins/metabolism , Biomarkers/blood , Case-Control Studies , Retrospective Studies , Proteomics/methods , Chorioamnionitis/blood , Chorioamnionitis/microbiology , Inflammation/blood , Amniocentesis , Proteome/analysis
4.
J Integr Neurosci ; 23(6): 123, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940081

ABSTRACT

OBJECTIVE: Perioperative neurocognitive disorders (PND) are a group of prevalent neurological complications that often occur in elderly individuals following major or emergency surgical procedures. The etiologies are not fully understood. This study endeavored to investigate novel targets and prediction methods for the occurrence of PND. METHODS: A total of 229 elderly patients diagnosed with prostatic hyperplasia who underwent transurethral resection of the prostate (TURP) combined with spinal cord and epidural analgesia were included in this study. The patients were divided into two groups, the PND group and non-PND group, based on the Z-score method. According to the principle of maintaining consistency between preoperative and intraoperative conditions, three patients from each group were randomly chosen for serum sample collection. isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology was employed to analyze and identify the proteins that exhibited differential expression in the serum samples from the two groups. Bioinformatics analysis was performed on the proteins that exhibited differential expression. RESULTS: Among the 1101 serum proteins analyzed in the PND and non-PND groups, eight differentially expressed proteins were identified in PND patients. Of these, six proteins showed up-regulation, while two proteins showed down-regulation. Further bioinformatics analysis of the proteins that exhibited differential expression revealed their predominant involvement in cellular biological processes, cellular component formation, as well as endocytosis and phagocytosis Additionally, these proteins were found to possess the RING domain of E3 ubiquitin ligase. CONCLUSION: The iTRAQ proteomics technique was employed to analyze the variation in protein expression in serum samples from patients with PND and those without PND. This study successfully identified eight proteins that exhibited differential expression levels between the two groups. Bioinformatics analysis indicates that proteins exhibiting differential expression are primarily implicated in the biological processes associated with microtubules. Investigating the microtubule formation process as it relates to neuroplasticity and synaptic formation may offer valuable insights for enhancing our comprehension and potential prevention of PND. CLINICAL TRIAL REGISTRATION: Registered (ChiCTR2000028836). Date (20190306).


Subject(s)
Transurethral Resection of Prostate , Humans , Male , Aged , Transurethral Resection of Prostate/adverse effects , Proteomics , Prostatic Hyperplasia/surgery , Prostatic Hyperplasia/blood , Neurocognitive Disorders/etiology , Neurocognitive Disorders/blood , Neurocognitive Disorders/metabolism , Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/blood , Perioperative Period , Aged, 80 and over , Blood Proteins/metabolism , Blood Proteins/analysis , Computational Biology
5.
J Proteome Res ; 23(7): 2408-2418, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38857467

ABSTRACT

The analysis of protein dynamics or turnover in patients has the potential to reveal altered protein recycling, such as in Alzheimer's disease, and to provide informative data regarding drug efficacy or certain biological processes. The observed protein dynamics in a solid tissue or a fluid is the net result of not only protein synthesis and degradation but also transport across biological compartments. We report an accurate 3-biological compartment model able to simultaneously account for the protein dynamics observed in blood plasma and the cerebrospinal fluid (CSF) including a hidden central nervous system (CNS) compartment. We successfully applied this model to 69 proteins of a single individual displaying similar or very different dynamics in plasma and CSF. This study puts a strong emphasis on the methods and tools needed to develop this type of model. We believe that it will be useful to any researcher dealing with protein dynamics data modeling.


Subject(s)
Blood Proteins , Cerebrospinal Fluid Proteins , Humans , Blood Proteins/metabolism , Cerebrospinal Fluid Proteins/analysis , Cerebrospinal Fluid Proteins/metabolism , Models, Biological , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/blood
6.
Front Immunol ; 15: 1394438, 2024.
Article in English | MEDLINE | ID: mdl-38835753

ABSTRACT

Background: Ankylosing spondylitis (AS) is a complex condition with a significant genetic component. This study explored circulating proteins as potential genetic drug targets or biomarkers to prevent AS, addressing the need for innovative and safe treatments. Methods: We analyzed extensive data from protein quantitative trait loci (pQTLs) with up to 1,949 instrumental variables (IVs) and selected the top single-nucleotide polymorphism (SNP) associated with AS risk. Utilizing a two-sample Mendelian randomization (MR) approach, we assessed the causal relationships between identified proteins and AS risk. Colocalization analysis, functional enrichment, and construction of protein-protein interaction networks further supported these findings. We utilized phenome-wide MR (phenMR) analysis for broader validation and repurposing of drugs targeting these proteins. The Drug-Gene Interaction database (DGIdb) was employed to corroborate drug associations with potential therapeutic targets. Additionally, molecular docking (MD) techniques were applied to evaluate the interaction between target protein and four potential AS drugs identified from the DGIdb. Results: Our analysis identified 1,654 plasma proteins linked to AS, with 868 up-regulated and 786 down-regulated. 18 proteins (AGER, AIF1, ATF6B, C4A, CFB, CLIC1, COL11A2, ERAP1, HLA-DQA2, HSPA1L, IL23R, LILRB3, MAPK14, MICA, MICB, MPIG6B, TNXB, and VARS1) that show promise as therapeutic targets for AS or biomarkers, especially MAPK14, supported by evidence of colocalization. PhenMR analysis linked these proteins to AS and other diseases, while DGIdb analysis identified potential drugs related to MAPK14. MD analysis indicated strong binding affinities between MAPK14 and four potential AS drugs, suggesting effective target-drug interactions. Conclusion: This study underscores the utility of MR analysis in AS research for identifying biomarkers and therapeutic drug targets. The involvement of Th17 cell differentiation-related proteins in AS pathogenesis is particularly notable. Clinical validation and further investigation are essential for future applications.


Subject(s)
Biomarkers , Polymorphism, Single Nucleotide , Protein Interaction Maps , Quantitative Trait Loci , Spondylitis, Ankylosing , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/drug therapy , Humans , Genetic Predisposition to Disease , Blood Proteins/genetics , Blood Proteins/metabolism , Mendelian Randomization Analysis , Molecular Docking Simulation , Genome-Wide Association Study
7.
Sci Transl Med ; 16(750): eadh0185, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838133

ABSTRACT

Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.


Subject(s)
Proteome , Sepsis , Humans , Sepsis/blood , Proteome/metabolism , Biomarkers/blood , Biomarkers/metabolism , Proteomics/methods , Male , Blood Proteins/metabolism , Blood Proteins/analysis , Female , Middle Aged , Tandem Mass Spectrometry/methods
8.
Physiol Rep ; 12(11): e16096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837627

ABSTRACT

Superficial, systemic microcirculations, distinct from the pulmonary circulation, supply the mucosae of human nasal and conducting airways. Non-injurious, inflammatory challenges of the airway mucosa cause extravasation without overt mucosal oedema. Instead, likely reflecting minimal increases in basolateral hydrostatic pressure, circulating proteins/peptides of all sizes are transmitted paracellularly across the juxtaposed epithelial barrier. Thus, small volumes of extravasated, unfiltered bulk plasma appear on the mucosal surface at nasal and bronchial sites of challenge. Importantly, the plasma-exuding mucosa maintains barrier integrity against penetrability of inhaled molecules. Thus, one-way epithelial penetrability, strict localization, and well-controlled magnitude and duration are basic characteristics of the plasma exudation response in human intact airways. In vivo experiments in human-like airways demonstrate that local plasma exudation is also induced by non-sanguineous removal of epithelium over an intact basement membrane. This humoral response results in a protective, repair-promoting barrier kept together by a fibrin-fibronectin net. Plasma exudation stops once the provisional barrier is substituted by a new cellular cover consisting of speedily migrating repair cells, which may emanate from all types of epithelial cells bordering the denuded patch. Exuded plasma on the surface of human airways reflects physiological microvascular-epithelial cooperation in first line mucosal defense at sites of intact and regenerating epithelium.


Subject(s)
Blood Proteins , Respiratory Mucosa , Humans , Blood Proteins/metabolism , Regeneration/physiology , Respiratory Mucosa/metabolism
9.
Clin Respir J ; 18(6): e13775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830831

ABSTRACT

Pulmonary heart disease (PHD) involves altered structure and function of the right ventricle caused by an abnormal respiratory system that causes pulmonary hypertension. However, the association between changes in plasma proteomics and PHD remains unclear. Hence, we aimed to identify causal associations between genetically predicted plasma protein levels and PHD. Mendelian randomization was performed to test the target proteins associated with PHD. Summary statistics for the human plasma proteome and pulmonary heart disease were acquired from the UK Biobank (6038 cases and 426 977 controls) and the FinnGen study (6753 cases and 302 401 controls). Publicly available pQTLs datasets for human plasma proteins were obtained from a largescale genome-wide association study in the INTERVAL study. The results were validated using a case-control cohort. We first enrolled 3622 plasma proteins with conditionally independent genetic variants; three proteins (histo-blood group ABO system transferase, activating signal cointegration 1 complex subunit 1, and calcium/calmodulin-dependent protein kinase I [CAMK1]) were significantly associated with the risk of pulmonary heart disease in the UK Biobank cohort. Only CAMK1 was successfully replicated (odds ratio: 1.1056, 95% confidence interval: 1.019-1.095, p = 0.0029) in the FinnGen population. In addition, the level of CAMK1 in 40 patients with PHD was significantly higher (p = 0.023) than that in the control group. This work proposes that CAMK1 is associated with PHD, underscoring the importance of the calcium signaling pathway in the pathophysiology to improve therapies for PHD.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Proteome , Pulmonary Heart Disease , Humans , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Male , Female , Proteome/metabolism , Case-Control Studies , Pulmonary Heart Disease/genetics , Pulmonary Heart Disease/blood , Pulmonary Heart Disease/epidemiology , Middle Aged , United Kingdom/epidemiology , Blood Proteins/genetics , Blood Proteins/metabolism , ABO Blood-Group System/genetics , Aged , Proteomics/methods , Adult , Polymorphism, Single Nucleotide
10.
BMC Cancer ; 24(1): 752, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902713

ABSTRACT

BACKGROUND: Among gynaecological malignancies, endometrial cancer (EC) is the most prevalent type of uterine cancer affecting women. This study explored the proteomic profiles of plasma samples obtained from EC patients, those with hyperplasia (Hy), and a control group (CO). A combination of techniques, such as 2D-DIGE, mass spectrometry, and bioinformatics, including pathway analysis, was used to identify proteins with modified expression levels, biomarkers and their associated metabolic pathways in these groups. METHODS: Thirty-four patients, categorized into three groups-10 with EC, 12 with Hy, and 12 CO-between the ages of 46 and 75 years old were included in the study. Untargeted proteomic analysis was carried out using two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). RESULTS: In all three groups, 114 proteins that were significantly (p ≤ 0.05 and fold change ≥ 1.5) altered were successfully identified using peptide mass fingerprints (PMFs). Compared with those in the control group (CO), the EC samples had 85 differentially expressed proteins (39 upregulated and 46 downregulated), and in the Hy group, 81 proteins were dysregulated (40 upregulated and 41 downregulated) compared to those in the CO group, while 33 proteins exhibited differential regulation (12 upregulated and 21 downregulated) in the EC plasma samples compared to those in the Hy group. Vitamin D binding protein and complement C3 distinguished Hy and EC from CO with the greatest changes in expression. Among the differentially expressed proteins identified, enzymes with catalytic activity represented the largest group (42.9%). In terms of biological processes, most of the proteins were involved in cellular processes (28.8%), followed by metabolic processes (16.7%). STRING analysis for protein interactions revealed that the significantly differentially abundant proteins in the three groups are involved in three main biological processes: signalling of complement and coagulation cascades, regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth factor binding proteins (IGFBPs), and plasma lipoprotein assembly, remodelling, and clearance. CONCLUSION: The identified plasma protein markers have the potential to serve as biomarkers for differentiating between EC and Hy, as well as for early diagnosis and monitoring of cancer progression.


Subject(s)
Biomarkers, Tumor , Endometrial Neoplasms , Proteomics , Humans , Female , Endometrial Neoplasms/blood , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Middle Aged , Aged , Proteomics/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Endometrial Hyperplasia/blood , Endometrial Hyperplasia/metabolism , Endometrial Hyperplasia/pathology , Blood Proteins/metabolism , Blood Proteins/analysis , Proteome/metabolism
11.
Anal Chem ; 96(25): 10434-10442, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38866710

ABSTRACT

Plasma protein adsorption on blood-contacting surfaces is the initiating significant event and modulates the subsequent coagulation response. Despite decades of research in this area, Vroman's questions in 1986 "Who gets there first?" and "When does the next protein arrive?" remain unanswered due to the lack of detection techniques with sufficient temporal resolution. In this work, we develop a droplet microfluidic technology to detect protein adsorption sequences on six typical blood-contacting surfaces in milliseconds. Apolipoproteins (Apo) are found to be the first proteins to adsorb onto the surfaces in a plasma droplet, and the specific type of apolipoprotein depends on the surface. Apo CI is the first protein adsorbed on gold, platinum, graphene, stainless steel, and polyvinyl chloride with the adsorption time varying from 0.01 to 1 s, while Apo CIII preferentially reaches the titanium alloy surface within 1 s. Subsequent to the initial adsorption, Apo AI, AII, and other proteins continue to adsorb until albumin arrives. Thus, the adsorption sequence is revealed, and Vroman's questions are answered. Moreover, this finding demonstrates the influence of the initial protein adsorption on subsequent coagulation at the surface, and it offers new insights into the development of anticoagulant surfaces.


Subject(s)
Surface Properties , Adsorption , Humans , Blood Proteins/chemistry , Blood Proteins/metabolism , Gold/chemistry , Stainless Steel/chemistry , Graphite/chemistry , Apolipoproteins/chemistry , Polyvinyl Chloride/chemistry , Platinum/chemistry , Microfluidic Analytical Techniques , Titanium/chemistry
12.
J Transl Med ; 22(1): 557, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858729

ABSTRACT

BACKGROUND: Deciphering the role of plasma proteins in pancreatic cancer (PC) susceptibility can aid in identifying novel targets for diagnosis and treatment. METHODS: We examined the relationship between genetically determined levels of plasma proteins and PC through a systemic proteome-wide Mendelian randomization (MR) analysis utilizing cis-pQTLs from multiple centers. Rigorous sensitivity analyses, colocalization, reverse MR, replications with varying instrumental variable selections and additional datasets, as well as subsequent meta-analysis, were utilized to confirm the robustness of significant findings. The causative effect of corresponding protein-coding genes' expression and their expression pattern in single-cell types were then investigated. Enrichment analysis, between-protein interaction and causation, knock-out mice models, and mediation analysis with established PC risk factors were applied to indicate the pathogenetic pathways. These candidate targets were ultimately prioritized upon druggability and potential side effects predicted by a phenome-wide MR. RESULTS: Twenty-one PC-related circulating proteins were identified in the exploratory phase with no evidence for horizontal pleiotropy or reverse causation. Of these, 11 were confirmed in a meta-analysis integrating external validations. The causality at a transcription level was repeated for neutrophil elastase, hydroxyacylglutathione hydrolase, lipase member N, protein disulfide-isomerase A5, xyloside xylosyltransferase 1. The carbohydrate sulfotransferase 11 and histo-blood group ABO system transferase exhibited high-support genetic colocalization evidence and were found to affect PC carcinogenesis partially through modulating body mass index and type 2 diabetes, respectively. Approved drugs have been established for eight candidate targets, which could potentially be repurposed for PC therapies. The phenome-wide investigation revealed 12 proteins associated with 51 non-PC traits, and interference on protein disulfide-isomerase A5 and cystatin-D would increase the risk of other malignancies. CONCLUSIONS: By employing comprehensive methodologies, this study demonstrated a genetic predisposition linking 21 circulating proteins to PC risk. Our findings shed new light on the PC etiology and highlighted potential targets as priorities for future efforts in early diagnosis and therapeutic strategies of PC.


Subject(s)
Blood Proteins , Mendelian Randomization Analysis , Pancreatic Neoplasms , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Humans , Animals , Blood Proteins/metabolism , Molecular Targeted Therapy , Quantitative Trait Loci , Genetic Predisposition to Disease , Proteomics , Gene Expression Regulation, Neoplastic , Genomics , Reproducibility of Results , Multiomics
13.
Nat Commun ; 15(1): 4862, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862464

ABSTRACT

As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.


Subject(s)
Blood Coagulation , Blood-Brain Barrier , Brain , Homeostasis , Oxidative Stress , Space Flight , Animals , Humans , Brain/metabolism , Blood-Brain Barrier/metabolism , Mice , Blood Coagulation/physiology , Male , Secretome/metabolism , Mice, Inbred C57BL , Extracellular Vesicles/metabolism , Proteomics/methods , Biomarkers/metabolism , Biomarkers/blood , Female , Adult , Blood Proteins/metabolism , Middle Aged , Leukocytes, Mononuclear/metabolism , Proteome/metabolism
14.
Sci Rep ; 14(1): 13571, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866887

ABSTRACT

The identification and validation of radiation biomarkers is critical for assessing the radiation dose received in exposed individuals and for developing radiation medical countermeasures that can be used to treat acute radiation syndrome (ARS). Additionally, a fundamental understanding of the effects of radiation injury could further aid in the identification and development of therapeutic targets for mitigating radiation damage. In this study, blood samples were collected from fourteen male nonhuman primates (NHPs) that were exposed to 7.2 Gy ionizing radiation at various time points (seven days prior to irradiation; 1, 13, and 25 days post-irradiation; and immediately prior to the euthanasia of moribund (preterminal) animals). Plasma was isolated from these samples and was analyzed using a liquid chromatography tandem mass spectrometry approach in an effort to determine the effects of radiation on plasma proteomic profiles. The primary objective was to determine if the radiation-induced expression of specific proteins could serve as an early predictor for health decline leading to a preterminal phenotype. Our results suggest that radiation induced a complex temporal response in which some features exhibit upregulation while others trend downward. These statistically significantly altered features varied from pre-irradiation levels by as much as tenfold. Specifically, we found the expression of integrin alpha and thrombospondin correlated in peripheral blood with the preterminal stage. The differential expression of these proteins implicates dysregulation of biological processes such as hemostasis, inflammation, and immune response that could be leveraged for mitigating radiation-induced adverse effects.


Subject(s)
Gamma Rays , Macaca mulatta , Proteomics , Animals , Gamma Rays/adverse effects , Male , Proteomics/methods , Biomarkers/blood , Whole-Body Irradiation/adverse effects , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Blood Proteins/analysis , Blood Proteins/metabolism , Proteome/analysis , Proteome/metabolism
15.
Sci Rep ; 14(1): 13976, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886511

ABSTRACT

Stroke is an acute cerebrovascular disease in which blood flow to the brain is suddenly disrupted, causing damage to nerve cells. It involves complex and diverse pathophysiological processes and the treatment strategies are also diverse. The treatment for patients with stroke and atrial fibrillation (AF) is aimed at suppressing thrombus formation and migration. However, information regarding the protein networking involved in different thrombus formation pathways in patients with AF and stroke is insufficient. We performed protein profiling of patients with ischemic stroke with and without AF to investigate the mechanisms of thrombus formation and its pathophysiological association while providing helpful information for treating and managing patients with AF. These two groups were compared to identify the protein networks related to thrombus formation in AF. We observed that patients with ischemic stroke and AF had activated inflammatory responses induced by C-reactive protein, lipopolysaccharide-binding protein, and alpha-1-acid glycoprotein 1. In contrast, thyroid hormones were increased due to a decrease in transthyretin and retinol-binding protein 4 levels. The mechanism underlying enhanced cardiac activity, vasodilation, and the resulting thrombosis pathway were confirmed in AF. These findings will play an essential role in improving the prevention and treatment of AF-related stroke.


Subject(s)
Atrial Fibrillation , Thrombosis , Humans , Atrial Fibrillation/metabolism , Thrombosis/metabolism , Male , Female , Aged , Middle Aged , Blood Proteins/metabolism , Stroke/metabolism , Stroke/blood , Ischemic Stroke/metabolism , Protein Interaction Maps , Proteomics/methods
16.
Anal Chem ; 96(23): 9535-9543, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804236

ABSTRACT

It is the scientific basis of precision medicine to study all of the targets of drugs based on the interaction between drugs and proteins. It is worth paying attention to unknown proteins that interact with drugs to find new targets for the design of new drugs. Herein, we developed a protein profiling strategy based on drug-protein interactions and drug-modified magnetic nanoparticles and took hepatitis C virus (HCV) and its corresponding drug sofosbuvir (SOF) as an example. A SOF-modified magnetic separation medium (Fe3O4@POSS@SOF) was prepared, and a gradient elution strategy was employed and optimized to profile specific proteins interacted with SOF. A series of proteomic analyses were performed to profile proteins based on SOF-protein interactions (SPIs) in the serum of HCV patients to evaluate the specificity of the profiling strategy. As a result, five proteins were profiled with strong SPIs and exhibited high relevance with liver tissue, which were potentially new drug targets. Among them, HSP60 was used to confirm the highly specific interactions between the SOF and its binding proteins by Western blotting analysis. Besides, 124 and 29 differential proteins were profiled by SOF material from three HCV patient serum and pooled 20 HCV patient serum, respectively, by comparing with healthy human serum. In comparison with those profiled by the polyhedral oligomeric silsesquioxane (POSS) material, differential proteins profiled by the SOF material were highly associated with liver diseases through GO analysis and pathway analysis. Furthermore, four common differential proteins profiled by SOF material but not by POSS material were found to be identical and expressed consistently in both pooled serum samples and independent serum samples, which might potentially be biomarkers of HCV infection. Taken together, our study proposes a highly specific protein profiling strategy to display distinctive proteomic profiles, providing a novel idea for drug design and development.


Subject(s)
Antiviral Agents , Hepacivirus , Hepatitis C , Sofosbuvir , Humans , Sofosbuvir/therapeutic use , Hepacivirus/drug effects , Antiviral Agents/blood , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Hepatitis C/drug therapy , Hepatitis C/blood , Magnetite Nanoparticles/chemistry , Proteomics/methods , Blood Proteins/metabolism , Blood Proteins/analysis
17.
Environ Sci Technol ; 58(23): 9954-9966, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804966

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.


Subject(s)
Blood Proteins , Fluorocarbons , Protein Binding , Species Specificity , Trout , Animals , Humans , Fluorocarbons/metabolism , Fluorocarbons/blood , Blood Proteins/metabolism , Cattle , Trout/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/chemistry
18.
Brain Behav Immun ; 119: 995-1007, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710337

ABSTRACT

BACKGROUND: The study examined how plasma proteome indicators may explain the link between poor cardiovascular health (CVH) and dementia risk. METHODS: The present study involved 28,974 UK Biobank participants aged 50-74y at baseline (2006-2010) who were followed-up for ≤ 15 y for incidence of dementia. CVH was calculated using Life's Essential 8 (LE8) total scores. The scores were standardized and reverse coded to reflect poor CVH (LE8z_rev). OLINK proteomics was available on this sample (k = 1,463 plasma proteins). The study primarily tested the mediating effects of the plasma proteome in LE8z_rev-dementia effect. The total effect was decomposed into "mediation only" or pure indirect effect (PIE), "interaction only" or interaction referent (INTREF), "neither mediation nor interaction" or controlled direct effect (CDE), and "both mediation and interaction" or mediated interaction (INTMED). RESULTS: The study found poorer CVH assessed by LE8z_rev increased the risk of all-cause dementia by 11 % [per 1 SD, hazard ratio, (HR) = 1.11, 95 % CI: 1.03-1.20, p = 0.005). The study identified 11 plasma proteins with strong mediating effects, with GDF15 having the strongest association with dementia risk (per 1 SD, HR = 1.24, 95 % CI: 1.16, 1.33, P < 0.001 when LE8z_rev is set at its mean value) and the largest proportion mediated combining PIE and INTMED (62.6 %; 48 % of TE is PIE), followed by adrenomedullin or ADM. A first principal component with 10 top mediators (TNFRSF1A, GDF15, FSTL3, COL6A3, PLAUR, ADM, GFRAL, ACVRL1, TNFRSF6B, TGFA) mediated 53.6 % of the LE8z_rev-dementia effect. Using all the significant PIE (k = 526) proteins, we used OLINK Insight pathway analysis to identify key pathways, which revealed the involvement of the immune system, signal transduction, metabolism, disease, protein metabolism, hemostasis, membrane trafficking, extracellular matrix organization, developmental biology, and gene expression among others. STRING analysis revealed that five top consistent proteomic mediators were represented in two larger clusters reflecting numerous interconnected biological gene ontology pathways, most notably cytokine-mediated signaling pathway for GDF15 cluster (GO:0019221) and regulation of peptidyl-tyrosine phosphorylation for the ADM cluster (GO:0050730). CONCLUSION: Dementia is linked to poor CVH mediated by GDF15 and ADM among several key proteomic markers which collectively explained âˆ¼ 54 % of the total effect.


Subject(s)
Biological Specimen Banks , Biomarkers , Cardiovascular Diseases , Dementia , Proteomics , Humans , Male , Aged , Female , United Kingdom/epidemiology , Dementia/blood , Dementia/epidemiology , Middle Aged , Proteomics/methods , Biomarkers/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Proteome/metabolism , Incidence , Risk Factors , Blood Proteins/metabolism , Blood Proteins/analysis , UK Biobank
19.
Biomater Sci ; 12(13): 3345-3359, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38767599

ABSTRACT

Nanocoatings based on plant polyphenols have been recently suggested as a potent strategy for modification of implant surfaces for enhancing host cell attachment and reducing bacterial colonisation. In this study we aimed to investigate how serum proteins impact the early adhesion dynamics of human gingival fibroblasts onto titanium surfaces coated with tannic acid (TA). Silicate-TA nanocoatings were formed on titanium and pre-conditioned in medium supplemented with 0, 0.1, 1 or 10% FBS for 1 hour. Dynamics of fibroblasts adhesion was studied using quartz crystal microbalance with dissipation (QCM-D). Time-lapse imaging was employed to assess cell area and motility, while immunofluorescence microscopy was used to examine cell morphology and focal adhesion formation. Our results showed that in serum-free medium, fibroblasts demonstrated enhanced and faster adhesion to TA coatings compared to uncoated titanium. Increasing the serum concentration reduced cell adhesion to nanocoatings, resulting in nearly complete inhibition at 10% FBS. This inhibition was not observed for uncoated titanium at 10% FBS, although cell adhesion was delayed and progressed slower compared to serum-free conditions. In addition, 1% FBS dramatically reduced cell adhesion on uncoated titanium. We revealed a positive relationship between changes in dissipation and changes in cell spreading area, and a negative relationship between dissipation and cell motility. In conclusion, our study demonstrated that serum decreases fibroblasts interaction with surfaces coated with TA in a concentration dependent manner. This suggests that controlling serum concentration can be used to regulate or potentially prevent fibroblasts adhesion onto TA-coated titanium surfaces.


Subject(s)
Cell Adhesion , Fibroblasts , Quartz Crystal Microbalance Techniques , Surface Properties , Tannins , Titanium , Fibroblasts/drug effects , Fibroblasts/cytology , Tannins/chemistry , Tannins/pharmacology , Humans , Cell Adhesion/drug effects , Titanium/chemistry , Blood Proteins/chemistry , Blood Proteins/metabolism , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Movement/drug effects , Cells, Cultured , Gingiva/cytology , Gingiva/drug effects , Polyphenols
20.
Protein Expr Purif ; 221: 106516, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38801985

ABSTRACT

Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds ß-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl ß-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.


Subject(s)
Escherichia coli , Galectin 3 , Isopropyl Thiogalactoside , Galectin 3/genetics , Galectin 3/metabolism , Galectin 3/biosynthesis , Galectin 3/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Isopropyl Thiogalactoside/pharmacology , Gene Expression , Galectins/genetics , Galectins/metabolism , Galectins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Blood Proteins/genetics , Blood Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...