Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.457
1.
Medicine (Baltimore) ; 103(19): e38122, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728464

BACKGROUND: Statins are the first-line treatment for dyslipidemia, which is a major modifiable risk factor for atherosclerotic cardiovascular disease. Studies have shown that in addition to the beneficial lipid-lowering effect, statins also exhibit a number of pleiotropic effects that may find application in other diseases, including osteoporosis. This study aimed to assess the effect of statins on bone turnover, as measured by the concentration of bone turnover markers, and to compare the effect of atorvastatin as a lipophilic statin and rosuvastatin as a hydrophilic statin. METHODS: This study included 34 postmenopausal women aged < 65 years with newly diagnosed dyslipidemia requiring statin therapy. Patients were randomly assigned to receive a statin drug. Statins were initiated at standard doses of 5 to 10 mg of rosuvastatin and 20 mg of atorvastatin. The levels of C-terminal telopeptide of type I collagen as a bone resorption marker and N-terminal propeptide of procollagen type I as a marker of bone formation, lipid concentrations and other biochemical parameters were assessed at baseline and after 6 and twelve months of treatment. RESULTS: There were no statistically significant differences between the levels of bone turnover markers before and 6 months after statin implementation (P > .05) - for all patients or subgroups according to statin use. Analysis of the results showed that after 12 months, there was a statistically significant decrease in N-terminal propeptide of procollagen type I concentration in all subjects (P = .004). By statin subgroup, a statistically significant decrease in N-terminal propeptide of procollagen type I was observed only in patients receiving rosuvastatin (P = .012) and not in those receiving atorvastatin (P = .25). Moreover, changes in bone turnover markers did not correlate with changes in lipid concentrations. CONCLUSIONS: These results may indicate the superiority of atorvastatin over rosuvastatin in inhibiting adverse changes in bone turnover in postmenopausal women. Confirmed by studies involving a larger population, the observed differences might find particular applications in clinical practice, and the choice of atorvastatin over rosuvastatin for women could be considered in the early postmenopausal period to reduce the risk of osteoporosis and subsequent osteoporotic fractures.


Atorvastatin , Bone Remodeling , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Postmenopause , Rosuvastatin Calcium , Humans , Rosuvastatin Calcium/therapeutic use , Rosuvastatin Calcium/administration & dosage , Female , Atorvastatin/therapeutic use , Atorvastatin/pharmacology , Middle Aged , Bone Remodeling/drug effects , Postmenopause/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Biomarkers/blood , Collagen Type I/blood , Osteoporosis, Postmenopausal/drug therapy , Dyslipidemias/drug therapy , Dyslipidemias/blood
2.
PLoS One ; 19(5): e0300292, 2024.
Article En | MEDLINE | ID: mdl-38718051

The aim of the study was to investigate the effect of returning to a balanced diet combined with chromium picolinate (CrPic) or chromium nanoparticles (CrNPs) supplementation at a pharmacologically relevant dose of 0.3 mg/kg body weight on the expression level of selected genes and bone turnover markers in the blood and bones of rats fed an obese diet. The results of the study showed that chronic intake of a high-fat obesogenic diet negatively affects bone turnover by impairing processes of both synthesis and degradation of bones. The switch to a healthy diet proved insufficient to regulate bone metabolism disorders induced by an obesogenic diet, even when it was supplemented with chromium, irrespective of its form. Supplementation with CrPic with no change in diet stimulated bone metabolism only at the molecular level, towards increased osteoclastogenesis (bone resorption). In contrast, CrNPs added to the high-fat diet effectively regulated bone turnover by increasing both osteoblastogenesis and osteoclastogenesis, with these changes directed more towards bone formation. The results of the study suggest that unfavourable changes in bone metabolism induced by chronic intake of a high-fat diet can be mitigated by supplementation with CrNPs, whereas a change in eating habits fails to achieve a similar effect.


Bone Remodeling , Chromium , Diet, High-Fat , Animals , Diet, High-Fat/adverse effects , Rats , Chromium/administration & dosage , Chromium/pharmacology , Male , Bone Remodeling/drug effects , Nanoparticles/chemistry , Dietary Fiber/pharmacology , Picolinic Acids/pharmacology , Picolinic Acids/administration & dosage , Dietary Supplements , Bone and Bones/metabolism , Bone and Bones/drug effects , Rats, Wistar , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Osteogenesis/drug effects
3.
J Pak Med Assoc ; 74(4): 741-751, 2024 Apr.
Article En | MEDLINE | ID: mdl-38751272

Objective: To evaluate the effect of subcutaneous teriparatide therapy on fracture healing rate and change in bone mass density in osteoporotic hip fractures. METHODS: The meta-analysis was done from September to December 2022, and comprised literature search on Wanfang, CNKI, VIP, PubMed, Embase, Cochrane Library, and Web of Science databases from the establishment of the respective database till December 2022. The relevant journals of the library of Macao University of Science and Technology, China, were manually searched for randomised controlled trials of teriparatide in the treatment of osteoporotic hip fractures. The shortlisted studies were subjectd to Cochrane Risk of Bias tool and the Jadad Rating Scale. Meta-analysis was done using the RevMan 5.4 software provided by the Cochrane Collaboration Network. Fracture healing rate and bone mineral density were the primary outcome measures, while mortality, adverse events, malformations, complications, subsequent fractures, timed-up-and-go test, visual analogue scale score, and procollagen type I N-terminal propeptide were the secondary outcome measures. RESULTS: Of the 1,094 articles retrieved, 8(0.7%) randomised controlled trials were analysed. There were 744 patients; 372(50%) in the teriparatide group and 372(50%) in the control group. Fracture healing rate was not significantly different (p=0.82), while bone mineral density was significantly different between the groups (p<0.001). Mortality, adverse events, deformity, and complications were not significantly different (p>0.05), while subsequent fractures, timed-up-and-go score, visual analogue scale score and procollagen type I N-terminal propeptide were significantly different between the groups (p<0.05). Conclusion: The literature did not support teriparatide's ability to improve the healing rate of osteoporotic hip fractures, or to reduce mortality, adverse events, malformations, and complications. In addition, teriparatide could increase bone mineral density of osteoporotic hip fractures and the procollagen type I N-terminal propeptide value, alleviate hip pain, and reduce subsequent fracture rates. This trial is registered with PROSPERO with registration number CRD42022379832.


Bone Density Conservation Agents , Bone Density , Fracture Healing , Hip Fractures , Osteoporotic Fractures , Teriparatide , Humans , Teriparatide/therapeutic use , Osteoporotic Fractures/prevention & control , Bone Density Conservation Agents/therapeutic use , Bone Density/drug effects , Fracture Healing/drug effects , Bone Remodeling/drug effects , Randomized Controlled Trials as Topic , Peptide Fragments , Procollagen/blood
4.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732267

Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome's influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment.


Biological Products , Bone Remodeling , Osteoporosis , Humans , Bone Remodeling/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Osteoblasts/drug effects , Osteoblasts/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , MAP Kinase Signaling System/drug effects , Gastrointestinal Microbiome/drug effects , Osteoclasts/metabolism , Osteoclasts/drug effects , Animals
5.
Front Immunol ; 15: 1396122, 2024.
Article En | MEDLINE | ID: mdl-38817601

As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.


Bone Remodeling , Interferon-gamma , Osteoporosis , Humans , Bone Remodeling/drug effects , Osteoporosis/immunology , Osteoporosis/etiology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Animals , Osteoclasts/immunology , Osteoclasts/metabolism , Osteoblasts/immunology , Osteoblasts/metabolism , Signal Transduction , Bone and Bones/immunology , Bone and Bones/metabolism , Bone and Bones/pathology
6.
J Immunother Cancer ; 12(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38702145

BACKGROUND: Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS: An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS: During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION: Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.


Bone Remodeling , Immune Checkpoint Inhibitors , Humans , Bone Remodeling/drug effects , Male , Female , Prospective Studies , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Aged , Longitudinal Studies , Neoplasms/drug therapy , Adult
7.
Int Immunopharmacol ; 135: 112299, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38776853

OBJECTIVE: Periodontitis is a chronic infectious disease, characterized by loss of alveolar bone and supporting tissues. Cistanche deserticola(Cd), a local medicinal herb in Xinjiang, possesses favorable biological characteristics and potential applications. Our aim is to investigate the remodeling properties of Cd extract and elucidate the specific mechanisms underlying its therapeutic effects on periodontitis, by employing a combination of basic experimental and network pharmacology approaches. METHODS: Firstly, UHPLC-QTOF-MS analysis was conducted on Cd extract to identify its main components, with several compounds were identified by standard. Subsequently, in vitro studies were performed using the Cd extract on MC3T3-E1 cells. Cell proliferation viability was assessed using CCK-8 and apoptosis assays, while ALP and ARS staining and quantitative experiments, qRT-PCR, and Western blot assays were employed to evaluate the osteogenic differentiation capability. Network pharmacology analysis was then carried out using the identified compounds to establish a database of Cd components and targets, along with a database of periodontitis. The intersection of these databases revealed the network relationship between Cd components-mapped genes-signaling pathways. KEGG/GO pathway analysis of the targets was performed to filter potential enriched pathways. PPI/CytoHubba protein interaction network analysis was utilized to identify hub genes. Molecular docking and molecular dynamics simulations were employed to analyze the docking and interaction between core gene and Cd components. RESULTS: We detected 38 major components in the Cd extract, with Echinacoside, Acteoside, Tubuloside A, and Cistanoside A undergoing standard substance verification. In vitro studies indicated that the Cd, at concentrations below 100 µg/ mL, did not affect cell proliferation and inhibited apoptosis. Osteogenesis assays demonstrated that Cd at concentrations of 1 µg/ mL, 10 µg/ mL, and 100 µg/ mL significantly promoted the osteogenic differentiation ability of MC3T3-E1 cells. It also notably upregulated the mRNA and protein levels of Alp, Bmp2, Runx2, and Opn, and the optimal concentration was 10 µg/mL. Network pharmacology results revealed the network relationship between Cd's components, crossed targets and signaling pathways. Combined with KEGG/GO pathway analysis and PPI/CytoHubba protein interaction network analysis. The key pathway and hub genes of Cd regulating periodontitis are both related to hypoxia pathway and HIF-1α. Molecular docking results showed a strong binding affinity between Cd compounds and hub genes, and molecular dynamics simulation results indicated the stability of the complexes formed between HIF-1α and several Cd compounds. CONCLUSION: Cistanche deserticola exhibits a notable capacity to promote bone regeneration, and its mechanism of action in regulating periodontitis is associated with the hypoxia signaling pathway. HIF-1α may serve as a potential core gene. Future research will focus on exploring the mechanism of Cd in intervene periodontitis and promoting bone remodeling in hypoxic environment.


Bone Remodeling , Cistanche , Network Pharmacology , Osteogenesis , Periodontitis , Cistanche/chemistry , Animals , Mice , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/microbiology , Bone Remodeling/drug effects , Osteogenesis/drug effects , Cell Proliferation/drug effects , Molecular Dynamics Simulation , Protein Interaction Maps , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , Osteoblasts/drug effects , Osteoblasts/metabolism , Signal Transduction/drug effects , Cell Differentiation/drug effects , Apoptosis/drug effects , Cell Line
8.
Cell Rep Med ; 5(5): 101574, 2024 May 21.
Article En | MEDLINE | ID: mdl-38776873

The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.


Bone Resorption , Osteoblasts , Osteogenesis , Animals , Humans , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects , Mice , Bone Resorption/pathology , Bone Resorption/metabolism , Anabolic Agents/pharmacology , Anabolic Agents/therapeutic use , Bone Remodeling/drug effects , Osteoporosis/pathology , Osteoporosis/metabolism , Osteoporosis/drug therapy , RANK Ligand/metabolism , Osteoclasts/metabolism , Osteoclasts/drug effects , Bone Development/drug effects , Osteoprotegerin/metabolism , Female , Signal Transduction/drug effects , Peptides/pharmacology , Male , Mice, Inbred C57BL , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology
9.
Nutrients ; 16(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674910

Type 2 diabetes mellitus (T2DM) presents a challenge for individuals today, affecting their health and life quality. Besides its known complications, T2DM has been found to contribute to bone/mineral abnormalities, thereby increasing the vulnerability to bone fragility/fractures. However, there is still a need for appropriate diagnostic approaches and targeted medications to address T2DM-associated bone diseases. This study aims to investigate the relationship between changes in gut microbiota, T2DM, and osteoporosis. To explore this, a T2DM rat model was induced by combining a high-fat diet and low-dose streptozotocin treatment. Our findings reveal that T2DM rats have lower bone mass and reduced levels of bone turnover markers compared to control rats. We also observe significant alterations in gut microbiota in T2DM rats, characterized by a higher relative abundance of Firmicutes (F) and Proteobacteria (P), but a lower relative abundance of Bacteroidetes (B) at the phylum level. Further analysis indicates a correlation between the F/B ratio and bone turnover levels, as well as between the B/P ratio and HbA1c levels. Additionally, at the genus level, we observe an inverse correlation in the relative abundance of Lachnospiraceae. These findings show promise for the development of new strategies to diagnose and treat T2DM-associated bone diseases.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Osteoporosis , Streptozocin , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Osteoporosis/etiology , Diabetes Mellitus, Experimental/microbiology , Rats , Male , Diabetes Mellitus, Type 2/microbiology , Rats, Sprague-Dawley , Bone Density/drug effects , Bone Remodeling/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism
10.
Discov Med ; 36(183): 655-665, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665015

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Bone Remodeling , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Incretins , Humans , Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/metabolism , Incretins/therapeutic use , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Pancreas/metabolism , Pancreas/drug effects , Pancreas/pathology
11.
Sci Adv ; 10(16): eadk8402, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640238

Osteoarthritis (OA) treatment is limited by the lack of effective nonsurgical interventions to slow disease progression. Here, we examined the contributions of the subchondral bone properties to OA development. We used parathyroid hormone (PTH) to modulate bone mass before OA initiation and alendronate (ALN) to inhibit bone remodeling during OA progression. We examined the spatiotemporal progression of joint damage by combining histopathological and transcriptomic analyses across joint tissues. The additive effect of PTH pretreatment before OA initiation and ALN treatment during OA progression most effectively attenuated load-induced OA pathology. Individually, PTH directly improved cartilage health and slowed the development of cartilage damage, whereas ALN primarily attenuated subchondral bone changes associated with OA progression. Joint damage reflected early transcriptomic changes. With both treatments, the structural changes were associated with early modulation of immunoregulation and immunoresponse pathways that may contribute to disease mechanisms. Overall, our results demonstrate the potential of subchondral bone-modifying therapies to slow the progression of OA.


Cartilage, Articular , Osteoarthritis , Parathyroid Hormone , Animals , Mice , Alendronate/pharmacology , Alendronate/therapeutic use , Bone and Bones , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use , Bone Remodeling/drug effects , Weight-Bearing
12.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673844

This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis.


Genetic Markers , Osteogenesis , Vitamin D , Vitamin D/analogs & derivatives , Animals , Female , Rats , Osteogenesis/drug effects , Vitamin D/pharmacology , Ovariectomy , Epiphyses/drug effects , Epiphyses/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Bone Remodeling/drug effects , Rats, Sprague-Dawley , Bone Morphogenetic Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects
13.
Eur J Pharmacol ; 974: 176604, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38649090

Osteoporosis (OP) is a metabolic bone disease with a high incidence rate worldwide. Its main features are decreased bone mass, increased bone fragility and deterioration of bone microstructure. It is caused by an imbalance between bone formation and bone resorption. Ginsenoside is a safe and effective traditional Chinese medicine (TCM) usually extracted from ginseng plants, having various therapeutic effects, of which the effect against osteoporosis has been extensively studied. We searched a total of 44 relevant articles with using keywords including osteoporosis, ginsenosides, bone mesenchymal cells, osteoblasts, osteoclasts and bone remodeling, all of which investigated the cellular mechanisms of different types of ginsenosides affecting the activity of bone remodeling by mesenchymal stem cells, osteoblasts and osteoclasts to counteract osteoporosis. This review describes the different types of ginsenosides used to treat osteoporosis from different perspectives, providing a solid theoretical basis for future clinical applications.


Ginsenosides , Osteoporosis , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Osteoporosis/drug therapy , Humans , Animals , Bone Remodeling/drug effects , Osteoblasts/drug effects , Osteoclasts/drug effects
14.
Curr Opin Nephrol Hypertens ; 33(4): 383-390, 2024 07 01.
Article En | MEDLINE | ID: mdl-38651491

PURPOSE OF REVIEW: Defining the optimal parathyroid hormone (PTH) target in chronic kidney disease (CKD) is challenging, especially for bone outcomes, due to the substantial variability in the skeleton's response to PTH. Although PTH hyporesponsiveness is as integral a component of CKD-mineral bone disorder as elevated PTH levels, clinical awareness of this condition is limited. In this review, we will discuss factors and mechanisms contributing to PTH hyporesponsiveness in CKD. This knowledge may provide clues towards a personalized approach to treating secondary hyperparathyroidism in CKD. RECENT FINDINGS: Indicates a link between disturbed phosphate metabolism and impaired skeletal calcium sensing receptor signaling as an important mediator of PTH hyporesponsiveness in CKD. Further, cohort studies with diverse populations point towards differences in mineral metabolism control, rather than genetic or environmental factors, as drivers of the variability of PTH responsiveness. IN SUMMARY: Skeletal PTH hyporesponsiveness in CKD has a multifactorial origin, shows important interindividual variability, and is challenging to estimate in clinical practice. The variability in skeletal responsiveness compromises PTH as a biomarker of bone turnover, especially when considering populations that are heterogeneous in ethnicity, demography, kidney function, primary kidney disease and mineral metabolism control, and in patients treated with bone targeting drugs.


Hyperparathyroidism, Secondary , Parathyroid Hormone , Renal Insufficiency, Chronic , Humans , Parathyroid Hormone/metabolism , Parathyroid Hormone/blood , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Hyperparathyroidism, Secondary/drug therapy , Hyperparathyroidism, Secondary/etiology , Hyperparathyroidism, Secondary/metabolism , Bone Remodeling/drug effects , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Chronic Kidney Disease-Mineral and Bone Disorder/drug therapy , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism
15.
Phytomedicine ; 128: 155375, 2024 Jun.
Article En | MEDLINE | ID: mdl-38507853

BACKGROUND: Osteoporosis (OP) is a prevalent chronic metabolic bone disease for which limited countermeasures are available. Cnidii Fructus (CF), primarily derived from Cnidium monnieri (L.) Cusson., has been tested in clinical trials of traditional Chinese medicine for the management of OP. Accumulating preclinical studies indicate that CF may be used against OP. MATERIALS AND METHODS: Comprehensive documentation and analysis were conducted to retrieve CF studies related to its main phytochemical components as well as its pharmacokinetics, safety and pharmacological properties. We also retrieved information on the mode of action of CF and, in particular, preclinical and clinical studies related to bone remodeling. This search was performed from the inception of databases up to the end of 2022 and included PubMed, China National Knowledge Infrastructure, the National Science and Technology Library, the China Science and Technology Journal Database, Weipu, Wanfang, the Web of Science and the China National Patent Database. RESULTS: CF contains a wide range of natural active compounds, including osthole, bergapten, imperatorin and xanthotoxin, which may underlie its beneficial effects on improving bone metabolism and quality. CF action appears to be mediated via multiple processes, including the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK), Wnt/ß-catenin and bone morphogenetic protein (BMP)/Smad signaling pathways. CONCLUSION: CF and its ingredients may provide novel compounds for developing anti-OP drugs.


Cnidium , Drugs, Chinese Herbal , Fruit , Osteoporosis , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Osteoporosis/drug therapy , Cnidium/chemistry , Fruit/chemistry , Animals , Medicine, Chinese Traditional , Coumarins/pharmacology , Coumarins/therapeutic use , Phytochemicals/pharmacology , 5-Methoxypsoralen , Bone Remodeling/drug effects , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , RANK Ligand
16.
J Clin Invest ; 134(10)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512413

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Bone Remodeling , Glucocorticoids , Osteogenesis , Animals , Mice , Glucocorticoids/pharmacology , Osteogenesis/drug effects , Bone Remodeling/drug effects , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Fatty Acids/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/immunology , Cellular Microenvironment/drug effects
17.
Endocrine ; 84(2): 711-719, 2024 May.
Article En | MEDLINE | ID: mdl-38334892

PURPOSE: Patients receiving long-term glucocorticoid (GC) treatment are at risk of osteoporosis, while bone effects of substitution doses in Addison's disease (AD) remain equivocal. The project was aimed to evaluate serum bone turnover markers (BTMs): osteocalcin, type I procollagen N-terminal propeptide (PINP), collagen C-terminal telopeptide (CTX), sclerostin, DKK-1 protein, and alkaline phosphatase (ALP) in relation to bone mineral density (BMD) during GC replacement. METHODS: Serum BTMs and hormones were assessed in 80 patients with AD (22 males, 25 pre- and 33 postmenopausal females) on hydrocortisone (HC) substitution for ≥3 years. Densitometry with dual-energy X-ray absorptiometry covered the lumbar spine (LS) and femoral neck (FN). RESULTS: Among BTMs, only PINP levels were altered in AD. BMD Z-scores remained negative except for FN in males. Considering T-scores, osteopenia was found in LS in 45.5% males, 24% young and 42.4% postmenopausal females, while osteoporosis in 9.0%, 4.0% and 21.1%, respectively. Lumbar BMD correlated positively with body mass (p = 0.0001) and serum DHEA-S (p = 9.899 × 10-6). Negative correlation was detected with HC dose/day/kg (p = 0.0320), cumulative HC dose (p = 0.0030), patient's age (p = 1.038 × 10-5), disease duration (p = 0.0004), ALP activity (p = 0.0041) and CTX level (p = 0.0105). However, only age, body mass, ALP, serum CTX, and sclerostin remained independent predictors of LS BMD. CONCLUSION: Standard HC substitution does not considerably accelerate BMD loss in AD patients and their serum BTMs: CTX, osteocalcin, sclerostin, DKK-1, and ALP activity remain within the reference ranges. Independent predictors of low lumbar spine BMD, especially ALP activity, serum CTX and sclerostin, might be monitored during GC substitution.


Addison Disease , Biomarkers , Bone Density , Glucocorticoids , Osteoporosis , Humans , Bone Density/drug effects , Female , Addison Disease/drug therapy , Addison Disease/blood , Male , Middle Aged , Glucocorticoids/adverse effects , Glucocorticoids/administration & dosage , Adult , Aged , Osteoporosis/blood , Biomarkers/blood , Hormone Replacement Therapy , Peptides/blood , Osteocalcin/blood , Adaptor Proteins, Signal Transducing , Peptide Fragments/blood , Procollagen/blood , Alkaline Phosphatase/blood , Bone Remodeling/drug effects , Collagen Type I/blood , Genetic Markers , Absorptiometry, Photon , Hydrocortisone/blood , Intercellular Signaling Peptides and Proteins/blood , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/drug effects , Young Adult
18.
Immunopharmacol Immunotoxicol ; 46(3): 277-301, 2024 Jun.
Article En | MEDLINE | ID: mdl-38318808

OBJECTIVE: Osteoporosis poses a substantial public health challenge due to an ageing population and the lack of adequate treatment options. The condition is marked by a reduction in bone mineral density, resulting in an elevated risk of fractures. The reduction in bone density and strength, as well as musculoskeletal issues that come with aging, present a significant challenge for individuals impacted by these conditions, as well as the healthcare system worldwide. METHODS: Literature survey was conducted until May 2023 using databases such as Web of Science, PubMed, Scopus, and Google Scholar. RESULT: Sirtuins 1-7 (SIRT1-SIRT7), which are a group of Nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, possess remarkable capabilities to increase lifespan and combat diseases related to aging. Research has demonstrated that these proteins play an important role in regular skeletal development and maintenance by directly impacting bone cells. Their dysfunction could be a factor in various bone conditions. Studies conducted on animals before clinical trials have shown that administering Sirtuins agonists to mice provides a safeguard against osteoporosis resulting from aging, menopause, and immobilization. These findings imply that Sirtuins may be a viable target for addressing the irregularity in bone remodeling and treating osteoporosis and other skeletal ailments. CONCLUSION: The purpose of this review was to present a thorough and current evaluation of the existing knowledge on Sirtuins biology, with a particular emphasis on their involvement in maintaining bone homeostasis and contributing to osteoporosis. Additionally, the review examines potential pharmacological interventions targeting Sirtuins for the treatment of osteoporosis.


Osteoporosis , Sirtuins , Sirtuins/metabolism , Humans , Osteoporosis/drug therapy , Osteoporosis/metabolism , Animals , Bone Density/drug effects , Aging/pathology , Aging/metabolism , Bone Remodeling/drug effects
19.
Br J Nutr ; 131(9): 1473-1487, 2024 May 14.
Article En | MEDLINE | ID: mdl-38221822

Vitamin D is a vital indicator of musculoskeletal health, as it plays an important role through the regulation of bone and mineral metabolism. This meta-analysis was performed to investigate the effects of vitamin D supplementation/fortification on bone turnover markers in women. All human randomised clinical trials reported changes in bone resorption markers (serum C-terminal telopeptide of type-I collagen (sCTX) and urinary type I collagen cross-linked N-telopeptide (uNTX)) or bone formation factors (osteocalcin (OC), bone alkaline phosphatase (BALP) and procollagen type-1 intact N-terminal propeptide (P1NP)) following vitamin D administration in women (aged ≥ 18 years) were considered. Mean differences (MD) and their respective 95 % CI were calculated based on fixed or random effects models according to the heterogeneity status. Subgroup analyses, meta-regression models, sensitivity analysis, risk of bias, publication bias and the quality of the included studies were also evaluated. We found that vitamin D supplementation had considerable effect on sCTX (MD: -0·038, n 22) and OC (MD: -0·610, n 24) with high heterogeneity and uNTX (MD: -8·188, n 6) without heterogeneity. Our results showed that age, sample size, dose, duration, baseline vitamin D level, study region and quality of studies might be sources of heterogeneity in this meta-analysis. Subgroup analysis also revealed significant reductions in P1NP level in dose less than 600 µg/d and larger study sample size (>100 participants). Moreover, no significant change was found in BALP level. Vitamin D supplementation/fortification significantly reduced bone resorption markers in women. However, results were inconsistent for bone formation markers.


Biomarkers , Bone Remodeling , Dietary Supplements , Vitamin D , Humans , Vitamin D/blood , Vitamin D/administration & dosage , Female , Biomarkers/blood , Bone Remodeling/drug effects , Randomized Controlled Trials as Topic , Bone Resorption/prevention & control , Collagen Type I/blood , Bone and Bones/metabolism , Bone and Bones/drug effects , Osteocalcin/blood , Alkaline Phosphatase/blood , Peptides/blood , Food, Fortified
20.
RFO UPF ; 28(1): 69-77, 20230808.
Article Pt | LILACS, BBO | ID: biblio-1509413

Objetivo: O objetivo desta revisão de literatura é evidenciar o papel da infecção e inflamação na etiopatogenia da osteonecrose dos maxilares induzida por medicamentos (MRONJ). Revisão da literatura: A MRONJ é uma condição rara e grave que impacta negativamente a vida dos pacientes afetados. Sua etiopatogenia é multifatorial e ainda não foi totalmente compreendida. Uma das hipóteses propostas para explicá-la sugere que, além da inibição do turnover ósseo pelos medicamentos antirreabsortivos, a infecção associada à exodontia e a inflamação local desempenham papel decisivo no desencadeamento da condição. O entendimento da etiopatogenia da MRONJ permite ao cirurgião-dentista a identificação dos pacientes com risco maior para a doença, assim como o auxilia no monitoramento e escolha do manejo mais adequado. No campo da pesquisa, ele pode aprimorar estudos pré-clínicos e aprofundar a investigação de biomarcadores para diagnóstico precoce de MRONJ. Considerações finais: Conhecer a contribuição da infecção e inflamação na etiopatogênese da MRONJ é fundamental para orientar a pesquisa e a adoção de estratégias preventivas para os pacientes em risco, e de manejo e monitoramento adequado para aqueles já acometidos. (AU)


Aim: The aim of this literature review is to highlight the role of infection and inflammation in the etiopathogenesis of drug-induced osteonecrosis of the jaw (MRONJ). Literature review: MRONJ is a rare and serious condition that negatively impacts the lives of affected patients. Its etiopathogenesis is multifactorial and has not yet been fully understood. One of the hypotheses proposed to explain it suggests that, in addition to the inhibition of bone turnover by antiresorptive drugs, the infection associated with tooth extraction and local inflammation play a decisive role in triggering the condition. Understanding the etiopathogenesis of MRONJ allows the dentist to identify patients at higher risk for the disease, as well as assisting in monitoring and choosing the most appropriate management. In research, it can improve preclinical studies and deepen the investigation of biomarkers for early diagnosis of MRONJ. Conclusion: Knowing the contribution of infection and inflammation in the etiopathogenesis of MRONJ is essential to guide research and the adoption of preventive strategies for patients at risk, and adequate management and monitoring for those already affected.(AU)


Humans , Bisphosphonate-Associated Osteonecrosis of the Jaw/etiology , Bisphosphonate-Associated Osteonecrosis of the Jaw/physiopathology , Inflammation/physiopathology , Bone Remodeling/drug effects , Bone Density Conservation Agents/adverse effects
...