Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.851
Filter
1.
BMC Vet Res ; 20(1): 295, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971753

ABSTRACT

BACKGROUND: Fatty liver in dairy cows is a common metabolic disease defined by triglyceride (TG) buildup in the hepatocyte. Clinical diagnosis of fatty liver is usually done by liver biopsy, causing considerable economic losses in the dairy industry owing to the lack of more effective diagnostic methods. Therefore, this study aimed to investigate the potential utility of blood biomarkers for the diagnosis and early warning of fatty liver in dairy cows. RESULTS: A total of twenty-four lactating cows within 28 days after parturition were randomly selected as experimental animals and divided into healthy cows (liver biopsy tested, n = 12) and cows with fatty liver (liver biopsy tested, n = 12). Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the macroelements and microelements in the serum of two groups of cows. Compared to healthy cows (C), concentrations of calcium (Ca), potassium (K), magnesium (Mg), strontium (Sr), selenium (Se), manganese (Mn), boron (B) and molybdenum (Mo) were lower and copper (Cu) was higher in fatty liver cows (F). Meanwhile, the observed differences in macroelements and microelements were related to delivery time, with the greatest major disparity between C and F occurring 7 days after delivery. Multivariable analysis was used to test the correlation between nine serum macroelements, microelements and fatty liver. Based on variable importance projection and receiver operating characteristic (ROC) curve analysis, minerals Ca, Se, K, B and Mo were screened as the best diagnostic indicators of fatty liver in postpartum cows. CONCLUSIONS: Our data suggested that serum levels of Ca, K, Mg, Se, B, Mo, Mn, and Sr were lower in F than in C. The most suitable period for an early-warning identification of fatty liver in cows was 7 days after delivery, and Ca, Se, K, B and Mo were the best diagnostic indicators of fatty liver in postpartum cows.


Subject(s)
Cattle Diseases , Fatty Liver , Peripartum Period , Animals , Cattle/blood , Female , Cattle Diseases/blood , Cattle Diseases/diagnosis , Fatty Liver/veterinary , Fatty Liver/blood , Fatty Liver/diagnosis , Peripartum Period/blood , Biomarkers/blood , Manganese/blood , Trace Elements/blood , Molybdenum/blood , Liver/chemistry , Potassium/blood , Boron/blood , Selenium/blood , Calcium/blood , Magnesium/blood , Pregnancy
2.
Toxins (Basel) ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38922154

ABSTRACT

Tetrodotoxin (TTX) is a representative natural toxin causing pufferfish food poisoning, which is especially prominent in East and Southeast Asia, including Japan. TTX has been analyzed through post-column derivatization high-performance liquid chromatography (HPLC), ion-pair LC-MS(/MS), and hydrophilic interaction liquid chromatography (HILIC)-MS(/MS) as alternatives to the mouse bioassay method. However, post-column derivatization requires a system for online derivatization reactions, and with the ion-pair LC-MS approach, it is difficult to remove residual ion-pair reagents remaining in the equipment. Moreover, HILIC-MS provides poor separation compared to reversed-phase (RP) HPLC and requires a long time to reach equilibration. Therefore, we decided to develop a TTX analytical method using pre-column derivatization and RP HPLC for the rapid assessment of outbreak samples, including food remnants. In this study, we focused on the vic-diol moiety of TTX and designed a new derivatization reagent coded as NBD-H-DAB. This NBD-H-DAB was synthesized from 4-hydrazino-7-nitro-2,1,3-benzoxadiazole (NBD-H) and 3-fluoro-2-formylphenylboronic acid (FFPBA) with a simple reaction system and rapidly converted to its boronate form, coded NBD-H-PBA, in an aqueous reaction solution. The NBD-H-PBA demonstrated appropriate hydrophobicity to be retained on the RP analytical column and successfully detected with a UV spectrometer. It was easily reacted with the vic-diol moiety of TTX (C6 and C11) to synthesized a boronic ester. The derivatized TTX could be detected using the RP HPLC-UV, and the limit of detection in the fish flesh samples was 0.06 mg/kg. This novel pre-column derivatization of TTX with NBD-H-PBA proves capable for the analysis of TTX.


Subject(s)
Chromatography, Reverse-Phase , Tetrodotoxin , Tetrodotoxin/analysis , Tetrodotoxin/chemistry , Animals , Chromatography, High Pressure Liquid , Food Contamination/analysis , Boron/chemistry , Boron/analysis , Tandem Mass Spectrometry
3.
J Control Release ; 371: 445-454, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844180

ABSTRACT

In boron neutron capture therapy (BNCT), boron drugs should exhibit high intratumoral boron concentrations during neutron irradiation, while being cleared from the blood and normal organs. However, it is usually challenging to achieve such tumor accumulation and quick clearance simultaneously in a temporally controlled manner. Here, we developed a polymer-drug conjugate that can actively control the clearance of the drugs from the blood. This polymer-drug conjugate is based on a biocompatible polymer that passively accumulates in tumors. Its side chains were conjugated with the low-molecular-weight boron drugs, which are immediately excreted by the kidneys, via photolabile linkers. In a murine subcutaneous tumor model, the polymer-drug conjugate could accumulate in the tumor with the high boron concentration ratio of the tumor to the surrounding normal tissue (∼10) after intravenous injection while a considerable amount remained in the bloodstream as well. Photoirradiation to blood vessels through the skin surface cleaved the linker to release the boron drug in the blood, allowing for its rapid clearance from the bloodstream. Meanwhile, the boron concentration in the tumor which was not photoirradiated could be maintained high, permitting strong BNCT effects. In clinical BNCT, the dose of thermal neutrons to solid tumors is determined by the maximum radiation exposure to normal organs. Thus, our polymer-drug conjugate may enable us to increase the therapeutic radiation dose to tumors in such a practical situation.


Subject(s)
Boron Neutron Capture Therapy , Polymers , Boron Neutron Capture Therapy/methods , Animals , Polymers/chemistry , Polymers/pharmacokinetics , Polymers/administration & dosage , Cell Line, Tumor , Boron Compounds/pharmacokinetics , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Light , Female , Mice , Neoplasms/radiotherapy , Neoplasms/drug therapy , Boron/pharmacokinetics , Boron/administration & dosage , Boron/chemistry , Mice, Inbred BALB C , Humans
4.
Environ Monit Assess ; 196(7): 657, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916709

ABSTRACT

Turkey is abundant in natural mineral water sources, thanks to its location on the Alpine-Himalayan belt. Natural mineral water is drinking water characterized by its natural mineral, trace elements, and carbon dioxide content. Because of quite insufficient data, the boron content in bottled natural mineral waters in Turkey was analyzed by three different methods and compared: inductively coupled plasma mass spectrometry technique, carminic acid, and azomethine-H methods, in this study. The boron levels in mineral waters ranged from a minimum of 0.05 mg/L to a maximum of 8.61 mg/L. It was also safe by the upper limit level estimated by the World Health Organisation. As boron plays a beneficial role in human physiology, consuming natural mineral water may offer a positive contribution to public health by supporting boron intake in our country. The other outcome of our research was that the spectrophotometric carminic acid method can yield results similar to those obtained using the inductively coupled plasma mass spectrometry technique since the boron level of Turkish mineral water was within the limits level of the carminic acid method. However, the result of the azomethine-H method was found not to be suitable. Cross-sensitivity with other elements in mineral water might have caused this.


Subject(s)
Boron , Environmental Monitoring , Mass Spectrometry , Mineral Waters , Water Pollutants, Chemical , Boron/analysis , Mineral Waters/analysis , Turkey , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Drinking Water/chemistry
5.
ACS Appl Mater Interfaces ; 16(26): 32983-32991, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38898566

ABSTRACT

Chemodynamic therapy (CDT) has received widespread attention as a tumor optical treatment strategy in the field of malignant tumor therapy. Nonmetallic multifunctional nanomaterials as CDT agents, due to their low toxicity, long-lasting effects, and safety characteristics, have promising applications in the integrated diagnosis and treatment of cancer. Here, we modified the supramolecular framework of boron clusters, coupled with a variety of dyes to develop a series of metal-free agent compounds, and demonstrated that these nonmetallic compounds have excellent CDT activities through experiments. Subsequently, the best performing Methylene Blue/[closo-B12H12]2- (MB@B12H12) was used as an example. Through theoretical calculations, electron paramagnetic resonance spectroscopy, and 808 nm light irradiation, we confirmed that MB@B12H12 exhibited photothermal performance and CDT activity further. More importantly, we applied MB@B12H12 to melanoma cells and subcutaneous tumor, demonstrating its effective suppression of melanoma growth in vitro and in vivo through the synergistic effects of photothermal performance and CDT activity. This study emphasizes the generalizability of the coupling of dyes to [closo-B12H12]2- with important clinical translational potential for CDT reagents. Among them, MB@B12H12 may have a brighter future, paving the way for the rapid development of metal-free CDT reagents.


Subject(s)
Antineoplastic Agents , Animals , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalysis , Photothermal Therapy , Cell Line, Tumor , Humans , Boron/chemistry , Cell Survival/drug effects , Methylene Blue/chemistry , Cell Proliferation/drug effects
6.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894416

ABSTRACT

L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore, there is a high interest for its detection in biological fluids including blood, urine, and saliva for medical studies, but also in food products. Towards this goal, we report on a new electrochemiluminescence (ECL) method for L-tryptophan detection involving the in situ production of hydrogen peroxide at the surface of boron-doped diamond (BDD) electrodes. We demonstrate that the ECL response efficiency is directly related to H2O2 production at the electrode surface and propose a mechanism for the ECL emission of L-tryptophan. After optimizing the analytical conditions, we show that the ECL response to L-tryptophan is directly linear with concentration in the range of 0.005 to 1 µM. We achieved a limit of detection of 0.4 nM and limit of quantification of 1.4 nM in phosphate buffer saline (PBS, pH 7.4). Good selectivity against other indolic compounds (serotonin, 3-methylindole, tryptamine, indole) potentially found in biological fluids was observed, thus making this approach highly promising for quantifying L-tryptophan in a broad range of aqueous matrices of interest.


Subject(s)
Boron , Diamond , Electrochemical Techniques , Electrodes , Luminescent Measurements , Tryptophan , Tryptophan/chemistry , Tryptophan/analysis , Boron/chemistry , Diamond/chemistry , Electrochemical Techniques/methods , Luminescent Measurements/methods , Humans , Limit of Detection , Biosensing Techniques/methods , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry
7.
Environ Sci Pollut Res Int ; 31(28): 40995-41012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837029

ABSTRACT

Groundwater quality in Wadi Fatimah is evaluated and demarcated for agriculture utilities using comprehensive approaches namely, international standards, agricultural water quality (AWQ) indices, irrigation water quality index (IWQI), and trace metals. Groundwater samples were collected (n = 59) and analysed for EC, pH, major and minor ions and trace metals. According to FAO recommendations, 42% of samples (EC > 3000 µS/cm) are inappropriate for agricultural uses. AWQ indices including salinity hazard, Kelly's ratio and Na% show that 50%, 19% and 37% of samples, respectively, are unsuitable for agricultural uses. USSL classification reveals that groundwater is preferable only for high-permeability soils and salt-tolerant crops. IWQI suggests that 88% of samples are moderately usable for agriculture. The interrelationship between water salinity and crop yield justified that 73%, 59%, 51% and 25% of samples are desirable to yield 90% in date palm trees, sorghum, rice and citrus fruits, respectively. Groundwater is appropriate for date palm trees except in downstream regions. Boron concentration suggests that 52%, 81% and 92% of samples are suitable for sensitive, semi-tolerant and tolerant crops, respectively. Groundwater in the central part (suitable for sensitive crops), central and upstream regions (semi-tolerant crops) and all regions except downstream (tolerant crops) are suitable for cultivation. Trace metals contents illustrate that 36%, 34%, 22%, 8%, 5% and 100% of samples are inappropriate for agriculture due to high concentrations of Cr, Cu, Ni, V, Mn and Mo, respectively in the groundwater. Further, AWQ indices, IWQI, USSL classifications and trace metals ensure that groundwater in the downstream, and a few pockets in the upstream are unfit for agricultural uses. This study recommends that groundwater in this basin is more suitable for tolerant crops (ie. date palm, sorghum) followed by semi-tolerant and sensitive crops.


Subject(s)
Agriculture , Boron , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Saudi Arabia , Water Pollutants, Chemical/analysis , Boron/analysis , Metals/analysis , Trace Elements/analysis
8.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 271-276, 2024 May 30.
Article in Chinese | MEDLINE | ID: mdl-38863092

ABSTRACT

In order to improve the biological effect of proton therapy, the authors first propose a new method of boron-based proton-enhanced radiotherapy in a " ternary " radiotherapy mode, based on the existing sensitizing effect of proton radiotherapy: i.e, Boron-based mediators (11B and 10B) induce the proton-hydrogen-boron fusion reaction of the low-energy protons arriving at the Bragg peak region of the tumor target area (p+11B→3α) and thermal neutron capture (10B+n→7Li3+(0.84 MeV)+4He2+(1.47 MeV)+γ(0.477 MeV)), which release low-energy α-particles with high LETs to enhance the biological effect of proton dose in the target area, thus improve the clinical effect of proton therapy. Then, the advantages and disadvantages of the "ternary" model were analyzed from the theoretical basis and current research status, and finally, the "ternary" model is summarized and prospected.


Subject(s)
Proton Therapy , Protons , Boron , Neoplasms/radiotherapy , Radiotherapy Dosage , Alpha Particles/therapeutic use , Models, Theoretical
9.
Sci Rep ; 14(1): 12988, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844823

ABSTRACT

Salinity stress significantly hinders plant growth by disrupting osmotic balance and inhibiting nutrient uptake, leading to reduced biomass and stunted development. Using saponin (SAP) and boron (B) can effectively overcome this issue. Boron decreases salinity stress by stabilizing cell walls and membranes, regulating ion balance, activating antioxidant enzymes, and enhancing water uptake. SAP are bioactive compounds that have the potential to alleviate salinity stress by improving nutrient uptake, modulating plant hormone levels, promoting root growth, and stimulating antioxidant activity. That's why the current study was planned to use a combination of SAP and boron as amendments to mitigate salinity stress in sweet potatoes. Four levels of SAP (0%, 0.1%, 0.15%, and 0.20%) and B (control, 5, 10, and 20 mg/L B) were applied in 4 replications following a completely randomized design. Results illustrated that 0.15% SAP with 20 mg/L B caused significant enhancement in sweet potato vine length (13.12%), vine weight (12.86%), root weight (8.31%), over control under salinity stress. A significant improvement in sweet potato chlorophyll a (9.84%), chlorophyll b (20.20%), total chlorophyll (13.94%), photosynthetic rate (17.69%), transpiration rate (16.03%), and stomatal conductance (17.59%) contrast to control under salinity stress prove the effectiveness of 0.15% SAP + 20 mg/L B treatment. In conclusion, 0.15% SAP + 20 mg/L B is recommended to mitigate salinity stress in sweet potatoes.


Subject(s)
Boron , Ipomoea batatas , Salt Stress , Saponins , Ipomoea batatas/growth & development , Boron/pharmacology , Saponins/pharmacology , Salt Stress/drug effects , Photosynthesis/drug effects , Plant Roots/growth & development , Plant Roots/drug effects , Chlorophyll/metabolism , Drug Synergism , Salinity
10.
BMC Plant Biol ; 24(1): 550, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872083

ABSTRACT

BACKGROUND: Boron (B) is a micronutrient, but excessive levels can cause phytotoxicity, impaired growth, and reduced photosynthesis. B toxicity arises from over-fertilization, high soil B levels, or irrigation with B-rich water. Conversely, silicon (Si) is recognized as an element that mitigates stress and alleviates the toxic effects of certain nutrients. In this study, to evaluate the effect of different concentrations of Si on maize under boron stress conditions, a factorial experiment based on a randomized complete block design was conducted with three replications in a hydroponic system. The experiment utilized a nutrient solution for maize var. Merit that contained three different boron (B) concentrations (0.5, 2, and 4 mg L-1) and three Si concentrations (0, 28, and 56 mg L-1). RESULTS: Our findings unveiled that exogenous application of B resulted in a substantial escalation of B concentration in maize leaves. Furthermore, B exposure elicited a significant diminution in fresh and dry plant biomass, chlorophyll index, chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids, and membrane stability index (MSI). As the B concentration augmented, malondialdehyde (MDA) content and catalase (CAT) enzyme activity exhibited a concomitant increment. Conversely, the supplementation of Si facilitated an amelioration in plant fresh and dry weight, total carbohydrate, and total soluble protein. Moreover, the elevated activity of antioxidant enzymes culminated in a decrement in hydrogen peroxide (H2O2) and MDA content. In addition, the combined influence of Si and B had a statistically significant impact on the leaf chlorophyll index, total chlorophyll (a + b) content, Si and B accumulation levels, as well as the enzymatic activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and H2O2 levels. These unique findings indicated the detrimental impact of B toxicity on various physiological and biochemical attributes of maize, while highlighting the potential of Si supplementation in mitigating the deleterious effects through modulation of antioxidant machinery and biomolecule synthesis. CONCLUSIONS: This study highlights the potential of Si supplementation in alleviating the deleterious effects of B toxicity in maize. Increased Si consumption mitigated chlorophyll degradation under B toxicity, but it also caused a significant reduction in the concentrations of essential micronutrients iron (Fe), copper (Cu), and zinc (Zn). While Si supplementation shows promise in counteracting B toxicity, the observed decrease in Fe, Cu, and Zn concentrations warrants further investigation to optimize this approach and maintain overall plant nutritional status.


Subject(s)
Boron , Chlorophyll , Hydroponics , Silicon , Zea mays , Zea mays/drug effects , Zea mays/growth & development , Zea mays/physiology , Zea mays/metabolism , Boron/toxicity , Boron/metabolism , Silicon/pharmacology , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Malondialdehyde/metabolism , Carotenoids/metabolism , Antioxidants/metabolism , Catalase/metabolism
11.
Chemosphere ; 361: 142493, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823426

ABSTRACT

Lignin-based carbon material can be utilized as carbonaceous adsorbents for the removal of toxic gaseous organic pollutants, while the poor heat-resistance limited its widely application. Here in, B-N co-doped lignin carbon (BN-C) with high thermal stability was synthesized, and the optimized BN-C (1:2) exhibited notably improved heat resistance with the decomposition temperature up to 505 °C, and excellent adsorption capacity for o-dichlorobenzene (o-DCB) (1510.0 mg/g) and toluene (947.3 mg/g), together with good cyclic stability over 10 cycles for o-dichlorobenzene. The existence of abundant hexagonal boron nitride (h-BN) with good thermal conductivity contributed to the superior heat-resistance of BN-C (1:2), and the high specific surface area (1764.5 m2/g), enriched hydroxyl functional groups and improved graphitization degree contributed to its enhanced adsorption performance. More importantly, BN-C (1:2) supported Ru could effectively remove o-DCB and toluene at wide temperature range (50-300 °C). The present work guided the development of heat-resistant lignin-derived adsorbent-catalyst for gaseous aromatic pollutants removal, which benefits both environmental protection and resource utilization.


Subject(s)
Air Pollutants , Lignin , Nitrogen , Adsorption , Lignin/chemistry , Catalysis , Nitrogen/chemistry , Air Pollutants/chemistry , Hot Temperature , Boron/chemistry , Toluene/chemistry , Boron Compounds/chemistry , Carbon/chemistry
12.
Chemosphere ; 361: 142569, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852627

ABSTRACT

Chemical oxo-precipitation (COP) is an enhanced precipitation method for boron removal with the conversion of boric acid to perborate anions. When using barium-based precipitant, the boron can be effectively precipitated as barium perborates (BaPBs). The phase transformation of BaPBs from amorphous (A-BaPB, Ba(B(OH)3OOH)2) to crystalline (C-BaPB, BaB2(OO)2(OH)4) form is crucial for effective boron removal. However, scaling up this phase transformation of BaPBs is hindered by poor diffusion. This study aims to promote the growth of C-BaPB through seed-induced crystal growth, eliminating the need for phase transformation. By examining the relationship between crystal growth rate and supersaturation, surface spiral growth was identified as the rate-limiting step of the growth of micron-sized seeds near pHpzc. To enable continuous crystal growth, granular seeds of C-BaPB were prepared and employed as the medium for fluidized-bed crystallization (FBC). The system reached steady state 3 hydraulic retention times, achieving 90% boron removal. The effect of surface loading, ionic strength, and dosages on steady-state crystal growth rate was studied, revealing a shift of the rate-limiting step in FBC to diffusion. Lastly, the system that constituted of two FBCs in-series for sequential crystallization of A-BaPB and C-BaPB was demonstrated. The integrated system provided 97.8% of boron removal from synthetic wastewater containing 500 mg-B/L, with 92.3% of boron crystallized on the granular seeds of BaPBs.


Subject(s)
Barium , Boron , Crystallization , Boron/chemistry , Barium/chemistry , Borates/chemistry , Chemical Precipitation , Water Pollutants, Chemical/chemistry
13.
Angew Chem Int Ed Engl ; 63(29): e202404286, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38712936

ABSTRACT

Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity. However, the structure-activity parameters that define chaotropic transport remain to be elucidated. Here, we have studied the modulation of chaotropic transport by decoupling the halogen composition from the boron core size. The binding affinity between perhalogenated decaborate and dodecaborate clusters carriers was quantified with different hydrophilic model cargos, namely a neutral and a cationic peptide, phalloidin and (KLAKLAK)2. The transport efficiency, membrane-lytic properties, and cellular toxicity, as obtained from different vesicle and cell assays, increased with the size and polarizability of the clusters. These results validate the chaotropic effect as the driving force behind the membrane transport propensity of boron clusters. This work advances our understanding of the structural features of boron cluster carriers and establishes the first set of rational design principles for chaotropic membrane transporters.


Subject(s)
Boron , Boron/chemistry , Boron/metabolism , Humans , Biological Transport , Boron Compounds/chemistry , Boron Compounds/metabolism , Hydrophobic and Hydrophilic Interactions , Borates/chemistry , Borates/metabolism
14.
Bioresour Technol ; 403: 130883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788807

ABSTRACT

Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2-15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.


Subject(s)
Bioelectric Energy Sources , Boron , Electrodes , Graphite , Graphite/chemistry , Boron/chemistry , Benzenesulfonates/chemistry , Oxidation-Reduction , Oxides/chemistry
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124470, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38761476

ABSTRACT

Recently, nanomaterials have attracted a lot of attention due to their potential as effective fluorescent nano-sensor probes. They were distinguishing substitutes for other luminescent techniques, such as fluorescent dyes and luminous derivatization, because of their affordability, environmental friendliness, and special photocatalytic properties. In the suggested work, a straightforward method was used to create boron and nitrogen carbon dots (B@CDs) with a good quantum yield value of 31.15 % utilizing boric acid and di-sodium EDTA. For the purpose of characterizing QDs, a variety of instruments were employed, such as transmission electron microscopy, fluorescence spectroscopy, X-ray FTIR, and UV-VIS spectroscopy. Nebivolol (NEB) is a cardiovascular medication used globally to treat congestive heart failure and hypertension, is in the meantime. For this reason, a brand-new, environmentally friendly analytical technique was created to determine the amount of human plasma, uniformity test, and commercial nebivolol (NEB) tablets. After gradually adding NEB, the response of B@CQDs was enhanced at 438 nm (excitation at 371 nm). The calibration graph ranged between 20 and 500 ng mL-1 with a quantification limit (LOQ) of 2.50 ng mL-1 and a detection limit (LOD) of 0.82 ng mL-1.


Subject(s)
Boron , Carbon , Nebivolol , Quantum Dots , Nebivolol/blood , Nebivolol/analysis , Humans , Carbon/chemistry , Quantum Dots/chemistry , Boron/chemistry , Green Chemistry Technology/methods , Spectrometry, Fluorescence/methods , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Tablets , Spectrophotometry, Ultraviolet
16.
Chemosphere ; 359: 142334, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759811

ABSTRACT

This study presents a baseline evaluation of the distribution, human and ecotoxicological risk, and the potential interactions of fluoride and boron in the water-sediment interface in 25 locations from incredible Red Sea tourist destinations. Results showed comparable levels of B and F in the water and sediments with previous literature. Significant positive correlation was found between B and F (r = 0.57; P<0.01). Based on the sediment/liquid partition coefficient (Kd), F is more likely to be released from the sediment into seawater (logKd< 3) than B (3< logKd< 4). pH and alkalinity may affect water-sediment interactions of B and F, respectively, while SO42- and Cl- ions had no significant effect on adsorption ability of F and B. The majority of minerals had average saturation Index (SI) > 1 referring to the over saturation of seawater with these minerals and their inability to dissolve. The formation of CF, FAP, and CFAP may be related to the high correlation between Fw (r = 0.928, P< 0.01; r = 0.527, P< 0.01; r = 0.608, P< 0.01) and Bw (r = 0.38, P< 0.05; r = 0.38, P< 0.05; r = 0.397, P< 0.05). Total hazard quotient (THQ) for children and adults were <1, revealing no health risks from exposure to B and F through ingestion and skin contact while swimming. The risk characterization ratio; RCRmix(MEC/PNEC) showed high short-term risks to aquatic organisms. Further investigations might emphasis on emerging mitigation strategies to address these concerns.


Subject(s)
Boron , Environmental Monitoring , Fluorides , Geologic Sediments , Seawater , Water Pollutants, Chemical , Boron/analysis , Boron/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Egypt , Seawater/chemistry , Fluorides/analysis , Geologic Sediments/chemistry , Humans , Indian Ocean , Ions , Adult
17.
J Hazard Mater ; 472: 134458, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703679

ABSTRACT

Diclofenac (DCF) is an environmentally persistent, nonsteroidal anti-inflammatory drug (NSAID) with thyroid disrupting properties. Electrochemical advanced oxidation processes (eAOPs) can efficiently remove NSAIDs from wastewater. However, eAOPs can generate transformation products (TPs) with unknown chemical and biological characteristics. In this study, DCF was electrochemically degraded using a boron-doped diamond anode. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry was used to analyze the TPs of DCF and elucidate its potential degradation pathways. The biological impact of DCF and its TPs was evaluated using the Xenopus Eleutheroembryo Thyroid Assay, employing a transgenic amphibian model to assess thyroid axis activity. As DCF degradation progressed, in vivo thyroid activity transitioned from anti-thyroid in non-treated samples to pro-thyroid in intermediately treated samples, implying the emergence of thyroid-active TPs with distinct modes of action compared to DCF. Molecular docking analysis revealed that certain TPs bind to the thyroid receptor, potentially triggering thyroid hormone-like responses. Moreover, acute toxicity occurred in intermediately degraded samples, indicating the generation of TPs exhibiting higher toxicity than DCF. Both acute toxicity and thyroid effects were mitigated with a prolonged degradation time. This study highlights the importance of integrating in vivo bioassays in the environmental risk assessment of novel degradation processes.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Thyroid Gland , Water Pollutants, Chemical , Animals , Diclofenac/toxicity , Diclofenac/chemistry , Diclofenac/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Risk Assessment , Electrochemical Techniques , Molecular Docking Simulation , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Endocrine Disruptors/metabolism , Xenopus laevis , Diamond/chemistry , Oxidation-Reduction , Boron/toxicity , Boron/chemistry
18.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732218

ABSTRACT

Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B-F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands n → π* and π → π* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom.


Subject(s)
Benzaldehydes , Benzaldehydes/chemistry , Magnetic Resonance Spectroscopy , Density Functional Theory , Fluorine/chemistry , Boron/chemistry , Models, Molecular , Esters/chemistry , Spectrophotometry, Infrared , Molecular Structure , Ions/chemistry
19.
J Environ Manage ; 359: 121084, 2024 May.
Article in English | MEDLINE | ID: mdl-38723505

ABSTRACT

Extensive global dependency on rice and wheat crops has necessitated the adoption of intensive cultivation practices, thereby compelling to closely monitor the potential yield-limiting factors, among which, boron (B) deficiency stands out to be a prime concern. The present study explores the effects of B fertilization strategies within the Rice-Wheat Cropping System (RWCS) in the Tarai region of North-West India. A comprehensive six-year field experiment was conducted (2013-2019) at G.B. Pant University of Agriculture and Technology, Uttarakhand, India. The experiment tested graded B doses (0.5, 1.0, 1.5, and 2.0 kg ha-1) at varied frequencies (single, alternate, and annual) in a factorial design. The study revealed significant impacts of alternate B application at 1.5 kg ha-1 on crop yields and the Sustainable Yield Index (SYI). The System Rice Equivalent Yield (SREY) exhibited an increase of 6.7% with B supplementation over B-deprived plots, highlighting the pivotal role of B fertilizer in enhancing productivity within the RWCS. The economic optimum B dose was found to be 1.422 kg ha-1 using a linear plus plateau model, resulting in a calculated annual SREY of 9.73 t ha-1 when applied alternately to the cropping system. Continuous application and higher B rates demonstrated substantial increases in various B fractions, while the mobility factor remained within 10%, depicting safe ecological limits. The distribution of fractions in B-treated plots on average followed the order: residual B > organically-bound B > oxide bound B > specifically adsorbed B > readily soluble B. Similarities in the distribution patterns of B fractions between B-treated plots and the control indicated potential influence of biotic or abiotic processes on B fraction dynamics, even in the absence of external B application. To sum up, B application in alternate years at 1.5 kg ha-1 was most sustainable in enhancing the SREY, SYI, available soil B, and B fractions and lowering the environmental hazards.


Subject(s)
Agriculture , Boron , Crops, Agricultural , Fertilizers , Oryza , Triticum , Oryza/growth & development , Triticum/growth & development , India , Agriculture/methods , Crops, Agricultural/growth & development , Soil/chemistry
20.
ACS Appl Mater Interfaces ; 16(20): 26537-26546, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739859

ABSTRACT

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.


Subject(s)
Anti-Bacterial Agents , Photothermal Therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Animals , Water/chemistry , Mice , Free Radicals/chemistry , Boron/chemistry , Boron/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...