Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85.918
3.
Chaos ; 34(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38838102

This paper introduces two novel scores for detecting local perturbations in networks. For this, we consider a non-Euclidean representation of networks, namely, their embedding onto the Poincaré disk model of hyperbolic geometry. We numerically evaluate the performances of these scores for the detection and localization of perturbations on homogeneous and heterogeneous network models. To illustrate our approach, we study latent geometric representations of real brain networks to identify and quantify the impact of epilepsy surgery on brain regions. Results suggest that our approach can provide a powerful tool for representing and analyzing changes in brain networks following surgical intervention, marking the first application of geometric network embedding in epilepsy research.


Brain , Nerve Net , Humans , Nerve Net/physiology , Brain/physiology , Epilepsy/physiopathology , Models, Neurological , Algorithms , Computer Simulation
4.
Curr Biol ; 34(11): R536-R539, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38834026

A new study leads the way to a more ethical and ethologically meaningful way of investigating brain functions of complex behaviors in social animals.


Neurosciences , Primates , Social Behavior , Animals , Primates/physiology , Brain/physiology , Wireless Technology/instrumentation , Behavior, Animal/physiology
6.
Commun Biol ; 7(1): 697, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844612

Brain connectome analysis suffers from the high dimensionality of connectivity data, often forcing a reduced representation of the brain at a lower spatial resolution or parcellation. This is particularly true for graph-based representations, which are increasingly used to characterize connectivity gradients, capturing patterns of systematic spatial variation in the functional connectivity structure. However, maintaining a high spatial resolution is crucial for enabling fine-grained topographical analysis and preserving subtle individual differences that might otherwise be lost. Here we introduce a computationally efficient approach to establish spatially fine-grained connectivity gradients. At its core, it leverages a set of landmarks to approximate the underlying connectivity structure at the full spatial resolution without requiring a full-scale vertex-by-vertex connectivity matrix. We show that this approach reduces computational time and memory usage while preserving informative individual features and demonstrate its application in improving brain-behavior predictions. Overall, its efficiency can remove computational barriers and enable the widespread application of connectivity gradients to capture spatial signatures of the connectome. Importantly, maintaining a spatially fine-grained resolution facilitates to characterize the spatial transitions inherent in the core concept of gradients of brain organization.


Brain , Connectome , Brain/physiology , Brain/diagnostic imaging , Humans , Male , Female , Nerve Net/physiology , Magnetic Resonance Imaging/methods , Adult
7.
Nat Commun ; 15(1): 4822, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844769

We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.


Brain , Electrodes, Implanted , Hippocampus , Neurons , Animals , Neurons/physiology , Brain/physiology , Brain/cytology , Hippocampus/physiology , Hippocampus/cytology , Male , Rats , Signal-To-Noise Ratio , Action Potentials/physiology , Mice , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology
8.
Dev Psychobiol ; 66(5): e22504, 2024 Jul.
Article En | MEDLINE | ID: mdl-38837411

Experimental studies of sensory plasticity during development in birds and mammals have highlighted the importance of sensory experiences for the construction and refinement of functional neural circuits. We discuss how dysregulation of experience-dependent brain plasticity can lead to abnormal perceptual representations that may contribute to heterogeneous deficits symptomatic of several neurodevelopmental disorders. We focus on alterations of somatosensory processing and the dynamic reorganization of cortical synaptic networks that occurs during early perceptual development. We also discuss the idea that the heterogeneity of strengths and weaknesses observed in children with neurodevelopmental disorders may be a direct consequence of altered plasticity mechanisms during early development. Treating the heterogeneity of perceptual developmental trajectories as a phenomenon worthy of study rather than as an experimental confound that should be overcome may be key to developing interventions that better account for the complex developmental trajectories experienced by modern humans.


Neuronal Plasticity , Neuronal Plasticity/physiology , Humans , Animals , Neurodevelopmental Disorders/physiopathology , Brain/physiopathology , Brain/physiology , Perception/physiology
9.
Sci Data ; 11(1): 590, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839770

The Individual Brain Charting (IBC) is a multi-task functional Magnetic Resonance Imaging dataset acquired at high spatial-resolution and dedicated to the cognitive mapping of the human brain. It consists in the deep phenotyping of twelve individuals, covering a broad range of psychological domains suitable for functional-atlasing applications. Here, we present the inclusion of task data from both naturalistic stimuli and trial-based designs, to uncover structures of brain activation. We rely on the Fast Shared Response Model (FastSRM) to provide a data-driven solution for modelling naturalistic stimuli, typically containing many features. We show that data from left-out runs can be reconstructed using FastSRM, enabling the extraction of networks from the visual, auditory and language systems. We also present the topographic organization of the visual system through retinotopy. In total, six new tasks were added to IBC, wherein four trial-based retinotopic tasks contributed with a mapping of the visual field to the cortex. IBC is open access: source plus derivatives imaging data and meta-data are available in public repositories.


Brain Mapping , Brain , Magnetic Resonance Imaging , Humans , Brain/physiology , Brain/diagnostic imaging , Motion Pictures , Visual Cortex/physiology , Visual Cortex/diagnostic imaging
10.
Sci Rep ; 14(1): 12957, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839877

Yoga nidra (YN) practice aims to induce a deeply relaxed state akin to sleep while maintaining heightened awareness. Despite the growing interest in its clinical applications, a comprehensive understanding of the underlying neural correlates of the practice of YN remains largely unexplored. In this fMRI investigation, we aim to discover the differences between wakeful resting states and states attained during YN practice. The study included individuals experienced in meditation and/or yogic practices, referred to as 'meditators' (n = 30), and novice controls (n = 31). The GLM analysis, based on audio instructions, demonstrated activation related to auditory cues without concurrent default mode network (DMN) deactivation. DMN seed based functional connectivity (FC) analysis revealed significant reductions in connectivity among meditators during YN as compared to controls. We did not find differences between the two groups during the pre and post resting state scans. Moreover, when DMN-FC was compared between the YN state and resting state, meditators showed distinct decoupling, whereas controls showed increased DMN-FC. Finally, participants exhibit a remarkable correlation between reduced DMN connectivity during YN and self-reported hours of cumulative meditation and yoga practice. Together, these results suggest a unique neural modulation of the DMN in meditators during YN which results in being restful yet aware, aligned with their subjective experience of the practice. The study deepens our understanding of the neural mechanisms of YN, revealing distinct DMN connectivity decoupling in meditators and its relationship with meditation and yoga experience. These findings have interdisciplinary implications for neuroscience, psychology, and yogic disciplines.


Magnetic Resonance Imaging , Meditation , Yoga , Humans , Female , Male , Adult , Brain/physiology , Brain/diagnostic imaging , Middle Aged , Brain Mapping , Connectome , Young Adult
11.
Nature ; 630(8015): 84-90, 2024 Jun.
Article En | MEDLINE | ID: mdl-38840015

Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.


Hydrogels , Intracranial Pressure , Wireless Technology , Animals , Wireless Technology/instrumentation , Rats , Swine , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Hydrogels/chemistry , Male , Ultrasonic Waves , Female , Hydrogen-Ion Concentration , Injections/instrumentation , Brain/physiology , Brain/diagnostic imaging , Temperature , Absorbable Implants , Rats, Sprague-Dawley
12.
Sci Rep ; 14(1): 12604, 2024 06 01.
Article En | MEDLINE | ID: mdl-38824230

Pulse wave encephalopathy (PWE) is hypothesised to initiate many forms of dementia, motivating its identification and risk assessment. As candidate pulsatility based biomarkers for PWE, pulsatility index and pulsatility damping have been studied and, currently, do not adequately stratify risk due to variability in pulsatility and spatial bias. Here, we propose a locus-independent pulsatility transmission coefficient computed by spatially tracking pulsatility along vessels to characterise the brain pulse dynamics at a whole-organ level. Our preliminary analyses in a cohort of 20 subjects indicate that this measurement agrees with clinical observations relating blood pulsatility with age, heart rate, and sex, making it a suitable candidate to study the risk of PWE. We identified transmission differences between vascular regions perfused by the basilar and internal carotid arteries attributed to the identified dependence on cerebral blood flow, and some participants presented differences between the internal carotid perfused regions that were not related to flow or pulsatility burden, suggesting underlying mechanical differences. Large populational studies would benefit from retrospective pulsatility transmission analyses, providing a new comprehensive arterial description of the hemodynamic state in the brain. We provide a publicly available implementation of our tools to derive this coefficient, built into pre-existing open-source software.


Cerebrovascular Circulation , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Female , Male , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Aged , Middle Aged , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Pulse Wave Analysis/methods , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/physiology , Basilar Artery/diagnostic imaging , Basilar Artery/physiology , Adult
13.
J Biomed Opt ; 29(6): 067001, 2024 Jun.
Article En | MEDLINE | ID: mdl-38826808

Significance: In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim: Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach: The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results: Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions: Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.


Cerebrovascular Circulation , Equipment Design , Spectrum Analysis , Humans , Cerebrovascular Circulation/physiology , Spectrum Analysis/instrumentation , Cost-Benefit Analysis , Reproducibility of Results , Wearable Electronic Devices , Signal-To-Noise Ratio , Lasers , Brain/blood supply , Brain/diagnostic imaging , Brain/physiology , Laser Speckle Contrast Imaging/instrumentation
14.
Proc Natl Acad Sci U S A ; 121(24): e2317707121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38830105

Human pose, defined as the spatial relationships between body parts, carries instrumental information supporting the understanding of motion and action of a person. A substantial body of previous work has identified cortical areas responsive to images of bodies and different body parts. However, the neural basis underlying the visual perception of body part relationships has received less attention. To broaden our understanding of body perception, we analyzed high-resolution fMRI responses to a wide range of poses from over 4,000 complex natural scenes. Using ground-truth annotations and an application of three-dimensional (3D) pose reconstruction algorithms, we compared similarity patterns of cortical activity with similarity patterns built from human pose models with different levels of depth availability and viewpoint dependency. Targeting the challenge of explaining variance in complex natural image responses with interpretable models, we achieved statistically significant correlations between pose models and cortical activity patterns (though performance levels are substantially lower than the noise ceiling). We found that the 3D view-independent pose model, compared with two-dimensional models, better captures the activation from distinct cortical areas, including the right posterior superior temporal sulcus (pSTS). These areas, together with other pose-selective regions in the LOTC, form a broader, distributed cortical network with greater view-tolerance in more anterior patches. We interpret these findings in light of the computational complexity of natural body images, the wide range of visual tasks supported by pose structures, and possible shared principles for view-invariant processing between articulated objects and ordinary, rigid objects.


Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Brain/physiology , Brain/diagnostic imaging , Brain Mapping/methods , Visual Perception/physiology , Posture/physiology , Young Adult , Imaging, Three-Dimensional/methods , Photic Stimulation/methods , Algorithms
15.
Hum Brain Mapp ; 45(8): e26718, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825985

The early stages of human development are increasingly acknowledged as pivotal in laying the groundwork for subsequent behavioral and cognitive development. Spatiotemporal (4D) brain functional atlases are important in elucidating the development of human brain functions. However, the scarcity of such atlases for early life stages stems from two primary challenges: (1) the significant noise in functional magnetic resonance imaging (fMRI) that complicates the generation of high-quality atlases for each age group, and (2) the rapid and complex changes in the early human brain that hinder the maintenance of temporal consistency in 4D atlases. This study tackles these challenges by integrating low-rank tensor learning with spectral embedding, thereby proposing a novel, data-driven 4D functional atlas generation framework based on spectral functional network learning (SFNL). This method utilizes low-rank tensor learning to capture common functional connectivity (FC) patterns across different ages, thus optimizing FCs for each age group to improve the temporal consistency of functional networks. Incorporating spectral embedding aids in mitigating potential noise in FC networks derived from fMRI data by reconstructing networks in the spectral space. Utilizing SFNL-generated functional networks enables the creation of consistent and highly qualified spatiotemporal functional atlases. The framework was applied to the developing Human Connectome Project (dHCP) dataset, generating the first neonatal 4D functional atlases with fine-grained temporal and spatial resolutions. Experimental evaluations focusing on functional homogeneity, reliability, and temporal consistency demonstrated the superiority of our framework compared to existing methods for constructing 4D atlases. Additionally, network analysis experiments, including individual identification, functional systems development, and local efficiency assessments, further corroborate the efficacy and robustness of the generated atlases. The 4D atlases and related codes will be made publicly accessible (https://github.com/zhaoyunxi/neonate-atlases).


Atlases as Topic , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Infant, Newborn , Connectome/methods , Male , Female , Brain/diagnostic imaging , Brain/physiology , Brain/growth & development , Infant , Image Processing, Computer-Assisted/methods , Machine Learning , Nerve Net/diagnostic imaging , Nerve Net/physiology , Nerve Net/growth & development
16.
Hum Brain Mapp ; 45(8): e26747, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825981

Electroencephalography (EEG) functional connectivity (FC) estimates are confounded by the volume conduction problem. This effect can be greatly reduced by applying FC measures insensitive to instantaneous, zero-lag dependencies (corrected measures). However, numerous studies showed that FC measures sensitive to volume conduction (uncorrected measures) exhibit higher reliability and higher subject-level identifiability. We tested how source reconstruction contributed to the reliability difference of EEG FC measures on a large (n = 201) resting-state data set testing eight FC measures (including corrected and uncorrected measures). We showed that the high reliability of uncorrected FC measures in resting state partly stems from source reconstruction: idiosyncratic noise patterns define a baseline resting-state functional network that explains a significant portion of the reliability of uncorrected FC measures. This effect remained valid for template head model-based, as well as individual head model-based source reconstruction. Based on our findings we made suggestions how to best use spatial leakage corrected and uncorrected FC measures depending on the main goals of the study.


Connectome , Electroencephalography , Nerve Net , Humans , Electroencephalography/methods , Electroencephalography/standards , Adult , Connectome/standards , Connectome/methods , Female , Male , Reproducibility of Results , Nerve Net/diagnostic imaging , Nerve Net/physiology , Young Adult , Magnetic Resonance Imaging/standards , Brain/diagnostic imaging , Brain/physiology
17.
Elife ; 132024 Jun 04.
Article En | MEDLINE | ID: mdl-38831699

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.


Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetoencephalography/instrumentation , Child , Adolescent , Adult , Young Adult , Male , Female , Child, Preschool , Beta Rhythm/physiology , Brain/physiology
18.
Nat Commun ; 15(1): 4745, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834553

Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.


Brain , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Brain/diagnostic imaging , Brain/physiology , Image Processing, Computer-Assisted/methods , Male , Adult , Female , Nerve Net/physiology , Nerve Net/diagnostic imaging , Brain Mapping/methods , Young Adult
19.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38725291

A widely used psychotherapeutic treatment for post-traumatic stress disorder (PTSD) involves performing bilateral eye movement (EM) during trauma memory retrieval. However, how this treatment-described as eye movement desensitization and reprocessing (EMDR)-alleviates trauma-related symptoms is unclear. While conventional theories suggest that bilateral EM interferes with concurrently retrieved trauma memories by taxing the limited working memory resources, here, we propose that bilateral EM actually facilitates information processing. In two EEG experiments, we replicated the bilateral EM procedure of EMDR, having participants engaging in continuous bilateral EM or receiving bilateral sensory stimulation (BS) as a control while retrieving short- or long-term memory. During EM or BS, we presented bystander images or memory cues to probe neural representations of perceptual and memory information. Multivariate pattern analysis of the EEG signals revealed that bilateral EM enhanced neural representations of simultaneously processed perceptual and memory information. This enhancement was accompanied by heightened visual responses and increased neural excitability in the occipital region. Furthermore, bilateral EM increased information transmission from the occipital to the frontoparietal region, indicating facilitated information transition from low-level perceptual representation to high-level memory representation. These findings argue for theories that emphasize information facilitation rather than disruption in the EMDR treatment.


Electroencephalography , Eye Movement Desensitization Reprocessing , Humans , Female , Male , Young Adult , Adult , Eye Movement Desensitization Reprocessing/methods , Eye Movements/physiology , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/therapy , Stress Disorders, Post-Traumatic/psychology , Visual Perception/physiology , Memory/physiology , Brain/physiology , Photic Stimulation/methods , Memory, Short-Term/physiology
20.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38725293

Numerous studies reported inconsistent results concerning gender influences on the functional organization of the brain for language in children and adults. However, data for the gender differences in the functional language networks at birth are sparse. Therefore, we investigated gender differences in resting-state functional connectivity in the language-related brain regions in newborns using functional near-infrared spectroscopy. The results revealed that female newborns demonstrated significantly stronger functional connectivities between the superior temporal gyri and middle temporal gyri, the superior temporal gyri and the Broca's area in the right hemisphere, as well as between the right superior temporal gyri and left Broca's area. Nevertheless, statistical analysis failed to reveal functional lateralization of the language-related brain areas in resting state in both groups. Together, these results suggest that the onset of language system might start earlier in females, because stronger functional connectivities in the right brain in female neonates were probably shaped by the processing of prosodic information, which mainly constitutes newborns' first experiences of speech in the womb. More exposure to segmental information after birth may lead to strengthened functional connectivities in the language system in both groups, resulting in a stronger leftward lateralization in males and a more balanced or leftward dominance in females.


Language , Sex Characteristics , Spectroscopy, Near-Infrared , Humans , Female , Spectroscopy, Near-Infrared/methods , Male , Infant, Newborn , Brain/physiology , Brain/diagnostic imaging , Rest/physiology , Functional Laterality/physiology , Neural Pathways/physiology , Brain Mapping/methods
...