Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 137
1.
Gut Microbes ; 16(1): 2363011, 2024.
Article En | MEDLINE | ID: mdl-38835220

The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.


Cognition , Diet, Mediterranean , Dietary Supplements , Disease Models, Animal , Gastrointestinal Microbiome , Inflammation , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Cognition/drug effects , Inflammation/metabolism , Inflammation/diet therapy , Dietary Supplements/analysis , Mice, Inbred C57BL , Brain-Gut Axis/physiology , Brain/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics
2.
Gut Microbes ; 16(1): 2351520, 2024.
Article En | MEDLINE | ID: mdl-38717832

Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.


Brain-Gut Axis , Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Humans , Brain/microbiology , Brain/metabolism , Brain/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Models, Animal , Mice
3.
Biol Res ; 57(1): 23, 2024 May 06.
Article En | MEDLINE | ID: mdl-38705984

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Anxiety , Brain-Gut Axis , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Anxiety/microbiology , Brain-Gut Axis/physiology , Rats , Rats, Sprague-Dawley , Obesity/microbiology , Obesity/psychology , Obesity/metabolism , Signal Transduction/physiology , Behavior, Animal/physiology
4.
Biosens Bioelectron ; 258: 116298, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38701537

Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.


Enteric Nervous System , Optogenetics , Wireless Technology , Animals , Optogenetics/instrumentation , Enteric Nervous System/physiology , Mice , Wireless Technology/instrumentation , Brain-Gut Axis/physiology , Biosensing Techniques/instrumentation , Equipment Design , Brain/physiology , Mice, Inbred C57BL
5.
Front Cell Infect Microbiol ; 14: 1393809, 2024.
Article En | MEDLINE | ID: mdl-38779559

Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including ß-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.


Alzheimer Disease , Crohn Disease , Gastrointestinal Microbiome , Alzheimer Disease/metabolism , Alzheimer Disease/etiology , Crohn Disease/metabolism , Crohn Disease/microbiology , Humans , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Animals , Brain-Gut Axis/physiology , Brain/pathology , Brain/metabolism , Inflammation/metabolism
6.
Rev Esc Enferm USP ; 58: e20230365, 2024.
Article En, Pt | MEDLINE | ID: mdl-38743953

OBJECTIVE: To map the evidence in the literature about the relationship between gastrointestinal symptoms and COVID-19 in the pediatric population. METHOD: This is a scoping review following the recommendations of the Joanna Briggs Institute and PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. The search was carried out on the following bases: Embase, Google Scholar, PubMed, Scopus, LILACS, CINAHL, Scielo, Web of Science and Virtual Health Library Portal, between July and August 2023. Original studies available in full, in any language, were included. RESULTS: Ten studies were chosen that pointed to three premises: (1) the ACE2 receptor is found in the epithelial cells of the gastrointestinal tract; (2) gastrointestinal symptoms are mediated by stress and infection is justified by the gut-brain axis; (3) it develops the process of Multisystem Inflammatory Syndrome in children, affecting the gastrointestinal tract. CONCLUSION: The synthesis of evidence provided three assumptions which guide the origin of gastrointestinal symptoms. The identification of gastrointestinal symptoms in children affected by COVID-19 can assist in the clinical approach and management of care and treatments.


COVID-19 , Gastrointestinal Diseases , Humans , COVID-19/complications , Gastrointestinal Diseases/virology , Gastrointestinal Diseases/epidemiology , Child , Systemic Inflammatory Response Syndrome/physiopathology , Systemic Inflammatory Response Syndrome/diagnosis , Brain-Gut Axis/physiology , Angiotensin-Converting Enzyme 2/metabolism
7.
Nat Commun ; 15(1): 4410, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782979

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Brain , Drosophila Proteins , Drosophila melanogaster , Insulin Secretion , Insulin , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Brain-Gut Axis/physiology , Lipase/metabolism , Lipase/genetics , Dietary Fats/metabolism , Glucose/metabolism , Fat Body/metabolism , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Male
8.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727306

Parkinson's disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain-gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease.


Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/microbiology , Parkinson Disease/therapy , Brain/microbiology , Brain/pathology , Brain-Gut Axis/physiology , Animals
9.
J Neuroinflammation ; 21(1): 138, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802927

Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.


Aquaporin 4 , Astrocytes , Brain-Gut Axis , Hyperammonemia , Sepsis-Associated Encephalopathy , Animals , Mice , Aquaporin 4/metabolism , Aquaporin 4/genetics , Aquaporin 4/biosynthesis , Astrocytes/metabolism , Hyperammonemia/metabolism , Sepsis-Associated Encephalopathy/metabolism , Male , Brain-Gut Axis/physiology , Mice, Inbred C57BL , Ammonia/metabolism , Ammonia/blood , Brain/metabolism , Fecal Microbiota Transplantation
10.
Biomed Pharmacother ; 175: 116601, 2024 Jun.
Article En | MEDLINE | ID: mdl-38749177

Alzheimer's disease (AD) comprises a group of neurodegenerative disorders with some changes in the brain, which could lead to the deposition of certain proteins and result in the degeneration and death of brain cells. Patients with AD manifest primarily as cognitive decline, psychiatric symptoms, and behavioural disorders. Short-chain fatty acids (SCFAs) are a class of saturated fatty acids (SFAs) produced by gut microorganisms through the fermentation of dietary fibre ingested. SCFAs, as a significant mediator of signalling, can have diverse physiological and pathological roles in the brain through the gut-brain axis, and play a positive effect on AD via multiple pathways. Firstly, differences in SCFAs and microbial changes have been stated in AD cases of humans and mice in this paper. And then, mechanisms of three main SCFAs in treating with AD have been summarized, as well as differences of gut bacteria. Finally, functions of SCFAs played in regulating intestinal flora homeostasis, modulating the immune system, and the metabolic system, which were considered to be beneficial for the treatment of AD, have been elucidated, and the key roles of gut bacteria and SCFAs were pointed out. All in all, this paper provides an overview of SCFAs and gut bacteria in AD, and can help people to understand the importance of gut-brain axis in AD.


Alzheimer Disease , Brain-Gut Axis , Brain , Fatty Acids, Volatile , Gastrointestinal Microbiome , Humans , Fatty Acids, Volatile/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/microbiology , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Brain/metabolism
11.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791415

In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.


Brain-Gut Axis , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Sex Characteristics , Humans , Brain-Gut Axis/physiology , Neuroinflammatory Diseases/metabolism , Animals , Dysbiosis , Gonadal Steroid Hormones/metabolism , Brain/metabolism , Female , Male , Inflammation/metabolism
12.
Nutrients ; 16(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38794738

As the population ages, the incidence of age-related neurodegenerative diseases is rapidly increasing, and novel approaches to mitigate this soaring prevalence are sorely needed. Recent studies have highlighted the importance of gut microbial homeostasis and its impact on brain functions, commonly referred to as the gut-brain axis, in maintaining overall health and wellbeing. Nonetheless, the mechanisms by which this system acts remains poorly defined. In this review, we will explore how (poly)phenols, a class of natural compounds found in many plant-based foods and beverages, can modulate the gut-brain axis, and thereby promote neural health. While evidence indicates a beneficial role of (poly)phenol consumption as part of a balanced diet, human studies are scarce and mechanistic insight is still lacking. In this regard, we make the case that dietary (poly)phenols should be further explored to establish their therapeutic efficacy on brain health through modulation of the gut-brain axis, with much greater emphasis on carefully designed human interventions.


Aging , Brain-Gut Axis , Diet , Gastrointestinal Microbiome , Polyphenols , Humans , Aging/physiology , Polyphenols/pharmacology , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/drug effects , Brain-Gut Axis/physiology , Brain/physiology , Brain/metabolism , Brain/drug effects , Neurodegenerative Diseases , Animals
13.
Mol Med Rep ; 30(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38785152

The gut­microbiota­brain axis is a complex bidirectional communication system linking the gastrointestinal tract to the brain. Changes in the balance, composition and diversity of the gut­microbiota (gut dysbiosis) have been found to be associated with the development of psychosis. Early­life stress, along with various stressors encountered in different developmental phases, have been shown to be associated with the abnormal composition of the gut microbiota, leading to irregular immunological and neuroendocrine functions, which are potentially responsible for the occurrence of first­episode psychosis (FEP). The aim of the present narrative review was to summarize the significant differences of the altered microbiome composition in patients suffering from FEP vs. healthy controls, and to discuss its effects on the occurrence and intensity of symptoms in FEP.


Dysbiosis , Gastrointestinal Microbiome , Psychotic Disorders , Humans , Dysbiosis/microbiology , Psychotic Disorders/microbiology , Brain-Gut Axis/physiology
14.
Gut ; 73(7): 1199-1211, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38697774

Postprandial, or meal-related, symptoms, such as abdominal pain, early satiation, fullness or bloating, are often reported by patients with disorders of gut-brain interaction, including functional dyspepsia (FD) or irritable bowel syndrome (IBS). We propose that postprandial symptoms arise via a distinct pathophysiological process. A physiological or psychological insult, for example, acute enteric infection, leads to loss of tolerance to a previously tolerated oral food antigen. This enables interaction of both the microbiota and the food antigen itself with the immune system, causing a localised immunological response, with activation of eosinophils and mast cells, and release of inflammatory mediators, including histamine and cytokines. These have more widespread systemic effects, including triggering nociceptive nerves and altering mood. Dietary interventions, including a diet low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols, elimination of potential food antigens or gluten, IgG food sensitivity diets or salicylate restriction may benefit some patients with IBS or FD. This could be because the restriction of these foods or dietary components modulates this pathophysiological process. Similarly, drugs including proton pump inhibitors, histamine-receptor antagonists, mast cell stabilisers or even tricyclic or tetracyclic antidepressants, which have anti-histaminergic actions, all of which are potential treatments for FD and IBS, act on one or more of these mechanisms. It seems unlikely that food antigens driving intestinal immune activation are the entire explanation for postprandial symptoms in FD and IBS. In others, fermentation of intestinal carbohydrates, with gas release altering reflex responses, adverse reactions to food chemicals, central mechanisms or nocebo effects may dominate. However, if the concept that postprandial symptoms arise from food antigens driving an immune response in the gastrointestinal tract in a subset of patients is correct, it is paradigm-shifting, because if the choice of treatment were based on one or more of these therapeutic targets, patient outcomes may be improved.


Brain-Gut Axis , Postprandial Period , Humans , Postprandial Period/physiology , Brain-Gut Axis/physiology , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/physiopathology , Irritable Bowel Syndrome/immunology , Irritable Bowel Syndrome/diet therapy , Dyspepsia/therapy , Dyspepsia/etiology , Dyspepsia/physiopathology , Dyspepsia/immunology , Abdominal Pain/etiology , Abdominal Pain/immunology , Abdominal Pain/therapy , Abdominal Pain/physiopathology , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/immunology
15.
Anim Sci J ; 95(1): e13953, 2024.
Article En | MEDLINE | ID: mdl-38783533

The safety of Jatropha curcas L. cake (JCC) in animal feed remains under scrutiny, despite the advent of low phorbol ester (PE) variants. This study investigates the impact of low PE JCC on swine health when used as a protein feed. Pigs were fed a 5% JCC diet with a PE concentration of 0.98 mg/kg, which surprisingly still induced toxicity. Symptoms included depression, decreased food intake, increased diarrhea, along with hypothalamus and colon lesions. The toxicity was associated with a decrease in antioxidant enzymes, an increase in inflammatory cytokines in the hypothalamus, plasma, and colon, and a rise in pro-inflammatory colon microbes and metabolites. Disturbances in neurotransmitters further suggest that this toxicity is related to disruption of the microbiota-gut-brain axis, indicating that JCC's toxic elements are not solely due to PE. The sensitivity of pigs to JCC underscores the need for thorough detoxification prior to its use as feed. These findings significantly contribute to the discourse on the safety of low PE JCC in animal feed, highlighting implications for both the feed industry and public health.


Animal Feed , Brain-Gut Axis , Gastrointestinal Microbiome , Jatropha , Phorbol Esters , Animals , Swine , Phorbol Esters/adverse effects , Brain-Gut Axis/physiology , Diet/veterinary , Eating , Cytokines/metabolism , Colon/metabolism , Hypothalamus/metabolism , Depression/metabolism , Neurotransmitter Agents/metabolism
16.
J Neuroinflammation ; 21(1): 124, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730498

Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.


Anti-Inflammatory Agents , Brain Injuries, Traumatic , Brain-Gut Axis , Humans , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology
17.
Gut Microbes ; 16(1): 2357177, 2024.
Article En | MEDLINE | ID: mdl-38781112

The prevalence of eating disorders has been increasing over the last 50 years. Binge eating disorder (BED) and bulimia nervosa (BN) are two typical disabling, costly and life-threatening eating disorders that substantially compromise the physical well-being of individuals while undermining their psychological functioning. The distressing and recurrent episodes of binge eating are commonly observed in both BED and BN; however, they diverge as BN often involves the adoption of inappropriate compensatory behaviors aimed at averting weight gain. Normal eating behavior is coordinated by a well-regulated trade-off between intestinal and central ingestive mechanism. Conversely, despite the fact that the etiology of BED and BN remains incompletely resolved, emerging evidence corroborates the notion that dysbiosis of gastrointestinal microbiome and its metabolites, alteration of gut-brain axis, as well as malfunctioning central circuitry regulating motivation, execution and reward all contribute to the pathology of binge eating. In this review, we aim to outline the current state of knowledge pertaining to the potential mechanisms through which each component of the gut-brain axis participates in binge eating behaviors, and provide insight for the development of microbiome-based therapeutic interventions that hold promise in ameliorating patients afflicted with binge eating disorders.


Binge-Eating Disorder , Brain-Gut Axis , Brain , Dysbiosis , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans , Binge-Eating Disorder/microbiology , Binge-Eating Disorder/physiopathology , Binge-Eating Disorder/metabolism , Brain-Gut Axis/physiology , Brain/microbiology , Brain/physiopathology , Animals , Dysbiosis/microbiology , Feeding Behavior
18.
J Integr Neurosci ; 23(5): 92, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38812393

The evidence of brain-gut interconnections in Alzheimer's disease (AD) opens novel avenues for the treatment of a pathology for which no definitive treatment exists. Gut microbiota and bacterial translocation may produce peripheral inflammation and immune modulation, contributing to brain amyloidosis, neurodegeneration, and cognitive deficits in AD. The gut microbiota can be used as a potential therapeutic target in AD. In particular, photobiomodulation (PBM) can affect the interaction between the microbiota and the immune system, providing a potential explanation for its restorative properties in AD-associated dysbiosis. PBM is a safe, non-invasive, non-ionizing, and non-thermal therapy that uses red or near-infrared light to stimulate the cytochrome c oxidase (CCO, complex IV), the terminal enzyme of the mitochondrial electron transport chain, resulting in adenosine triphosphate synthesis. The association of the direct application of PBM to the head with an abscopal and a systemic treatment through simultaneous application to the abdomen provides an innovative therapeutic approach to AD by targeting various components of this highly complex pathology. As a hypothesis, PBM might have a significant role in the therapeutic options available for the treatment of AD.


Alzheimer Disease , Brain-Gut Axis , Gastrointestinal Microbiome , Low-Level Light Therapy , Alzheimer Disease/radiotherapy , Alzheimer Disease/metabolism , Humans , Low-Level Light Therapy/methods , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/radiation effects , Brain-Gut Axis/physiology , Animals , Brain/metabolism , Brain/radiation effects
20.
Front Cell Infect Microbiol ; 14: 1334581, 2024.
Article En | MEDLINE | ID: mdl-38644963

Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.


Brain-Gut Axis , Gastrointestinal Microbiome , Ischemic Stroke , Humans , Ischemic Stroke/complications , Ischemic Stroke/microbiology , Brain-Gut Axis/physiology , Animals , Dysbiosis , Brain/microbiology , Bacterial Translocation , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/etiology
...