Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Gut Microbes ; 16(1): 2360233, 2024.
Article in English | MEDLINE | ID: mdl-38949979

ABSTRACT

Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Diseases , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans , Brain-Gut Axis/physiology , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/physiopathology , Brain/microbiology , Brain/physiopathology , Animals , Gastrointestinal Tract/microbiology
2.
CNS Neurosci Ther ; 30(7): e14840, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973202

ABSTRACT

BACKGROUND: Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. ß-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS: An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS: Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1ß, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1ß) in mouse BV2 cells. CONCLUSION: ß-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.


Subject(s)
3-Hydroxybutyric Acid , Brain-Gut Axis , Disease Models, Animal , Endoplasmic Reticulum Stress , Gastrointestinal Microbiome , Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Mice , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Male , 3-Hydroxybutyric Acid/pharmacology , Heat Stress Disorders/metabolism , Endoplasmic Reticulum Chaperone BiP , Neuroprotective Agents/pharmacology , Heat-Shock Response/physiology , Heat-Shock Response/drug effects
3.
ACS Chem Neurosci ; 15(13): 2454-2469, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38896463

ABSTRACT

Parkinson's disease, a classical motor disorder affecting the dopaminergic system of the brain, has been as a disease of the brain, but this classical notion has now been viewed differently as the pathology begins in the gut and then gradually moves up to the brain regions. The microorganisms in the gut play a critical role in maintaining the physiology of the gut from maintaining barrier integrity to secretion of microbial products that maintain a healthy gut state. The pathology subsequently alters the normal composition of gut microbes and causes deleterious effects that ultimately trigger strong neuroinflammation and nonmotor symptoms along with characteristic synucleopathy, a pathological hallmark of the disease. Understanding the complex pathomechanisms in distinct and established preclinical models is the primary goal of researchers to decipher how exactly gut pathology has a central effect; the quest has led to many answered and some open-ended questions for researchers. We summarize the popular opinions and some contrasting views, concise footsteps in the treatment strategies targeting the gastrointestinal system.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/metabolism , Gastrointestinal Microbiome/physiology , Animals , Brain-Gut Axis/physiology , Brain/metabolism
4.
Am J Physiol Cell Physiol ; 327(1): C205-C212, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38826138

ABSTRACT

Major depressive disorder (MDD) affects millions of individuals worldwide, leading to considerable social and economic costs. Despite advancements in pharmacological treatments, achieving remission remains a key challenge, with a substantial number of patients showing resistance to existing therapies. This resistance is often associated with elevated levels of proinflammatory cytokines, suggesting a connection between inflammation, MDD pathophysiology, and treatment efficacy. The observation of increased immune activation in about a quarter of patients with MDD resulted in the distinction between inflammatory and noninflammatory endotypes. Although anti-inflammatory treatments show promise in alleviating depression-like symptoms, responses are heterogeneous, thus highlighting the importance of identifying distinct inflammatory endotypes to tailor effective therapeutic strategies. The intestinal microbiome emerges as a crucial modulator of mental health, mediating its effects partially through different immune pathways. Microbiota-derived short-chain fatty acids (SCFAs) significantly impact innate and adaptive immune cells, regulating their differentiation, function, and cellular response. Furthermore, gut-educated immune cells reach the border regions of the central nervous system (CNS), regulating glial cell functions. Although the CNS modulates immune responses via efferent parts of the vagus nerve, afferent tracts concurrently transport information on peripheral inflammation back to the brain. This bidirectional communication is particularly relevant in depression, allowing for therapeutic stimulation of the vagus nerve in the context of inflammatory depression endotypes. In this review, we explore the intricate relationship between inflammation and depression, discuss how inflammatory signals are translated into depressive-like symptoms, and highlight immune-modulating therapeutic avenues.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Inflammation , Humans , Gastrointestinal Microbiome/immunology , Depressive Disorder, Major/immunology , Depressive Disorder, Major/diagnosis , Animals , Inflammation/immunology , Brain-Gut Axis/physiology , Cytokines/metabolism , Cytokines/immunology , Depression/immunology , Depression/diagnosis , Brain/immunology , Brain/physiopathology , Brain/metabolism
5.
Sci Total Environ ; 945: 174026, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885706

ABSTRACT

The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 µm and 50 µm) and concentrations (100 µg/L and 1000 µg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 µm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 µm-100 µg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.


Subject(s)
Brain-Gut Axis , Brain , Mice, Inbred C57BL , Microplastics , Oxytocin , Polystyrenes , Social Behavior , Animals , Oxytocin/metabolism , Mice , Male , Polystyrenes/toxicity , Microplastics/toxicity , Brain/drug effects , Brain/metabolism , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Gastrointestinal Microbiome/drug effects
6.
Life Sci ; 350: 122748, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38843992

ABSTRACT

Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Neurodegenerative Diseases , Probiotics , Probiotics/therapeutic use , Humans , Gastrointestinal Microbiome/physiology , Neurodegenerative Diseases/microbiology , Neurodegenerative Diseases/therapy , Brain-Gut Axis/physiology , Animals , Brain/metabolism , Prebiotics/administration & dosage
7.
Gut Microbes ; 16(1): 2363011, 2024.
Article in English | MEDLINE | ID: mdl-38835220

ABSTRACT

The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.


Subject(s)
Cognition , Diet, Mediterranean , Dietary Supplements , Disease Models, Animal , Gastrointestinal Microbiome , Inflammation , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Cognition/drug effects , Inflammation/metabolism , Inflammation/diet therapy , Dietary Supplements/analysis , Mice, Inbred C57BL , Brain-Gut Axis/physiology , Brain/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics
8.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892419

ABSTRACT

The gut microbiome plays a fundamental role in metabolism, as well as the immune and nervous systems. Microbial imbalance (dysbiosis) can contribute to subsequent physical and mental pathologies. As such, interest has been growing in the microbiota-gut-brain brain axis and the bioelectrical communication that could exist between bacterial and nervous cells. The aim of this study was to investigate the bioelectrical profile (electrome) of two bacterial species characteristic of the gut microbiome: a Proteobacteria Gram-negative bacillus Escherichia coli (E. coli), and a Firmicutes Gram-positive coccus Enterococcus faecalis (E. faecalis). We analyzed both bacterial strains to (i) validate the fluorescent probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), as a reliable reporter of the changes in membrane potential (Vmem) for both bacteria; (ii) assess the evolution of the bioelectric profile throughout the growth of both strains; (iii) investigate the effects of two neural-type stimuli on Vmem changes: the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter γ-aminobutyric acid (GABA); (iv) examine the impact of the bioelectrical changes induced by neurotransmitters on bacterial growth, viability, and cultivability using absorbance, live/dead fluorescent probes, and viable counts, respectively. Our findings reveal distinct bioelectrical profiles characteristic of each bacterial species and growth phase. Importantly, neural-type stimuli induce Vmem changes without affecting bacterial growth, viability, or cultivability, suggesting a specific bioelectrical response in bacterial cells to neurotransmitter cues. These results contribute to understanding the bacterial response to external stimuli, with potential implications for modulating bacterial bioelectricity as a novel therapeutic target.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Brain-Gut Axis/physiology , Enterococcus faecalis/physiology , Escherichia coli , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Membrane Potentials , Humans
9.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(5. Vyp. 2): 79-86, 2024.
Article in Russian | MEDLINE | ID: mdl-38934670

ABSTRACT

The bidirectional relationship between cerebral structures and the gastrointestinal tract involving the microbiota embraces the scientific concept of the microbiota-gut-brain axis. The gut microbiome plays an important role in many physiological and biochemical processes of the human body, in the immune response and maintenance of homeostasis, as well as in the regulation of circadian rhythms. There is a relationship between the higher prevalence of a number of neurological disorders, sleep disorders and changes in the intestinal microbiota, which actualizes the study of the complex mechanisms of such correlation for the development of new treatment and prevention strategies. Environmental factors associated with excessive light exposure can aggravate the gut dysbiosis of intestinal microflora, and as a result, lead to sleep disturbances. This review examines the integrative mechanisms of sleep regulation associated with the gut microbiota (the role of neurotransmitters, short-chain fatty acids, unconjugated bile acids, bacterial cell wall components, cytokines). Taking into account the influence of gut dysbiosis as a risk factor in the development of various diseases, the authors systematize key aspects and modern scientific data on the importance of microflora balance to ensure optimal interaction along the microbiota-gut-brain axis in the context of the regulatory role of the sleep-wake cycle and its disorders.


Subject(s)
Brain-Gut Axis , Circadian Rhythm , Dysbiosis , Gastrointestinal Microbiome , Sleep Wake Disorders , Sleep , Humans , Gastrointestinal Microbiome/physiology , Circadian Rhythm/physiology , Brain-Gut Axis/physiology , Sleep Wake Disorders/physiopathology , Sleep Wake Disorders/microbiology , Sleep Wake Disorders/metabolism , Sleep/physiology , Brain
10.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892628

ABSTRACT

This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.


Subject(s)
Akkermansia , Gastrointestinal Microbiome , Noncommunicable Diseases , Probiotics , Humans , Gastrointestinal Microbiome/physiology , Probiotics/therapeutic use , Animals , Noncommunicable Diseases/prevention & control , Noncommunicable Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Verrucomicrobia , Brain-Gut Axis/physiology , Obesity/microbiology , Obesity/therapy , Neoplasms/therapy , Neoplasms/microbiology , Diabetes Mellitus/therapy , Diabetes Mellitus/microbiology
11.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928383

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and a leading cause of dementia. Aging is a significant risk factor for AD, emphasizing the importance of early detection since symptoms cannot be reversed once the advanced stage is reached. Currently, there is no established method for early AD diagnosis. However, emerging evidence suggests that the microbiome has an impact on cognitive function. The gut microbiome and the brain communicate bidirectionally through the gut-brain axis, with systemic inflammation identified as a key connection that may contribute to AD. Gut dysbiosis is more prevalent in individuals with AD compared to their cognitively healthy counterparts, leading to increased gut permeability and subsequent systemic inflammation, potentially causing neuroinflammation. Detecting brain activity traditionally involves invasive and expensive methods, but electroencephalography (EEG) poses as a non-invasive alternative. EEG measures brain activity and multiple studies indicate distinct patterns in individuals with AD. Furthermore, EEG patterns in individuals with mild cognitive impairment differ from those in the advanced stage of AD, suggesting its potential as a method for early indication of AD. This review aims to consolidate existing knowledge on the microbiome and EEG as potential biomarkers for early-stage AD, highlighting the current state of research and suggesting avenues for further investigation.


Subject(s)
Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Electroencephalography , Gastrointestinal Microbiome , Humans , Electroencephalography/methods , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/physiopathology , Alzheimer Disease/microbiology , Alzheimer Disease/physiopathology , Brain Waves , Brain/physiopathology , Brain-Gut Axis/physiology , Dysbiosis/microbiology
12.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931198

ABSTRACT

This review offers a comprehensive evaluation of current aspects related to nutritional strategies, brain modulation, and muscle recovery, focusing on their applications and the underlying mechanisms of physiological adaptation for promoting a healthy brain, not only in athletes but also for recreationally active and inactive individuals. We propose that applying the rule, among others, of good sleep, regular exercise, and a properly balanced diet, defined as "SPARKS", will have a beneficial effect on the function and regeneration processes of the gut-brain-muscle axis. However, adopting the formula, among others, of poor sleep, stress, overtraining, and dysbiosis, defined as "SMOULDER", will have a detrimental impact on the function of this axis and consequently on human health as well as on athletes. Understanding these dynamics is crucial for optimizing brain health and cognitive function. This review highlights the significance of these factors for overall well-being, suggesting that adopting the "SPARKS" approach may benefit not only athletes but also older adults and individuals with health conditions.


Subject(s)
Athletes , Athletic Performance , Brain , Humans , Brain/physiology , Athletic Performance/physiology , Exercise/physiology , Sleep/physiology , Cognition/physiology , Brain-Gut Axis/physiology , Sports Nutritional Physiological Phenomena , Diet , Gastrointestinal Microbiome/physiology
13.
Life Sci ; 351: 122815, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38866215

ABSTRACT

Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.


Subject(s)
Brain-Gut Axis , Depressive Disorder, Major , Gastrointestinal Microbiome , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/microbiology , Depressive Disorder, Major/metabolism , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Animals , Brain/metabolism , Brain/physiopathology , Tryptophan/metabolism
14.
Gut Microbes ; 16(1): 2351520, 2024.
Article in English | MEDLINE | ID: mdl-38717832

ABSTRACT

Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Humans , Brain/microbiology , Brain/metabolism , Brain/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Models, Animal , Mice
15.
J Neuroimmunol ; 392: 578374, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797060

ABSTRACT

We aimed to investigate ampicillin (AMP) mechanisms in microbiota-gut-brain axis. We evaluated its effect on two gut and brain regions and behavioral performances. We administred AMP (1 g/l) to BALB/c mice for 21 days. Then, we analyzed body weigth change, stool consistency scoring, gut length, intestinal microbiota composition, nitric oxide synthase 2 (NOS2) expression and tissue integrity. We subsequently evaluated NOS2, GFAP, CD68 and NFL cerebral expression and spatial memory.Interestingly, our data showed gut microbiota disruption, NOS2 upregulation and tissue damage, associated to cerebral NOS2, GFAP, CD68 and NFL over-expression and behavioral alteration. Antiobiotic therapy should be prescribed with great caution.


Subject(s)
Ampicillin , Brain-Gut Axis , Dysbiosis , Gastrointestinal Microbiome , Mice, Inbred BALB C , Nitric Oxide Synthase Type II , Animals , Mice , Ampicillin/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Dysbiosis/chemically induced , Nitric Oxide Synthase Type II/metabolism , Male , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Neuroinflammatory Diseases/metabolism , Anti-Bacterial Agents/pharmacology , Spatial Memory/drug effects , Spatial Memory/physiology , Disease Models, Animal , Neurodegenerative Diseases/chemically induced
16.
Nat Commun ; 15(1): 4410, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782979

ABSTRACT

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Subject(s)
Brain , Drosophila Proteins , Drosophila melanogaster , Insulin Secretion , Insulin , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Brain-Gut Axis/physiology , Lipase/metabolism , Lipase/genetics , Dietary Fats/metabolism , Glucose/metabolism , Fat Body/metabolism , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Male
17.
J Neuroinflammation ; 21(1): 138, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802927

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.


Subject(s)
Aquaporin 4 , Astrocytes , Brain-Gut Axis , Hyperammonemia , Sepsis-Associated Encephalopathy , Animals , Mice , Aquaporin 4/metabolism , Aquaporin 4/genetics , Aquaporin 4/biosynthesis , Astrocytes/metabolism , Hyperammonemia/metabolism , Sepsis-Associated Encephalopathy/metabolism , Male , Brain-Gut Axis/physiology , Mice, Inbred C57BL , Ammonia/metabolism , Ammonia/blood , Brain/metabolism , Fecal Microbiota Transplantation
18.
Neurogastroenterol Motil ; 36(7): e14813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689444

ABSTRACT

BACKGROUND: The diagnosis of disorders of gut-brain interaction (DGBI) in children is exclusively based on clinical criteria called the Rome criteria. The inter-rater reliability (IRR) measures how well two raters agree with a diagnosis using the same diagnostic tool. Previous versions of the Rome criteria showed only fair to moderate IRR. There have been no studies assessing the IRR of the current edition of the pediatric Rome criteria (Rome IV). This study sought to investigate the IRR of the pediatric Rome IV criteria and compare its reliability with the previous versions of the Rome criteria. We hypothesized that changes made to Rome IV would result in higher IRR than previous versions. METHODS: This study used the same methodology as the previous studies on Rome II and III, including identical clinical vignettes, number of raters, and levels of expertise. Participants included 10 pediatric gastroenterology fellows and 10 pediatric gastroenterology specialists. IRR was assessed using the percentage of agreement and Cohen's kappa coefficient to account for possible agreement by chance. RESULTS: The average IRR percentage of agreement using the Rome IV criteria was 55% for pediatric gastroenterologists and 48.5% for fellows, indicating moderate agreement (k = 0.54 for specialists, k = 0.47 for fellows). The results demonstrated higher percentages of agreement and kappa coefficients compared to the Rome II and III criteria. CONCLUSIONS: The findings demonstrate improved reliability in Rome IV compared to Rome II and III, suggesting that the changes incorporated into the Rome IV criteria have enhanced diagnostic consistency. Despite the advancements, the reliability is still moderate, indicating the need for further refinement of future versions of the Rome criteria.


Subject(s)
Gastrointestinal Diseases , Humans , Reproducibility of Results , Child , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/physiopathology , Brain-Gut Axis/physiology , Pediatrics/methods , Female , Male , Observer Variation
19.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785152

ABSTRACT

The gut­microbiota­brain axis is a complex bidirectional communication system linking the gastrointestinal tract to the brain. Changes in the balance, composition and diversity of the gut­microbiota (gut dysbiosis) have been found to be associated with the development of psychosis. Early­life stress, along with various stressors encountered in different developmental phases, have been shown to be associated with the abnormal composition of the gut microbiota, leading to irregular immunological and neuroendocrine functions, which are potentially responsible for the occurrence of first­episode psychosis (FEP). The aim of the present narrative review was to summarize the significant differences of the altered microbiome composition in patients suffering from FEP vs. healthy controls, and to discuss its effects on the occurrence and intensity of symptoms in FEP.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Psychotic Disorders , Humans , Dysbiosis/microbiology , Psychotic Disorders/microbiology , Brain-Gut Axis/physiology
20.
Brain Behav Immun ; 119: 878-897, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710338

ABSTRACT

Metabolites and compounds derived from gut-associated bacteria can modulate numerous physiological processes in the host, including immunity and behavior. Using a model of oral bacterial infection, we previously demonstrated that gut-derived peptidoglycan (PGN), an essential constituent of the bacterial cell envelope, influences female fruit fly egg-laying behavior by activating the NF-κB cascade in a subset of brain neurons. These findings underscore PGN as a potential mediator of communication between gut bacteria and the brain in Drosophila, prompting further investigation into its impact on all brain cells. Through high-resolution mass spectrometry, we now show that PGN fragments produced by gut bacteria can rapidly reach the central nervous system. In Addition, by employing a combination of whole-genome transcriptome analyses, comprehensive genetic assays, and reporter gene systems, we reveal that gut bacterial infection triggers a PGN dose-dependent NF-κB immune response in perineurial glia, forming the continuous outer cell layer of the blood-brain barrier. Furthermore, we demonstrate that persistent PGN-dependent NF-κB activation in perineurial glial cells correlates with a reduction in lifespan and early neurological decline. Overall, our findings establish gut-derived PGN as a critical mediator of the gut-immune-brain axis in Drosophila.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , NF-kappa B , Peptidoglycan , Animals , Peptidoglycan/metabolism , NF-kappa B/metabolism , Brain/metabolism , Brain/immunology , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Female , Drosophila , Neuroglia/metabolism , Neuroglia/immunology , Drosophila melanogaster/metabolism , Neurons/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/immunology , Drosophila Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...