Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Genet Res (Camb) ; 92(4): 309-20, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20943011

ABSTRACT

Analysis of the temporal variation in allele frequencies is useful for studying microevolutionary processes. However, many statistical methods routinely used to test temporal changes in allele frequencies fail to establish a proper hypothesis or have theoretical or practical limitations. Here, a Bayesian statistical test is proposed in which the distribution of the distances among sampling frequencies is approached with computer simulations, and hypergeometric sampling is considered instead of binomial sampling. To validate the test and compare its performance with other tests, agent-based model simulations were run for a variety of scenarios, and two real molecular databases were analysed. The results showed that the simulation test (ST) maintained the significance value used (α=0·05) for a vast combination of parameter values, whereas other tests were sensitive to the effect of genetic drift or binomial sampling. The differences between binomial and hypergeometric sampling were more complex than expected, and a novel effect was described. This study suggests that the ST is especially useful for studies with small populations and many alleles, as in microsatellite or sequencing molecular data.


Subject(s)
Computer Simulation , Data Interpretation, Statistical , Gene Frequency/genetics , Genetics, Population , Microsatellite Repeats/genetics , Algorithms , Analysis of Variance , Animals , Bayes Theorem , Bulinus/genetics , Genetic Drift , Horses/genetics , Models, Genetic , Time Factors
2.
Mem Inst Oswaldo Cruz ; 101(5): 565-71, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17072464

ABSTRACT

Schistosomes have a comparatively large genome, estimated for Schistosoma mansoni to be about 270 megabase pairs (haploid genome). Recent findings have shown that mobile genetic elements constitute significant proportions of the genomes of S. mansoni and S. japonicum. Much less information is available on the genome of the third major human schistosome, S. haematobium. In order to investigate the possible evolutionary origins of the S. mansoni long terminal repeat retrotransposons Boudicca and Sinbad, several genomes were searched by Southern blot for the presence of these retrotransposons. These included three species of schistosomes, S. mansoni, S. japonicum, and S. haematobium, and three related platyhelminth genomes, the liver flukes Fasciola hepatica and Fascioloides magna and the planarian, Dugesia dorotocephala. In addition, Homo sapiens and three snail host genomes, Biomphalaria glabrata, Oncomelania hupensis, and Bulinus truncatus, were examined for possible indications of a horizontal origin for these retrotransposons. Southern hybridization analysis indicated that both Boudicca and Sinbad were present in the genome of S. haematobium. Furthermore, low stringency Southern hybridization analyses suggested that a Boudicca-like retrotransposon was present in the genome of B. truncatus, the snail host of S. haematobium.


Subject(s)
DNA, Helminth/analysis , Genome, Helminth/genetics , Retroelements/genetics , Schistosoma/genetics , Animals , Biomphalaria/genetics , Blotting, Southern , Bulinus/genetics , Humans , Schistosoma haematobium/genetics
3.
Mem. Inst. Oswaldo Cruz ; 101(5): 565-571, Aug. 2006. ilus
Article in English | LILACS | ID: lil-437044

ABSTRACT

Schistosomes have a comparatively large genome, estimated for Schistosoma mansoni to be about 270 megabase pairs (haploid genome). Recent findings have shown that mobile genetic elements constitute significant proportions of the genomes of S. mansoni and S. japonicum. Much less information is available on the genome of the third major human schistosome, S. haematobium. In order to investigate the possible evolutionary origins of the S. mansoni long terminal repeat retrotransposons Boudicca and Sinbad, several genomes were searched by Southern blot for the presence of these retrotransposons. These included three species of schistosomes, S. mansoni, S. japonicum, and S. haematobium, and three related platyhelminth genomes, the liver flukes Fasciola hepatica and Fascioloides magna and the planarian, Dugesia dorotocephala. In addition, Homo sapiens and three snail host genomes, Biomphalaria glabrata, Oncomelania hupensis, and Bulinus truncatus, were examined for possible indications of a horizontal origin for these retrotransposons. Southern hybridization analysis indicated that both Boudicca and Sinbad were present in the genome of S. haematobium. Furthermore, low stringency Southern hybridization analyses suggested that a Boudicca-like retrotransposon was present in the genome of B. truncatus, the snail host of S. haematobium.


Subject(s)
Humans , Animals , DNA, Helminth/analysis , Genome, Helminth/genetics , Retroelements/genetics , Schistosoma/genetics , Blotting, Southern , Biomphalaria/genetics , Bulinus/genetics , Schistosoma haematobium/genetics
4.
Mem Inst Oswaldo Cruz ; 97 Suppl 1: 31-6, 2002.
Article in English | MEDLINE | ID: mdl-12426591

ABSTRACT

Identification of populations of Bulinus nasutus and B. globosus from East Africa is unreliable using characters of the shell. In this paper, a molecular method of identification is presented for each species based on DNA sequence variation within the mitochondrial cytochrome oxidase subunit I (COI) as detected by a novel multiplexed SNaPshotTM assay. In total, snails from 7 localities from coastal Kenya were typed using this assay and variation within shell morphology was compared to reference material from Zanzibar. Four locations were found to contain B. nasutus and 2 locations were found to contain B. globosus. A mixed population containing both B. nasutus and B. globosus was found at Kinango. Morphometric variation between samples was considerable and UPGMA cluster analysis failed to differentiate species. The multiplex SNaPshotTM assay is an important development for more precise methods of identification of B. africanus group snails. The assay could be further broadened for identification of other snail intermediate host species.


Subject(s)
Bulinus/genetics , Electron Transport Complex IV/genetics , Polymorphism, Single Nucleotide , Schistosomiasis haematobia/genetics , Animals , Base Sequence , Bulinus/anatomy & histology , Bulinus/enzymology , Cluster Analysis , Genetic Variation , Polymerase Chain Reaction
5.
Mem. Inst. Oswaldo Cruz ; 93(supl.1): 111-6, Oct. 1998.
Article in English | LILACS | ID: lil-218650

ABSTRACT

The relationship between schistosomes and their intermediate hosts is an extremely intricate one with strains and species of the parasite depending on particular species of snail, which in turn may vary in their susceptibility to the parasites. In order to gain a better understanding of the epidemiology of the disease we have been investigating the use of molecular markers for snail identification and for studying host-parasite relationships. In this paper we will draw on examples concerning schistosomiasis in West and East Africa to illustrate how a molecular analysis can be used as part of a total evidence approach to characterisation of Bulinus species and provide insights into parasite transmission. Particular emphasis is given to ribosomal RNA genes (rRNA), random amplified polymorphic DNA (RAPDs) and the mitochondrial gene cytochrome oxidase I (COI). Snails resistant to infection occur naturally and there is a genetic basis for this resistance. In Biomphalaria glabrata resistance to Schistosoma mansoni is known to be a polygenic trait and we have initiated a preliminary search for snail genomic regions linked to, or involved in, resistance by using a RAPD based approach in conjunction with progeny pooling methods. We are currently characterising a variety of STSs (sequence tagged sites) associated with resistance. These can be used for local linkage and interval mapping to define genomic regions associated with the resistance trait. The development of such markers into simple dot-blot or specif PCR-based assays may have a direct and practical application for the identification of resistant snails in natural populations.


Subject(s)
Animals , Biomphalaria/genetics , Bulinus/genetics , Immunity, Innate/genetics , Snails/microbiology , Schistosomiasis/transmission
6.
Mem Inst Oswaldo Cruz ; 93 Suppl 1: 111-6, 1998.
Article in English | MEDLINE | ID: mdl-9921331

ABSTRACT

The relationship between schistosomes and their intermediate hosts is an extremely intricate one with strains and species of the parasite depending on particular species of snail, which in turn may vary in their susceptibility to the parasites. In order to gain a better understanding of the epidemiology of the disease we have been investigating the use of molecular markers for snail identification and for studying host-parasite relationships. In this paper we will draw on examples concerning schistosomiasis in West and East Africa to illustrate how a molecular analysis can be used as part of a "total evidence" approach to characterisation of Bulinus species and provide insights into parasite transmission. Particular emphasis is given to ribosomal RNA genes (rRNA), random amplified polymorphic DNA (RAPDs) and the mitochondrial gene cytochrome oxidase I (COI). Snails resistant to infection occur naturally and there is a genetic basis for this resistance. In Biomphalaria glabrata resistance to Schistosoma mansoni is known to be a polygenic trait and we have initiated a preliminary search for snail genomic regions linked to, or involved in, resistance by using a RAPD based approach in conjunction with progeny pooling methods. We are currently characterising a variety of STSs, (sequence tagged sites) associated with resistance. These can be used for local linkage and interval mapping to define genomic regions associated with the resistance trait. The development of such markers into simple dot-blot or specific PCR-based assays may have a direct and practical application for the identification of resistant snails in natural populations.


Subject(s)
Biomphalaria/genetics , Bulinus/genetics , RNA, Ribosomal/genetics , Animals , Electron Transport Complex IV/genetics , Host-Parasite Interactions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL