Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49.758
1.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838017

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Brain , CD8-Positive T-Lymphocytes , Cell Differentiation , Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes/immunology , Toxoplasma/immunology , Mice , Brain/immunology , Brain/parasitology , Cell Differentiation/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Latent Infection/immunology , Latent Infection/parasitology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , Mice, Inbred C57BL , Female
2.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38838642

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Glucagon-Like Peptide-1 Receptor , Islets of Langerhans Transplantation , Mice, Inbred C57BL , Animals , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Male , Heart Transplantation , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Graft Survival/immunology
3.
Crit Rev Eukaryot Gene Expr ; 34(5): 1-13, 2024.
Article En | MEDLINE | ID: mdl-38842200

SIAH2 function as an oncogene in various cancer. However, the roles of SIAH2 in hepatocellular carcinoma (HCC) are still unknown. This study aimed to investigate the roles of SIAH2 in HCC. Immunohistochemistry was used determine SIAH2 and ACSL4 expression in clinical samples. RT-qPCR was used to determine mRNA expression. Western blot assay was applied for determining protein expression. Ubiquitination assay was conducted for determining ubiquitination of ACSL4. Xenograft experiment was applied for determining tumor growth. Flow cytometry was applied to determine the functions of CD4+ and CD8+ T cells. SIAH2 expression was overexpressed in HCC tumors. High levels of SIAH2 predicted poor outcomes. However, SIAH2 knockdown promoted the proliferation of CD8+ T cells as well as promoted the ferroptosis of tumor cells, inhibiting tumor growth in HCC. ACSL4 is required for CD8+ T cell-mediated ferroptosis of HCC cells. However, SIAH2 induced ubiquitination of ACSL4 and inhibited its expression. SIAH2 specific inhibitor menadione promoted the immune checkpoint blockade. Taken together, SIAH2-mediated inactivation of CD8+ T cells inhibits the ferroptosis of HCC via mediating ubiquitination of ACSL4. Therefore, targeting SIAH2 may be a promising strategy for HCC.


CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Coenzyme A Ligases , Liver Neoplasms , Ubiquitin-Protein Ligases , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cell Line, Tumor , Ubiquitination , Male , Female , Cell Proliferation , Gene Expression Regulation, Neoplastic
4.
Crit Rev Eukaryot Gene Expr ; 34(5): 31-43, 2024.
Article En | MEDLINE | ID: mdl-38842202

Breast cancer is one of the most common malignant tumors worldwide. SLC7A2 is abnormally expressed in multiple cancers. However, its potential in triple negative breast cancer (TNBC) is still unclear. The purpose of this study was to investigate the roles of SLC7A2 and its underlying molecular mechanisms in TNBC. mRNA expression was detected by RT-qPCR. Protein expression was detected by western blot. Co-localization of ACOX1 and TCF1 was determined using FISH assay. Histone crotonylation was performed using in vitro histone crotonylation assay. Functional analysis was performed using CCK-8 and flow cytometry assays. Xenograft assay was conducted to further verify the role of SLC7A2 in TNBC. CD8A expression was detected using immunohistochemistry. We found that SLC7A2 is downregulated in TNBC tumors. Low levels are associated with advanced stages and lymph node metastasis. SLC7A2 expression is positively correlated with CD8A. SLC7A2-mediated lysine catabolism drives the activation of CD8+ T cells. Moreover, SLC7A2 promotes histone crotonylation via upregulating ACOX1. It also promotes interaction between ACOX1 and TCF1, thus promoting antitumor T cell immunity. Additionally, overexpression of SLC7A2 activates CD8+ T cells and enhances the chemosensitivity of anti-PD-1 therapies in vivo. In conclusion, SLC7A2 may function as an antitumor gene in TNBC by activating antitumor immunity, suggesting SLC7A2/ACOX1/TCF1 signaling as a promising therapeutic strategy.


Lysine , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Humans , Female , Lysine/metabolism , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology
5.
Crit Rev Eukaryot Gene Expr ; 34(5): 69-79, 2024.
Article En | MEDLINE | ID: mdl-38842205

Gastric cancer is a most malignancy in digestive tract worldwide. This study aimed to investigate the roles of protein arginine methyltransferase 6 (PRMT6) in gastric cancer. Immunohistochemistry was performed to detect PRMT6 expression in gastric tumors. Real-time transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to detected mRNA levels. Protein expression was determined using western blot. Gastric cancer cells were co-cultured with CD8+ T cells. Colony formation assay was performed to detect cell proliferation. Flow cytometry was performed to determine CD8+ T cell function and tumor cell apoptosis. PRMT6 was overexpressed in gastric tumors. High level of PRMT6 predicted poor outcomes of gastric cancer patients and inhibition of CD8+ T cell infiltration. PRMT6 promoted proliferation of CD8+ T cells and enhanced its tumor killing ability. Moreover, PRMT6 upregulated annexin A1 (ANXA1) and promoted ANXA1 protein stability. ANXA1 overexpression suppressed the proliferation of CD8+ T cells and promoted tumor cell survival. PRMT6 functions as an oncogene in gastric cancer. PRMT6-mediated protein stability inhibits the infiltration of CD8+ T cells, resulting in immune evasion of gastric cancer. The PRMT6-ANXA1 may be a promising strategy for gastric cancer.


Annexin A1 , CD8-Positive T-Lymphocytes , Cell Proliferation , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Humans , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Annexin A1/genetics , Annexin A1/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Up-Regulation , Apoptosis , Tumor Escape/genetics , Male , Immune Evasion , Female , Nuclear Proteins
6.
Cell Death Dis ; 15(6): 386, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824143

Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.


CTLA-4 Antigen , Doxorubicin , Drug Delivery Systems , Liposomes , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Animals , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , Mice , Drug Delivery Systems/methods , Humans , Cell Line, Tumor , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Mice, Inbred BALB C , Mice, Inbred C57BL
7.
Science ; 384(6700): eadh8697, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38843327

After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.


CD8-Positive T-Lymphocytes , Cell Differentiation , Lymphocyte Activation , Nuclear Receptor Subfamily 4, Group A, Member 1 , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes/immunology , Animals , Mice , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Envelope/metabolism , Calcium/metabolism , Immunologic Memory , Mice, Inbred C57BL
8.
Nat Commun ; 15(1): 4841, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844783

Kaposi sarcoma associated herpesvirus (KSHV) is associated with around 1% of all human tumors, including the B cell malignancy primary effusion lymphoma (PEL), in which co-infection with the Epstein Barr virus (EBV) can almost always be found in malignant cells. Here, we demonstrate that KSHV/EBV co-infection of mice with reconstituted human immune systems (humanized mice) leads to IgM responses against both latent and lytic KSHV antigens, and expansion of central and effector memory CD4+ and CD8+ T cells. Among these, KSHV/EBV dual-infection allows for the priming of CD8+ T cells that are specific for the lytic KSHV antigen K6 and able to kill KSHV/EBV infected B cells. This suggests that K6 may represent a vaccine antigen for the control of KSHV and its associated pathologies in high seroprevalence regions, such as Sub-Saharan Africa.


B-Lymphocytes , CD8-Positive T-Lymphocytes , Herpesvirus 8, Human , Animals , Herpesvirus 8, Human/immunology , Humans , B-Lymphocytes/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Coinfection/immunology , Coinfection/virology , CD4-Positive T-Lymphocytes/immunology , Herpesvirus 4, Human/immunology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Immunoglobulin M/immunology , Antigens, Viral/immunology , Mice, SCID , Lymphoma, Primary Effusion/immunology , Lymphoma, Primary Effusion/virology , Antibodies, Viral/immunology
9.
J Transl Med ; 22(1): 541, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38845003

Dendritic cells (DCs) have been intensively studied in correlation to tumor immunology and for the development DC-based cancer vaccines. Here, we present the significance of the temporal aspect of DC maturation for the most essential subsequent timepoint, namely at interaction with responding T cells or after CD40-Ligand restimulation. Mostly, DC maturation is still being achieved by activation processes which lasts 24 h to 48 h. We hypothesized this amount of time is excessive from a biological standpoint and could be the underlying cause for functional exhaustion. Indeed, shorter maturation periods resulted in extensive capacity of monocyte-derived DCs to produce inflammatory cytokines after re-stimulation with CD40-Ligand. This effect was most evident for the primary type 1 polarizing cytokine, IL-12p70. This capacity reached peak at 6 h and dropped sharply with longer exposure to initial maturation stimuli (up to 48 h). The 6 h maturation protocol reflected superiority in subsequent functionality tests. Namely, DCs displayed twice the allostimulatory capacity of 24 h- and 48 h-matured DCs. Similarly, type 1 T cell response measured by IFN-γ production was 3-fold higher when CD4+ T cells had been stimulated with shortly matured DC and over 8-fold greater in case of CD8+ T cells, compared to longer matured DCs. The extent of melanoma-specific CD8+ cytotoxic T cell induction was also greater in case of 6 h DC maturation. The major limitation of the study is that it lacks in vivo evidence, which we aim to examine in the future. Our findings show an unexpectedly significant impact of temporal exposure to activation signals for subsequent DC functionality, which we believe can be readily integrated into existing knowledge on in vitro/ex vivo DC manipulation for various uses. We also believe this has important implications for DC vaccine design for future clinical trials.


Cell Differentiation , Cytokines , Dendritic Cells , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Cytokines/metabolism , Time Factors , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD8-Positive T-Lymphocytes/immunology
10.
Parasit Vectors ; 17(1): 247, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835064

BACKGROUND: The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS: We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS: The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS: Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.


Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Toxoplasma , Animals , Mice , Toxoplasma/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Female , CD8-Positive T-Lymphocytes/immunology , Brain/parasitology , Brain/pathology , Chronic Disease , Tumor Microenvironment , Neoplasms/parasitology , Acute Disease
11.
Cancer Rep (Hoboken) ; 7(6): e2099, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837676

BACKGROUND: An elevated neutrophil-to-lymphocyte ratio (NLR) in peripheral blood is an independent prognostic indicator of various cancers. AIMS: In this study, we aimed to investigate the prognostic relevance of the intratumoral immune cell balance in gastric cancer. METHODS AND RESULTS: The study included 82 patients who underwent curative resection for gastric cancer. The intratumoral cluster of differentiation (CD) 15- and CD8-positive cells were evaluated using immunohistochemical staining. Additionally, clinicopathological factors and prognoses were analyzed. Patients with high intratumoral CD15/CD8 ratios had significantly lower overall survival (OS) and relapse-free survival (RFS) compared to those with low CD15/CD8 ratios (p = .0026 and p < .0001, respectively). Additionally, a high CD15/CD8 ratio was associated with lymph node metastasis (p = .019). Patients with high NLR had a significantly lower RFS than those with low NLR (p = .0050). Multivariate analysis revealed that the intratumoral CD15/CD8 ratio, NLR, and venous invasion were independent prognostic indicators of RFS (CD15/CD8 ratio: p < .001, hazard ratio (HR) = 14.7, 95% confidence interval (CI) = 3.8-56.8; NLR: p = .010, HR = 5.4, 95% CI = 1.5-19.6; venous invasion: p = .005, HR = 7.4, 95% CI = 1.8-29.7). CONCLUSION: In summary, we found that the intratumoral CD15/CD8 ratio is an independent prognostic factor following gastric cancer resection and its increase is associated with lymph node metastasis and microscopic lymph vessel invasion. Immunological evaluation with additional aspects of innate immunity may be useful in predicting cancer prognosis.


CD8-Positive T-Lymphocytes , Neoplasm Recurrence, Local , Neutrophils , Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/immunology , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Male , Female , Neutrophils/immunology , Neutrophils/pathology , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Aged , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Prognosis , Lewis X Antigen/analysis , Lewis X Antigen/metabolism , Adult , Aged, 80 and over , Gastrectomy , Lymphatic Metastasis/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Retrospective Studies , Disease-Free Survival
12.
Sci Adv ; 10(23): eadl6083, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838151

Hepatocellular carcinoma (HCC) acquires an immunosuppressive microenvironment, leading to unbeneficial therapeutic outcomes. Hyaluronan-mediated motility receptor (HMMR) plays a crucial role in tumor progression. Here, we found that aberrant expression of HMMR could be a predictive biomarker for the immune suppressive microenvironment of HCC, but the mechanism remains unclear. We established an HMMR-/- liver cancer mouse model to elucidate the HMMR-mediated mechanism of the dysregulated "don't eat me" signal. HMMR knockout inhibited liver cancer growth and induced phagocytosis. HMMRhigh liver cancer cells escaped from phagocytosis via sustaining CD47 signaling. Patients with HMMRhighCD47high expression showed a worse prognosis than those with HMMRlowCD47low expression. HMMR formed a complex with FAK/SRC in the cytoplasm to activate NF-κB signaling, which could be independent of membrane interaction with CD44. Notably, targeting HMMR could enhance anti-PD-1 treatment efficiency by recruiting CD8+ T cells. Overall, our data revealed a regulatory mechanism of the "don't eat me" signal and knockdown of HMMR for enhancing anti-PD-1 treatment.


CD47 Antigen , Carcinoma, Hepatocellular , Hyaluronan Receptors , Liver Neoplasms , Phagocytes , Phagocytosis , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Animals , Humans , Mice , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Phagocytes/metabolism , Phagocytes/immunology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Cell Line, Tumor , Signal Transduction , Tumor Microenvironment/immunology , Immune Evasion , NF-kappa B/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Knockout , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Tumor Escape
13.
Front Immunol ; 15: 1372658, 2024.
Article En | MEDLINE | ID: mdl-38827740

Background: Persistent radiological lung abnormalities are evident in many survivors of acute coronavirus disease 2019 (COVID-19). Consolidation and ground glass opacities are interpreted to indicate subacute inflammation whereas reticulation is thought to reflect fibrosis. We sought to identify differences at molecular and cellular level, in the local immunopathology of post-COVID inflammation and fibrosis. Methods: We compared single-cell transcriptomic profiles and T cell receptor (TCR) repertoires of bronchoalveolar cells obtained from convalescent individuals with each radiological pattern, targeting lung segments affected by the predominant abnormality. Results: CD4 central memory T cells and CD8 effector memory T cells were significantly more abundant in those with inflammatory radiology. Clustering of similar TCRs from multiple donors was a striking feature of both phenotypes, consistent with tissue localised antigen-specific immune responses. There was no enrichment for known SARS-CoV-2-reactive TCRs, raising the possibility of T cell-mediated immunopathology driven by failure in immune self-tolerance. Conclusions: Post-COVID radiological inflammation and fibrosis show evidence of shared antigen-specific T cell responses, suggesting a role for therapies targeting T cells in limiting post-COVID lung damage.


COVID-19 , SARS-CoV-2 , Single-Cell Analysis , Humans , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Male , Female , Middle Aged , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Lung/immunology , Lung/pathology , Lung/diagnostic imaging , Aged , Adult , Inflammation/immunology , Inflammation/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Memory T Cells/immunology , Transcriptome
14.
Drug Des Devel Ther ; 18: 1833-1853, 2024.
Article En | MEDLINE | ID: mdl-38828018

Purpose: Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods: This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results: Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1ß, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion: This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.


CD8-Positive T-Lymphocytes , Cell Proliferation , Chemokine CXCL10 , Colonic Neoplasms , Mice, Inbred BALB C , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Mice , Cell Proliferation/drug effects , Chemokine CXCL10/metabolism , Chemokine CXCL10/immunology , Bacterial Outer Membrane/immunology , Bacterial Outer Membrane/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Neoplasms, Experimental/pathology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/drug therapy , Drug Screening Assays, Antitumor , Tumor Cells, Cultured
15.
J Clin Invest ; 134(11)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828727

Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.


Calcineurin Inhibitors , Graft vs Host Disease , Isoantigens , Memory T Cells , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/pathology , Animals , Mice , Isoantigens/immunology , Calcineurin Inhibitors/pharmacology , Chronic Disease , Memory T Cells/immunology , Tacrolimus/pharmacology , CD4-Positive T-Lymphocytes/immunology , Cyclosporine/pharmacology , Female , CD8-Positive T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology
16.
Nat Commun ; 15(1): 4701, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830882

Immune checkpoint blockade (ICB) therapies function by alleviating immunosuppression on tumor-infiltrating lymphocytes (TILs) but are often insufficient to fully reactivate these dysfunctional TILs. Although interleukin 12 (IL-12) has been used in combination with ICB to improve efficacy, this remains limited by severe toxicity associated with systemic administration of this cytokine. Here, we engineer a fusion protein composed of an anti-PD-1 antibody and a mouse low-affinity IL-12 mutant-2 (αPD1-mIL12mut2). Systemic administration of αPD1-mIL12mut2 displays robust antitumor activities with undetectable toxicity. Mechanistically, αPD1-mIL12mut2 preferentially activates tumor-infiltrating PD-1+CD8+T cells via high-affinity αPD-1 mediated cis-binding of low-affinity IL-12. Additionally, αPD1-mIL12mut2 treatment exerts an abscopal effect to suppress distal tumors, as well as metastasis. Collectively, αPD1-mIL12mut2 treatment induces robust systemic antitumor responses with reduced side effects.


CD8-Positive T-Lymphocytes , Interleukin-12 , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Interleukin-12/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Female , Immune Checkpoint Inhibitors/pharmacology , Humans , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics
17.
Cancer Immunol Immunother ; 73(8): 150, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832948

Hotspot driver mutations presented by human leukocyte antigens might be recognized by anti-tumor T cells. Based on their advantages of tumor-specificity and immunogenicity, neoantigens derived from hotspot mutations, such as PIK3CAH1047L, may serve as emerging targets for cancer immunotherapies. NetMHCpan V4.1 was utilized for predicting neoepitopes of PIK3CA hotspot mutation. Using in vitro stimulation, antigen-specific T cells targeting the HLA-A*11:01-restricted PIK3CA mutation were isolated from healthy donor-derived peripheral blood mononuclear cells. T cell receptors (TCRs) were cloned using single-cell PCR and sequencing. Their functionality was assessed through T cell activation markers, cytokine production and cytotoxic response to cancer cell lines pulsed with peptides or transduced genes of mutant PIK3CA. Immunogenic mutant antigens from PIK3CA and their corresponding CD8+ T cells were identified. These PIK3CA mutation-specific CD8+ T cells were subsequently enriched, and their TCRs were isolated. The TCR clones exhibited mutation-specific and HLA-restricted reactivity, demonstrating varying degrees of functional avidity. Identified TCR genes were transferred into CD8+ Jurkat cells and primary T cells deficient of endogenous TCRs. TCR-expressing cells demonstrated specific recognition and reactivity against the PIK3CAH1047L peptide presented by HLA-A*11:01-expressing K562 cells. Furthermore, mutation-specific TCR-T cells demonstrated an elevation in cytokine production and profound cytotoxic effects against HLA-A*11:01+ malignant cell lines harboring PIK3CAH1047L. Our data demonstrate the immunogenicity of an HLA-A*11:01-restricted PIK3CA hotspot mutation and its targeting therapeutic potential, together with promising candidates of TCR-T cell therapy.


Class I Phosphatidylinositol 3-Kinases , Mutation , Neoplasms , Receptors, Antigen, T-Cell , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy/methods , HLA-A11 Antigen/genetics , HLA-A11 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Cell Line, Tumor
18.
Front Immunol ; 15: 1396246, 2024.
Article En | MEDLINE | ID: mdl-38846949

Background: Allergic rhinitis (AR), a prevalent chronic inflammatory condition triggered by immunoglobulin E (IgE), involves pivotal roles of immune and metabolic factors in its onset and progression. However, the intricacies and uncertainties in clinical research render current investigations into their interplay somewhat inadequate. Objective: To elucidate the causal relationships between immune cells, metabolites, and AR, we conducted a mediation Mendelian randomization (MR) analysis. Methods: Leveraging comprehensive publicly accessible summary-level data from genome-wide association studies (GWAS), this study employed the two-sample MR research method to investigate causal relationships among 731 immune cell phenotypes, 1400 metabolite levels, and AR. Additionally, employing the mediation MR approach, the study analyzed potential mediated effect of metabolites in the relationships between immune cells and AR. Various sensitivity analysis methods were systematically employed to ensure the robustness of the results. Results: Following false discovery rate (FDR) correction, we identified three immune cell phenotypes as protective factors for AR: Naive CD8br %CD8br (odds ratio (OR): 0.978, 95% CI = 0.966-0.990, P = 4.5×10-4), CD3 on CD39+ activated Treg (OR: 0.947, 95% CI = 0.923-0.972, P = 3×10-5), HVEM on CD45RA- CD4+ (OR: 0.967, 95% CI = 0.948-0.986, P = 4×10-5). Additionally, three metabolite levels were identified as risk factors for AR: N-methylhydroxyproline levels (OR: 1.219, 95% CI = 1.104-1.346, P = 9×10-5), N-acetylneuraminate levels (OR: 1.133, 95% CI = 1.061-1.211, P = 1.7×10-4), 1-stearoyl-2-arachidonoyl-gpc (18:0/20:4) levels (OR: 1.058, 95% CI = 1.029-1.087, P = 5×10-5). Mediation MR analysis indicated a causal relationship between Naive CD8br %CD8br and N-methylhydroxyproline levels, acting as a protective factor (OR: 0.971, 95% CI = 0.950-0.992, P = 8.31×10-3). The mediated effect was -0.00574, accounting for 26.1% of the total effect, with a direct effect of -0.01626. Naive CD8+ T cells exert a protective effect on AR by reducing N-methylhydroxyproline levels. Conclusion: Our study, delving into genetic information, has substantiated the intricate connection between immune cell phenotypes and metabolite levels with AR. This reveals a potential pathway to prevent the onset of AR, providing guiding directions for future clinical investigations.


CD8-Positive T-Lymphocytes , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Rhinitis, Allergic , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Rhinitis, Allergic/immunology , Rhinitis, Allergic/genetics , Phenotype , Genetic Predisposition to Disease
19.
J Exp Med ; 221(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38847806

Due to bladder tumors' contact with urine, urine-derived cells (UDCs) may serve as a surrogate for monitoring the tumor microenvironment (TME) in bladder cancer (BC). However, the composition of UDCs and the extent to which they mirror the tumor remain poorly characterized. We generated the first single-cell RNA-sequencing of BC patient UDCs with matched tumor and peripheral blood mononuclear cells (PBMC). BC urine was more cellular than healthy donor (HD) urine, containing multiple immune populations including myeloid cells, CD4+ and CD8+ T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs) in addition to tumor and stromal cells. Immune UDCs were transcriptionally more similar to tumor than blood. UDCs encompassed cytotoxic and activated CD4+ T cells, exhausted and tissue-resident memory CD8+ T cells, macrophages, germinal-center-like B cells, tissue-resident and adaptive NK cells, and regulatory DCs found in tumor but lacking or absent in blood. Our findings suggest BC UDCs may be surrogates for the TME and serve as therapeutic biomarkers.


Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Humans , Tumor Microenvironment/immunology , Male , Killer Cells, Natural/immunology , Female , CD8-Positive T-Lymphocytes/immunology , Aged , CD4-Positive T-Lymphocytes/immunology , Single-Cell Analysis/methods , Dendritic Cells/immunology , Middle Aged , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , RNA-Seq , Single-Cell Gene Expression Analysis
20.
Cell Host Microbe ; 32(5): 627-630, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723599

Microbial-based therapies have the potential to combat immunotherapy resistance, extending the boundaries of oncological therapeutics. In a recent issue of Cell, Jia et al. demonstrates an example of microbial collaboration to produce a postbiotic that promotes the stemness program of CD8+ T cells to augment immunotherapy at the pan-cancer level.


CD8-Positive T-Lymphocytes , Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Indoles , Animals , Mice
...