Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Ethnopharmacol ; 290: 115078, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35157954

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Minthostachys verticillata (Griseb.) Epling (Lamiaceae) is a plant used in folk medicine for digestive or respiratory disorders. In addition, it is incorporated as condiment, in foods, as beverage flavoring or mate. The ethnopharmacological interest of M. verticillata resides in its essential oil (EO). Part of group has demonstrated the immunomodulatory ability of EO giving this oil a biological potential not known until that moment and conducted studies to evaluate their possible application in diseases of veterinary interest. However, the immunomodulatory effects of EO administered orally have not been fully characterized. AIM OF THE STUDY: This study evaluated the impact of EO oral administration on gastrointestinal and immune health through measurement of immunological and oxidative parameters in mice. MATERIAL AND METHODS: The EO was extracted from the leaves, slender stems and flowers of M. verticillata by hydrodistillation and chemical analyzed by gas chromatography-mass spectrometry (GC-MS). Prior to in vivo study, the cytotoxic effect of EO was determined using the human colon carcinoma Caco-2 cell line. For in vivo study, three groups of male Balb/c mice (n = 3) were orally administered with saline solution (control group) and EO (5 or 10 mg/kg/day) during 10 consecutive days. Subsequently, histological and hematological parameters, cytokines production, oxidative markers and CD4+ and CD8+ T cells were evaluated. RESULTS: The chemical analysis of EO revealed the presence of a high content of monoterpenes, being the main pulegone (76.12%) and menthone (14.28%). The EO oral administration improved mice growth performance and modulated systemic adaptive immune response by increasing in the total leukocyte number. A high percentage of CD4+ T cells were observed whereas the number of CD8+ T cells was not altered. EO did not alter the morpho-physiology of intestine and improved total antioxidant capacity by decreasing MDA concentrations. In addition, EO decreased the IL-6 levels and increased in the IL-4 and IL-10 concentrations. CONCLUSION: Results indicate that M. verticillata EO modulate inflammatory and oxidative parameters constituting a natural alternative which could be applied to improve gastrointestinal and immune functionality in animals.


Subject(s)
Digestive System/drug effects , Immune System/drug effects , Lamiaceae , Oils, Volatile/pharmacology , Animals , Blood/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Cytokines/drug effects , Dose-Response Relationship, Drug , Humans , Interleukin-10/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Male , Medicine, Traditional , Mice , Mice, Inbred BALB C , Monoterpenes/chemistry , Monoterpenes/pharmacology , Oxidative Stress/drug effects
2.
Front Immunol ; 12: 788880, 2021.
Article in English | MEDLINE | ID: mdl-34917095

ABSTRACT

T lymphocyte activation begins with antigen/MHC recognition by the TCR/CD3 complex followed by a costimulatory signal provided by CD28. The search for novel costimulatory molecules has been extensive due to their potential use as immunotherapeutic targets. Although some molecules have been identified, they are unable to provide sustainable signaling to allow for proper T cell activation and proliferation. It has been shown that the Amaranthus leucocarpus lectin (ALL) can be used as an in vitro costimulator of CD4+ lymphocytes in the presence of anti-CD3 mAb; this lectin specifically recognizes O-glycans of the Galß1-3GalNAc-O-Ser/Thr type, including a 70-kDa moesin-like protein that has been suggested as the costimulatory molecule. However, the identity of this molecule has not been confirmed and such costimulation has not been analyzed in CD8+ lymphocytes. We show herein that the expression kinetics of the glycoproteins recognized by ALL (gpALL) is different in CD4+ and CD8+ T cells, unlike moesin expression. Results from IP experiments demonstrate that the previously described 70-kDa moesin-like protein is an O-glycosylated form of moesin (O-moesin) and that in vitro stimulation with anti-CD3 and anti-moesin mAb induces expression of the activation molecules CD69 and CD25, proliferation and IL-2 production as efficiently as cells costimulated with ALL or anti-CD28. Overall, our results demonstrate that O-moesin is expressed in CD4+ and CD8+ T lymphocytes and that moesin provides a new costimulatory activation signal in both T cell subsets.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Glycoproteins/metabolism , Lymphocyte Activation/drug effects , Plant Lectins/pharmacology , Protein Processing, Post-Translational , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Glycoproteins/pharmacology , Glycosylation , Interleukin-2/metabolism , Kinetics , Male , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Signal Transduction
3.
Front Immunol ; 12: 660944, 2021.
Article in English | MEDLINE | ID: mdl-34025660

ABSTRACT

Hypoxia, angiogenesis, and immunosuppression have been proposed to be interrelated events that fuel tumor progression and impair the clinical effectiveness of anti-tumor therapies. Here we present new mechanistic data highlighting the role of hypoxia in fine-tuning CD8 T cell exhaustion in vitro, in an attempt to reconcile seemingly opposite evidence regarding the impact of hypoxia on functional features of exhausted CD8 T cells. Focusing on the recently characterized terminally-differentiated and progenitor exhausted CD8 T cells, we found that both hypoxia and its regulated mediator, vascular endothelial growth factor (VEGF)-A, promote the differentiation of PD-1+ TIM-3+ CXCR5+ terminally exhausted-like CD8 T cells at the expense of PD-1+ TIM-3- progenitor-like subsets without affecting tumor necrosis factor (TNF)-α and interferon (IFN)-γ production or granzyme B (GZMB) expression by these subpopulations. Interestingly, hypoxia accentuated the proangiogenic secretory profile in exhausted CD8 T cells. VEGF-A was the main factor differentially secreted by exhausted CD8 T cells under hypoxic conditions. In this sense, we found that VEGF-A contributes to generation of terminally exhausted CD8 T cells during in vitro differentiation. Altogether, our findings highlight the reciprocal regulation between hypoxia, angiogenesis, and immunosuppression, providing a rational basis to optimize synergistic combinations of antiangiogenic and immunotherapeutic strategies, with the overarching goal of improving the efficacy of these treatments.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Cell Differentiation/immunology , Hypoxia , Animals , CD8-Positive T-Lymphocytes/drug effects , Cell Differentiation/drug effects , Humans , Immune Tolerance , Mice, Inbred C57BL , Spleen/cytology , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/pharmacology
4.
Int J Cancer ; 149(6): 1313-1321, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34019700

ABSTRACT

CIGB-552 is a synthetic peptide that interacts with COMMD1 and upregulates its protein levels. The objectives of this phase I study were safety, pharmacokinetic profile, evaluation of the lymphocytes CD4+ and CD8+ and preliminary activity in patients with advanced tumors. A 3 + 3 dose-escalation design with seven dose levels was implemented. Patients were included until a grade 3 related adverse event occurred and the maximum tolerated dose was reached. The patients received subcutaneous administration of CIGB-552 three times per week for 2 weeks. Single-dose plasma pharmacokinetics was characterized at two dose levels, and tumor responses were classified by RECIST 1.1. Twenty-four patients received CIGB-552. Dose-limiting toxicity was associated with a transient grade 3 pruritic maculopapular rash at a dose of 7.0 mg. The maximum tolerated dose was defined as 4.7 mg. Ten patients were assessable for immunological status. Seven patients had significant changes in the ratio CD4/CD8 in response to CIGB-552 treatment; three patients did not modify the immunological status. Stable disease was observed in five patients, including two metastatic soft sarcomas. We conclude that CIGB-552 at dose 4.7 mg was well tolerated with no significant adverse events and appeared to provide some clinical benefits.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell-Penetrating Peptides/administration & dosage , NF-kappa B/drug effects , Neoplasms/drug therapy , Adaptor Proteins, Signal Transducing/metabolism , Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Cell-Penetrating Peptides/adverse effects , Cell-Penetrating Peptides/pharmacokinetics , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Injections, Subcutaneous , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Staging , Neoplasms/metabolism , Neoplasms/pathology , Research Design , Treatment Outcome
5.
Clin Transl Oncol ; 23(11): 2394-2401, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33876417

ABSTRACT

PURPOSE: This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS: Peripheral blood mononuclear cells were isolated before and 30 days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. RESULTS: Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0 months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0 months (p = 0.011), respectively. CONCLUSIONS: Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Immune Checkpoint Proteins/drug effects , Pancreatic Neoplasms/drug therapy , T-Lymphocytes, Regulatory/drug effects , Aged , Albumins/therapeutic use , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Pancreatic Ductal/immunology , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Female , Fluorouracil/therapeutic use , Forkhead Transcription Factors , Hepatitis A Virus Cellular Receptor 2/analysis , Humans , Immune Checkpoint Proteins/analysis , Irinotecan/therapeutic use , Leucovorin/therapeutic use , Male , Middle Aged , Oxaliplatin/therapeutic use , Paclitaxel/therapeutic use , Pancreatic Neoplasms/immunology , Pilot Projects , Programmed Cell Death 1 Receptor/analysis , Programmed Cell Death 1 Receptor/drug effects , Progression-Free Survival , Prospective Studies , T-Lymphocytes, Regulatory/chemistry , Gemcitabine
6.
Exp Parasitol ; 223: 108079, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33524381

ABSTRACT

Chagas disease is caused by Trypanosoma cruzi, and it is an important cause of morbidity and mortality in Latin America. There are no vaccines, and the chemotherapy available to treat this infection has serious side effects. In a search for alternative treatments, we determined the in vitro susceptibility of epimastigote and trypomastigote forms of T. cruzi and the cytotoxic effects on peripheral blood mononuclear cells (PBMCs) of ethanolic extracts obtained from six different plant species. The ethanolic extracts of Ageratina vacciniaefolia, Clethra fimbriata and Siparuna sessiliflora showed antiprotozoal activity against epimastigotes and low cytotoxicity in mammalian cells. However, only the ethanolic extract of C. fimbriata showed activity against T. cruzi trypomastigotes, and it had low cytotoxicity in PBMCs. An analysis on the phytochemical composition of C. fimbriata extract showed that its metabolites were primarily represented by two families of compounds: flavonoids and terpenoids. Lastly, we analyzed whether the A. vacciniaefolia, C. fimbriata, or S. sessiliflora ethanolic extracts induced IFN-γ or TNF-α production. Significantly, ethanolic extracts of C. fimbriata induced TNF-α production and S. sessiliflora induced both cytokines. In addition, C. fimbriata and S. sessiliflora induced the simultaneous secretion of IFN-γ and TNF-α in CD8+ T cells. The antiprotozoal and immunomodulatory activity of C. fimbriata may be related to the presence of flavonoid and triterpene compounds in the extract. Thus, these findings suggest that C. fimbriata may represent a valuable source of new bioactive compounds for the therapeutic treatment of Chagas disease that combines trypanocidal activity with the capacity to boost the immune response.


Subject(s)
Chagas Disease/drug therapy , Leukocytes, Mononuclear/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Trypanosoma cruzi/drug effects , Adult , Ageratina/chemistry , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Chromatography, High Pressure Liquid , Clethraceae/chemistry , Colombia , Female , Flow Cytometry , Humans , Inhibitory Concentration 50 , Interferon-gamma/metabolism , Laurales/chemistry , Male , Medicine, Traditional , Plant Extracts/toxicity , Spectrometry, Mass, Electrospray Ionization , Tumor Necrosis Factor-alpha/metabolism , Young Adult
7.
Immunology ; 162(3): 290-305, 2021 03.
Article in English | MEDLINE | ID: mdl-33112414

ABSTRACT

Elevated frequency of Th17-like cells expressing Toll-like receptors (TLRs) has been recently associated with relapsing-remitting multiple sclerosis (MS) pathogenesis, a chronic inflammatory demyelinating autoimmune disease of the central nervous system. We aimed to investigate the impact of current major depressive disorder (MDD) on the behaviour of these cells following in vitro stimulation with TLR2, TLR4, TLR5 and TLR9 agonists. Here, the level of both cell proliferation and cytokine production related to Th17/Tc17 phenotypes in response to TLR2 (Pam3C) and TLR4 (LPS) ligands was significantly higher in CD4+ and CD8+ T-cell cultures from MS/MDD patients when compared to non-depressed patients. These cytokine levels were positively associated with neurological disabilities in patients. No difference for responsiveness to TLR5 (flagellin) and TLR9 (ODN) agonists was observed. LPS, but not Pam3C, induced significant IL-10 release, mainly in patients without MDD. Interestingly, more intense expression of TLR2 and TLR4 on these cells was observed in MDD patients. Finally, in vitro addition of serotonin and treatment of MDD patients with selective serotonin reuptake inhibitors (SSRIs) reduced the production of Th17/Tc17-related cytokines by CD4+ and CD8+ T cells in response to Pam3C and LPS. However, only SSRI therapy diminished the frequency and intensity of TLR2 and TLR4 expression on circulating CD4+ and CD8+ T cells. In summary, although preliminary, our findings suggest that adverse events that elevate circulating levels of TLR2 and TLR4 ligands can affect MS pathogenesis, particularly among depressed patients.


Subject(s)
Antidepressive Agents, Second-Generation/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , Depressive Disorder, Major/drug therapy , Fluoxetine/therapeutic use , Lymphocyte Activation/drug effects , Multiple Sclerosis, Relapsing-Remitting/immunology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Th17 Cells/drug effects , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/metabolism , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/immunology , Depressive Disorder, Major/psychology , Female , Humans , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/metabolism , Phenotype , Th17 Cells/immunology , Th17 Cells/metabolism , Treatment Outcome , Young Adult
8.
Clin Transl Oncol ; 23(1): 110-121, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32661823

ABSTRACT

PURPOSE: Chemotherapy for advanced pancreatic cancer has limited efficacy due to the difficultly of treating established tumours and the evolution of tumour resistance. Chemotherapies for pancreatic cancer are typically studied for their cytotoxic properties rather than for their ability to increase the immunogenicity of pancreatic tumour cells. In this study Gemcitabine in combination with immune modulatory chemotherapies Oxaliplatin, zoledronic acid and pomalidomide was studied to determine how combination therapy alters the immunogenicity of pancreatic tumour cell lines and subsequent T-cell responses. METHODS: Pancreatic tumour cell lines were stimulated with the chemotherapeutic agents and markers of immune recognition were assessed. The effect of chemotherapeutic agents on DC function was measured using uptake of CFSE-stained PANC-1 cells, changes in markers of maturation and their ability to activate CD8+ T-cells. The effect of chemotherapeutic agents on T-cell priming prior to activation using anti-CD3 and anti-CD28 antibodies was determined by measuring IFN-γ expression and Annexin V staining using flow cytometry. RESULTS: These agents demonstrate both additive and inhibitory properties on a range of markers of immunogenicity. Gemcitabine was notable for its ability to induce the upregulation of human leukocyte antigen and checkpoints on pancreatic tumour cell lines whilst inhibiting T-cell activation. Pomalidomide demonstrated immune modulatory properties on dendritic cells and T-cells, even in the presence of gemcitabine. DISCUSSION: These data highlight the complex interactions of different agents in the modulation of tumour immunogenicity and immune cell activation and emphasise the complexity in rationally designing chemo immunogenic combinations for use with immunotherapy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Deoxycytidine/analogs & derivatives , Immunomodulation/drug effects , Pancreatic Neoplasms/immunology , Annexin A5/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/drug effects , Dendritic Cells/immunology , Deoxycytidine/pharmacology , Drug Interactions/immunology , Histocompatibility Antigens Class I/drug effects , Histocompatibility Antigens Class I/metabolism , Humans , Immunomodulation/immunology , Interferon-gamma/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Oxaliplatin/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Zoledronic Acid/pharmacology , Gemcitabine
9.
Front Immunol ; 11: 583382, 2020.
Article in English | MEDLINE | ID: mdl-33240271

ABSTRACT

Immunotherapy has improved the clinical response in melanoma patients, although a relevant percentage of patients still cannot be salvaged. The search for the immune populations that provide the best tumor control and that can be coaxed by immunotherapy strategies is a hot topic in cancer research nowadays. Tumor-infiltrating TCF-1+ progenitor exhausted CD8+ T cells seem to grant the best melanoma prognosis and also efficiently respond to anti-PD-1 immunotherapy, giving rise to a TIM-3+ terminally exhausted population with heightened effector activity. We tested Porins from Salmonella Typhi as a pathogen associated molecular pattern adjuvant of natural or model antigen in prophylactic and therapeutic immunization approaches against murine melanoma. Porins induced protection against melanomas, even upon re-challenging of tumor-free mice. Porins efficiently expanded IFN-γ-producing CD8+ T cells and induced central and effector memory in lymph nodes and tissue-resident (Trm) T cells in the skin and tumors. Porins induced TCF-1+ PD-1+ CD8+ Trm T cells in the tumor stroma and the presence of this population correlated with melanoma growth protection in mice. Porins immunization also cooperated with anti-PD-1 immunotherapy to hamper melanoma growth. Importantly, the potentially protective Trm populations induced by Porins in the murine model were also observed in melanoma patients in which their presence also correlated with disease control. Our data support the use of cancer vaccination to sculpt the tumor stroma with efficient and lasting Trm T cells with effector activities, highlighting the use of Porins as an adjuvant. Furthermore, our data place CD8+ Trm T cells with a progenitor exhausted phenotype as an important population for melanoma control, either independently or in cooperation with anti-PD-1 immunotherapy.


Subject(s)
Adjuvants, Immunologic/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Melanoma/immunology , Porins/immunology , Animals , Bacterial Proteins/immunology , Bacterial Proteins/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunization , Immunologic Memory/drug effects , Immunologic Memory/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Porins/pharmacology , Salmonella typhi
10.
J Acquir Immune Defic Syndr ; 85(5): 665-669, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33177477

ABSTRACT

BACKGROUND: We had previously conducted a double-blind, randomized placebo-controlled, partial cross-over trial showing that 12 weeks of dipyridamole decreased CD8 T-cell activation among treated HIV(+) individuals by increasing extracellular adenosine levels. METHODS: In this substudy, rectosigmoid biopsies were obtained from 18 participants (9 per arm), to determine whether 12 weeks of dipyridamole affects mucosal immune cells. Participants randomized to placebo were then switched to dipyridamole for 12 weeks while the treatment arm continued dipyridamole for another 12 weeks. We evaluated T-cell frequencies and plasma markers of microbial translocation and intestinal epithelial integrity. Linear regression models on log-transformed outcomes were used for the primary 12-week analysis. RESULTS: Participants receiving dipyridamole had a median 70.2% decrease from baseline in regulatory T cells (P = 0.007) and an 11.3% increase in CD8 T cells (P = 0.05). There was a nonsignificant 10.80% decrease in plasma intestinal fatty acid binding protein levels in the dipyridamole arm compared with a 9.51% increase in the placebo arm. There were no significant differences in plasma levels of ß-D-glucan. In pooled analyses, there continued to be a significant decrease in regulatory T cells (-44%; P = 0.004). There was also a trend for decreased CD4 and CD8 T-cell activation. CONCLUSION: Increasing extracellular adenosine levels using dipyridamole in virally suppressed HIV (+) individuals on antiretroviral therapy can affect regulation of gut mucosal immunity.


Subject(s)
Anti-HIV Agents/therapeutic use , Dipyridamole/pharmacology , HIV Infections/drug therapy , Intestinal Mucosa/drug effects , T-Lymphocytes, Regulatory/drug effects , Adenosine/metabolism , Biopsy , CD8-Positive T-Lymphocytes/drug effects , Cross-Over Studies , Female , Flow Cytometry , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Lymphocyte Activation/drug effects , Male , Middle Aged
11.
Clin Exp Pharmacol Physiol ; 47(10): 1751-1757, 2020 10.
Article in English | MEDLINE | ID: mdl-32542867

ABSTRACT

One of the most widely used sweeteners in the world is sucralose. With sweetening power 600 times greater than sucrose, its use grows among those who seek to cut calories. Research shows that when heated, sucralose generates toxic products that attack the organism and interact with DNA. Our objective was to test this sweetener under unheated conditions and at average concentrations of consumption, evaluating parameters of cytotoxicity, genotoxicity, and immunotoxicity. For this purpose, we made use of lymphocyte cultures and the analysis of their CD3+ , CD4+ , and CD8+ subpopulations. In a complementary way, the mechanism of action is proposed here by computational methods. Our results showed that sucralose reduces non-selectively the total lymphocytes due to falls in the levels of the CD4+ , CD8+ , and CD4+ CD8+ subpopulations. We observed an increase in the level of DNA damage and a gradual incidence of structural changes in the lymphocyte chromosomal sets. It was possible to propose that sucralose modulates the gene expression, interfering especially with the MAPK8, APTX, and EID1 genes. This article presents the results of an evidence-based approach to the safety of human health in the use of sucralose. Finally, this study points out that sucralose has cytotoxic, genotoxic, and mutagenic effects in the concentrations and conditions tested in human lymphocyte cell culture.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Computer Simulation , Sucrose/adverse effects , Sweetening Agents/adverse effects , Energy Intake/drug effects , Humans
12.
Life Sci ; 254: 117786, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32433918

ABSTRACT

AIMS: Ovarian cancer (OC) is the most lethal gynecological malignancies and many women develop chemoresistance associated with the inflammatory process. We investigated the effects of P-MAPA and IL-12 on the inflammatory and immune responses in a chemically-induced OC model. MAIN METHODS: OCs were induced with 7,12-dimethylbenz(a)anthracene into the ovarian bursa, and the animals were given P-MAPA (5 mg/kg bw., i.p., twice a week), or IL-12 (300 ng/kg bw., i.p., one a week) for 60 days, or both P-MAPA and IL-12. Immunohistochemistry, western blot, flow cytometry, and multiplex assay were used to examine the effectiveness of immunotherapies in OC. KEY FINDINGS: The combinatory therapy improved the general OC features, reducing inflammatory cells and adipocyte accumulation, in addition to revealing a soft and mobile tissue with no adherences and peritoneal implants. P-MAPA treatment increased the levels of TLR2, TLR4 and TRIF in OCs while decreasing the number of regulatory T (Treg) cells. Additionally, the association of P-MAPA with IL-12 significantly increased the number of CD4+ and CD8+ T effector cells in draining lymph nodes. Regarding the inflammatory mediators, P-MAPA enhanced the levels of the pro-inflammatory cytokine IL-17 while P-MAPA+IL-12 increased the levels of IL-1ß. Treatment with IL-12 enhanced the cytokine levels of IL-17, TNF-α, IL-1ß, and IL-2 in addition to the chemokine MIP-1α. SIGNIFICANCE: We conclude that P-MAPA upregulated TLR2 and TLR4 signaling, possibly activating the non-canonical pathway, while attenuating the tumor immunosuppression. Also, the combination of P-MAPA with IL-12 improves the antitumor immunoresponse, opening a new therapeutic approach for fighting OC.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Interleukin-12/pharmacology , Linoleic Acids/pharmacology , Oleic Acids/pharmacology , Ovarian Neoplasms/drug therapy , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , 9,10-Dimethyl-1,2-benzanthracene , Adaptor Proteins, Vesicular Transport/metabolism , Adipocytes/drug effects , Animals , CD8-Positive T-Lymphocytes/metabolism , Chemokine CCL3/metabolism , Cytokines/metabolism , Drug Synergism , Female , Inflammation/drug therapy , Interleukin-12/therapeutic use , Linoleic Acids/therapeutic use , Oleic Acids/therapeutic use , Ovarian Neoplasms/chemically induced , Ovarian Neoplasms/metabolism , Rats , T-Lymphocytes, Regulatory/drug effects
13.
J Exp Med ; 217(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32369107

ABSTRACT

Immune and molecular profiling of CD8 T cells of patients receiving DC vaccines expressing three full-length melanoma antigens (MAs) was performed. Antigen expression levels in DCs had no significant impact on T cell or clinical responses. Patients who received checkpoint blockade before DC vaccination had higher baseline MA-specific CD8 T cell responses but no evidence for improved functional responses to the vaccine. Patients who showed the best clinical responses had low PD-1 expression on MA-specific T cells before and after DC vaccination; however, blockade of PD-1 during antigen presentation by DC had minimal functional impact on PD-1high MA-specific T cells. Gene and protein expression analyses in lymphocytes and tumor samples identified critical immunoregulatory pathways, including CTLA-4 and PD-1. High immune checkpoint gene expression networks correlated with inferior clinical outcomes. Soluble serum PD-L2 showed suggestive positive association with improved outcome. These findings show that checkpoint molecular pathways are critical for vaccine outcomes and suggest specific sequencing of vaccine combinations.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Immune Checkpoint Inhibitors/pharmacology , Lymphocyte Activation/immunology , Antigens, Neoplasm/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CTLA-4 Antigen/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease-Free Survival , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interferon-gamma/metabolism , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , MART-1 Antigen/metabolism , Melanoma/blood , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Programmed Cell Death 1 Receptor/metabolism , Vaccination
14.
Front Immunol ; 11: 306, 2020.
Article in English | MEDLINE | ID: mdl-32194558

ABSTRACT

CCL3, a member of the CC-chemokine family, has been associated with macrophage recruitment to heart tissue and parasite control in the acute infection of mouse with Trypanosoma cruzi, the causative agent of Chagas disease. Here, we approached the participation of CCL3 in chronic chagasic cardiomyopathy (CCC), the main clinical form of Chagas disease. We induced CCC in C57BL/6 (ccl3+/+) and CCL3-deficient (ccl3-/-) mice by infection with the Colombian Type I strain. In ccl3+/+ mice, high levels of CCL3 mRNA and protein were detected in the heart tissue during the acute and chronic infection. Survival was not affected by CCL3 deficiency. In comparison with ccl3+/+, chronically infected ccl3-/- mice presented reduced cardiac parasitism and inflammation due to CD8+ cells and macrophages. Leukocytosis was decreased in infected ccl3-/- mice, paralleling the accumulation of CD8+ T cells devoid of activated CCR5+ LFA-1+ cells in the spleen. Further, T. cruzi-infected ccl3-/-mice presented reduced frequency of interferon-gamma (IFNγ)+ cells and numbers of parasite-specific IFNγ-producing cells, while the T. cruzi antigen-specific cytotoxic activity was increased. Stimulation of CCL3-deficient macrophages with IFNγ improved parasite control, in a milieu with reduced nitric oxide (NOx) and tumor necrosis factor (TNF), but similar interleukin-10 (IL-10), concentrations. In comparison with chronically T. cruzi-infected ccl3+/+ counterparts, ccl3-/- mice did not show enlarged heart, loss of left ventricular ejection fraction, QTc prolongation and elevated CK-MB activity. Compared with ccl3+/+, infected ccl3-/- mice showed reduced concentrations of TNF, while IL-10 levels were not affected, in the heart milieu. In spleen of ccl3+/+ NI controls, most of the CD8+ T-cells expressing the CCL3 receptors CCR1 or CCR5 were IL-10+, while in infected mice these cells were mainly TNF+. Lastly, selective blockage of CCR1/CCR5 (Met-RANTES therapy) in chronically infected ccl3+/+ mice reversed pivotal electrical abnormalities (bradycardia, prolonged PR, and QTc interval), in correlation with reduced TNF and, mainly, CCL3 levels in the heart tissue. Therefore, in the chronic T. cruzi infection CCL3 takes part in parasite persistence and contributes to form a CD8+ T-cell and macrophage-enriched cardiac inflammation. Further, increased levels of CCL3 create a scenario with abundant IFNγ and TNF, associated with cardiomyocyte injury, heart dysfunction and QTc prolongation, biomarkers of severity of Chagas' heart disease.


Subject(s)
Chagas Cardiomyopathy/physiopathology , Chemokine CCL3/physiology , Interferon-gamma/physiology , Macrophages, Peritoneal/parasitology , Parasitemia/physiopathology , Trypanosoma cruzi/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/pathology , Chemokine CCL3/deficiency , Chemokine CCL3/pharmacology , Chemokine CCL5/pharmacology , Chemokine CCL5/therapeutic use , Chemotaxis, Leukocyte/drug effects , Cytokines/biosynthesis , Cytokines/genetics , Cytokines/pharmacology , Electrocardiography/drug effects , Female , Interferon-gamma/pharmacology , Macrophages, Peritoneal/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocarditis/etiology , Myocarditis/pathology , Myocarditis/physiopathology , RNA, Messenger/biosynthesis , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/biosynthesis , Receptors, Chemokine/genetics , Specific Pathogen-Free Organisms , Spleen/immunology , Spleen/metabolism , Stroke Volume , Trypanosoma cruzi/isolation & purification , Tumor Necrosis Factor-alpha/analysis
15.
Clin Immunol ; 212: 108240, 2020 03.
Article in English | MEDLINE | ID: mdl-31299381

ABSTRACT

CD8 T cells can kill malignant cells in an antigen-specific manner. However, anti-tumoral responses are usually limited by suppressive factors that curb the effector responses of tumor-infiltrating CD8 T cells. Therapeutic strategies to overcome intra-tumoral T cell suppression, for example immune checkpoint inhibition, have been clinically effective in patients with cancer. Here, we provide data that demonstrates that GK-1, a peptide derived from the parasite Taenia crassiceps, promotes an anti-melanoma CD8 T cell response with heightened effector characteristics that leads to an increased amount of tumor-infiltrating CD44+ IFN-γ-producing CD8 T cells. The response induced by GK-1 was associated with a reduction in the expression of PD-1 and PD-L1 on tumor-infiltrating CD8 and dendritic cells, respectively, effects that led to a dramatic decrease in tumor burden. Our results suggest that the immunomodulatory properties of GK-1 may promote a CD8 T cell response that may be therapeutically useful in the setting of cancer.


Subject(s)
B7-H1 Antigen/drug effects , CD8-Positive T-Lymphocytes/drug effects , Dendritic Cells/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma, Experimental/immunology , Peptides, Cyclic/pharmacology , Programmed Cell Death 1 Receptor/drug effects , Skin Neoplasms/immunology , Tumor Microenvironment/drug effects , Adoptive Transfer , Animals , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Down-Regulation , Hyaluronan Receptors/immunology , Interferon-gamma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/transplantation , Taenia , Tumor Microenvironment/immunology
16.
Cancer Chemother Pharmacol ; 85(2): 321-330, 2020 02.
Article in English | MEDLINE | ID: mdl-31863126

ABSTRACT

PURPOSE: Fatty acid synthase (FASN), the multifunctional enzyme responsible for endogenous fatty acid synthesis, is highly expressed and associated with poor prognosis in several human cancers, including melanoma. Our group has previously shown that pharmacological inhibition of FASN with orlistat decreases proliferation, promotes apoptosis, and reduces the metastatic spread of B16-F10 cells in experimental models of melanoma. While most of the orlistat antitumor properties seem to be closely related to direct effects on malignant cells, its impact on the host immune system is still unknown. METHODS: The effects of orlistat on the phenotype and activation status of infiltrating leukocytes in primary tumors and metastatic lymph nodes were assessed using a model of spontaneous melanoma metastasis (B16-F10 cells/C57BL/6 mice). Cells from the primary tumors and lymph nodes were mechanically dissociated and immune cells phenotyped by flow cytometry. The expression of IL-12p35, IL-12p40, and inducible nitric oxide synthase (iNOS) was analyzed by qRT-PCR and production of nitrite (NO2-) evaluated in serum samples with the Griess method. RESULTS: Orlistat-treated mice exhibited a 25% reduction in the number of mediastinal lymph node metastases (mean 3.96 ± 0.78, 95% CI 3.63-4.28) compared to the controls (mean 5.7 ± 1.72; 95% CI 5.01-6.43). The drug elicited an antitumor immune response against experimental melanomas by increasing maturation of intratumoral dendritic cells (DC), stimulating the expression of cytotoxicity markers in CD8 T lymphocytes and natural killer (NK) cells, as well as reducing regulatory T cells (Tregs). Moreover, the orlistat-treatment increased serum levels of nitric oxide (NO) concentrations. CONCLUSION: Taken together, these findings suggest that orlistat supports an antitumor response against experimental melanomas by increasing CD80/CD81-positive and IL-12-positive DC populations, granzyme b/NKG2D-positive NK populations, and perforin/granzyme b-positive CD8 T lymphocytes as well as reducing Tregs counts within experimental melanomas.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphatic Metastasis/drug therapy , Melanoma, Experimental/drug therapy , Orlistat/pharmacology , Animals , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Fatty Acid Synthases/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Male , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism
17.
Clin Mol Hepatol ; 26(2): 216-226, 2020 04.
Article in English | MEDLINE | ID: mdl-31795627

ABSTRACT

BACKGROUND/AIMS: Toll-like receptors (TLRs) modulate T cell responses in diverse diseases. Co-stimulation of T cell activation via TLR9 induces production of interferon gamma (IFN-γ), priming of which is critical for differentiation of pro-inflammatory macrophages. These macrophages have a crucial role in nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the expression of TLR9 protein on T cells and the consequences of TLR9-mediated triggering of these cells in patients with NAFLD. METHODS: Our study included 34 patients with simple steatosis, 34 patients with nonalcoholic steatohepatitis, eight patients with NAFLD who met general diagnostic criteria but lacked histological diagnosis, and 51 control subjects. We used a synthetic TLR9 ligand to co-stimulate T cells. We measured TLR9 expression in liver and peripheral T cells and CD69 and IFN-γ as phenotypic markers of T cell activation and differentiation by flow cytometry. RESULTS: TLR9 expression on liver and peripheral T cells was lowest in patients with simple steatosis and was positively associated with anthropometric, biochemical, and histopathological features of NAFLD. In vitro co-stimulation of T cells from patients with simple steatosis induced a limited number of IFN-γ-producing CD8+ T cells. At baseline, these patients showed a low frequency of circulating type 1 CD8+ cells. CONCLUSION: The positive associations between TLR9 and anthropometric, clinical, and histological features and the crucial role of IFN-γ-in NAFLD suggest that limited TLR9 expression and production of IFN-γ play a protective role in patients with simple steatosis.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Toll-Like Receptor 9/metabolism , Adult , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , Case-Control Studies , Female , Humans , Interferon-gamma/metabolism , Ionomycin/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Liver/metabolism , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Toll-Like Receptor 9/chemistry
18.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31479429

ABSTRACT

Chagas disease is a lifelong pathology resulting from Trypanosoma cruzi infection. It represents one of the most frequent causes of heart failure and sudden death in Latin America. Herein, we provide evidence that aerobic glycolytic pathway activation in monocytes drives nitric oxide (NO) production, triggering tyrosine nitration (TN) on CD8+ T cells and dysfunction in patients with chronic Chagas disease. Monocytes from patients exhibited a higher frequency of hypoxia-inducible factor 1α and increased expression of its target genes/proteins. Nonclassical monocytes are expanded in patients' peripheral blood and represent an important source of NO. Monocytes entail CD8+ T cell surface nitration because both the frequency of nonclassical monocytes and that of NO-producing monocytes positively correlated with the percentage of TN+ lymphocytes. Inhibition of glycolysis in in vitro-infected peripheral blood mononuclear cells decreased the inflammatory properties of monocytes/macrophages, diminishing the frequency of IL-1ß- and NO-producing cells. In agreement, glycolysis inhibition reduced the percentage of TN+CD8+ T cells, improving their functionality. Altogether, these results clearly show that glycolysis governs oxidative stress on monocytes and modulates monocyte-T cell interplay in human chronic Chagas disease. Understanding the pathological immune mechanisms that sustain an inflammatory environment in human pathology is key to designing improved therapies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Chagas Disease/immunology , Glycolysis/immunology , Monocytes/metabolism , Trypanosoma cruzi/immunology , Adult , Animals , CD8-Positive T-Lymphocytes/drug effects , Case-Control Studies , Cell Communication/drug effects , Chagas Disease/blood , Chagas Disease/drug therapy , Chlorocebus aethiops , Coculture Techniques , Female , Glycolysis/drug effects , Humans , Lymphocyte Activation/drug effects , Male , Middle Aged , Monocytes/drug effects , Monocytes/immunology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Oxidative Stress/immunology , Primary Cell Culture , Protozoan Proteins/immunology , Tyrosine/metabolism , Vero Cells , Young Adult
19.
Viral Immunol ; 32(7): 278-288, 2019 09.
Article in English | MEDLINE | ID: mdl-31274389

ABSTRACT

Follicular CD4+ T cells are the main HIV reservoirs due to, among other factors, the low frequency of CD8+ T cells in lymphoid follicles. Follicular CXCR5+ CD8+ T cells are associated with HIV control, but their differentiation conditions are yet undefined. In this study, we explored the in vitro effect of transforming growth factor (TGF)-ß1, interleukin (IL)-12, and IL-23 on the induction of CXCR5, the follicle homing receptor, in human circulating CD8+ T cells from seronegative, and treated HIV-infected individuals. The combination of TGF-ß1 plus IL-23 induced the highest expression of CXCR5 in purified CD8+ T cells. These CXCR5+ CD8+ T cells also expressed a transcriptional and phenotypic profile similar to that of follicular CD4+ T cells, such as the upregulation of BCL6, inducible costimulator and CD40L, and downregulation of PRDM1. These cells responded in vitro to CXCL13 and had low expression of CCR7. In addition, after polyclonal stimulation, they produced IL-21, interferon-γ, and de novo perforin. However, in comparison with seronegative individuals, CD8+ T cells from HIV-infected patients had a lower response to TGF-ß1/IL-23, a defect that was restored with the blockade of the programmed cell death 1 inhibitory receptor. Thus, TGF-ß1 plus IL-23 induce follicular-like CXCR5+ CD8+ T cells in seronegative individuals, but in HIV-infected patients there is a limited response which could impair the generation of this cell population.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Interleukin-23/pharmacology , Receptors, CXCR5/immunology , Transforming Growth Factor beta1/pharmacology , Adult , CD8-Positive T-Lymphocytes/drug effects , Cell Differentiation/drug effects , Cell Differentiation/immunology , Chemokine CXCL13/pharmacology , HIV Seronegativity/immunology , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Transcriptome/drug effects , Transcriptome/immunology , Young Adult
20.
Bull Math Biol ; 81(10): 4144-4173, 2019 10.
Article in English | MEDLINE | ID: mdl-31264136

ABSTRACT

Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle's invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.


Subject(s)
Models, Biological , Neoplasms/pathology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Combined Modality Therapy , Computer Simulation , Humans , Immunotherapy , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Mathematical Concepts , Mice , Neoplasms/immunology , Nonlinear Dynamics , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL