Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.414
1.
Iran J Allergy Asthma Immunol ; 23(2): 158-167, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38822511

Patients with inborn errors of immunity (IEI) are among the high-risk groups regarding COVID-19. Receiving booster doses (third and fourth) in addition to the standard doses is recommended in these patients. This study investigated the antibody response before and after a booster dose of Sinopharm vaccine in IEI patients.  Thirty patients (>12 years) with antibody deficiencies, referred to Imam Khomeini Hospital and Children's Medical Center in Tehran, were enrolled in this prospective cross-sectional study. All patients were fully vaccinated with the BBIBP-CorV vaccine (2 doses of Sinopharm). Initial measurements of anti-receptor-binding domain (anti-RBD) and anti-nucleocapsid (anti-N) IgG antibody responses were conducted by enzyme-linked immunosorbent assay (ELISA). Subsequently, all patients received a booster dose of the vaccine. Four to six weeks after booster injection, the levels of antibodies were re-evaluated.  Twenty patients with common variable immunodeficiency (CVID), 7 cases with agammaglobulinemia and 3 patients with hyper IgM syndrome were studied. Anti-RBD IgG and anti-N IgG antibodies increased in all patients after the booster. Our results indicated the need of receiving booster doses of the COVID-19 vaccine in patients with antibody deficiencies, even for enhancing humoral immune response specially in patients with CVID.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin G , SARS-CoV-2 , Humans , Male , COVID-19/immunology , COVID-19/prevention & control , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology , Cross-Sectional Studies , Adolescent , Iran , Prospective Studies , Antibody Formation/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Child , Middle Aged , Young Adult
2.
BMC Infect Dis ; 24(1): 560, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840046

BACKGROUND: China experienced an overwhelming COVID-19 pandemic from middle December 2022 to middle January 2023 after lifting the zero-COVID-19 policy on December 7, 2022. However, the infection rate was less studied. We aimed to investigate the SARS-CoV-2 infection rate in children shortly after discontinuation of the zero-COVID-19 policy. METHODS: From February 20 to April 10, 2023, we included 393 children aged 8 months to less than 3 years who did not receive COVID-19 vaccination and 114 children aged 3 to 6 years who received inactivated COVID-19 vaccines based on the convenience sampling in this cross-sectional study. IgG and IgM antibodies against nucleocapsid (N) and subunit 1 of spike (S1) of SARS-CoV-2 (anti-N/S1) were measured with commercial kits (Shenzhen YHLO Biotech, China). RESULTS: Of the 393 unvaccinated children (1.5 ± 0.6 years; 52.2% boys), 369 (93.9%) were anti-N/S1 IgG positive. Of the 114 vaccinated children (5.3 ± 0.9 years; 48.2% boys), 112 (98.2%) were anti-N/S1 IgG positive. None of the unvaccinated or vaccinated children was anti-N/S1 IgM positive. The median IgG antibody titers in vaccinated children (344.91 AU/mL) were significantly higher than that in unvaccinated children (42.80 AU/mL) (P < 0.0001). The positive rates and titers of anti-N/S1 IgG had no significant difference between boys and girls respectively. CONCLUSION: Vast majority of children were infected with SARS-CoV-2 shortly after ending zero-COVID-19 policy in China. Whether these unvaccinated infected children should receive COVID-19 vaccine merits further investigation.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , China/epidemiology , Child, Preschool , Male , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Child , Antibodies, Viral/blood , SARS-CoV-2/immunology , Infant , Cross-Sectional Studies , Immunoglobulin G/blood , Immunoglobulin M/blood , Vaccination/statistics & numerical data , Spike Glycoprotein, Coronavirus/immunology
3.
Vopr Virusol ; 69(2): 175-186, 2024 May 06.
Article En | MEDLINE | ID: mdl-38843023

INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 has created serious health problems worldwide. The most effective way to prevent the occurrence of new epidemic outbreaks is vaccination. One of the modern and effective approaches to vaccine development is the use of virus-like particles (VLPs). The aim of the study is to develop a technology for production of VLP based on recombinant SARS-CoV-2 proteins (E, M, N and S) in insect cells. MATERIALS AND METHODS: Synthetic genes encoding coronavirus proteins E, M, N and S were used. VLP with various surface proteins of strains similar to the Wuhan virus, Delta, Alpha and Omicron were developed and cloned into the pFastBac plasmid. The proteins were synthesized in the baculovirus expression system and assembled into VLP in the portable Trichoplusia ni cell. The presence of insertion in the baculovirus genome was determined by PCR. ELISA and immunoblotting were used to study the antigenic activity of VLP. VLP purification was performed by ultracentrifugation using 20% sucrose. Morphology was assessed using electron microscopy and dynamic light scattering. RESULTS: VLPs consisting of recombinant SARS-CoV-2 proteins (S, M, E and N) were obtained and characterized. The specific binding of antigenic determinants in synthesized VLPs with antibodies to SARS-CoV-2 proteins has been demonstrated. The immunogenic properties of VLPs have been studied. CONCLUSION: The production and purification of recombinant VLPs consisting of full-length SARS-CoV-2 proteins with a universal set of surface antigens have been developed and optimized. Self-assembling particles that mimic the coronavirus virion induce a specific immune response against SARS-CoV-2.


Baculoviridae , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle , Animals , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Humans , COVID-19/virology , COVID-19/immunology , Baculoviridae/genetics , Baculoviridae/metabolism , COVID-19 Vaccines/immunology , Antibodies, Viral/immunology , Coronavirus M Proteins/genetics , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Phosphoproteins
4.
Influenza Other Respir Viruses ; 18(6): e13333, 2024 Jun.
Article En | MEDLINE | ID: mdl-38845394

BACKGROUND: There is debate about the causes of the recent birth rate decline in high-income countries worldwide. During the pandemic, concern about the effects on reproductive health has caused vaccine hesitancy. We investigated the association of SARS-CoV-2 vaccination and infection with involuntary childlessness. METHODS: Females in fertility age within a prospective multicenter cohort of healthcare workers (HCW) were followed since August 2020. Data on baseline health, SARS-CoV-2-infection, and vaccination were obtained and regularly updated, in which serum samples were collected repetitively and screened for anti-nucleocapsid and anti-spike antibodies. In October 2023, participants indicated the presence of involuntary childlessness with onset during the pandemic, whereas those indicating an onset before the pandemic were excluded. The association of involuntary childlessness and SARS-CoV-2-vaccination and infection was investigated using univariable and multivariable analysis. Sensitivity analysis was performed to compare those reporting involuntary childlessness with those birthing a child since 2020. RESULTS: Of 798 participants, 26 (3.2%) reported involuntary childlessness starting since the pandemic. Of the involuntary childless women, 73.1% (19/26) were vaccinated compared to 86.0% (664/772) without involuntary childlessness (p = 0.73). SARS-CoV-2 infection was reported by 76.9% (20/26) compared to 72.4% (559/772) of controls (p = 0.64). Neither SARS-CoV-2 vaccination (aOR 0.91 per dose, 95%CI 0.67-1.26) nor infection (aOR per infection 1.05, 95%CI 0.62-1.71) was associated with involuntary childlessness. Sensitivity analysis confirmed these results. CONCLUSIONS: Among female HCW of fertility age, 3.2% indicated involuntary childlessness, which is comparable to pre-pandemic data. No association between involuntary childlessness and SARS-CoV-2 vaccination or infection was found.


COVID-19 Vaccines , COVID-19 , Health Personnel , SARS-CoV-2 , Vaccination , Humans , Female , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/immunology , Health Personnel/statistics & numerical data , Adult , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Prospective Studies , Vaccination/statistics & numerical data , Cohort Studies , Vaccination Hesitancy/statistics & numerical data , Middle Aged
5.
Hum Vaccin Immunother ; 20(1): 2352914, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38845401

This study aimed to evaluate how the duration of travel affects the behavior of urban and rural residents regarding free COVID-19 vaccination, and provide scientific evidence for promoting free vaccination and building an immune barrier to cope with future epidemics. From August 3, 2022 to February,18,2023, A follow-up survey was conducted in urban and rural adults in four cities in China to collect information on socio-demographic factors, vaccination status and travel time for vaccination. Propensity score matching (PSM) analysis was deployed to measure the net difference of the enhanced vaccination rate between urban and rural residents in different traffic time distribution. A total of 5780 samples were included in the study. The vaccination rate of the booster dose of COVID-19 vaccine among rural residents was higher than that of urban residents with a significant P-value (69.36% VS 64.49%,p < .001). The traffic time had a significant negative impact on the COVID-19 booster vaccination behavior of urban and rural residents. There was a significant interaction between the travel time to the vaccination point and the level of trust in doctors. Travel time had a negative impact on the free vaccination behavior of both urban and rural residents. The government should optimize and expand the number of vaccination sites and enhance residents' trust in the medical system. This is crucial for promoting free vaccination and effective epidemic management in the future.


COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Rural Population , Travel , Urban Population , Humans , Male , China , COVID-19/prevention & control , Female , Travel/statistics & numerical data , Urban Population/statistics & numerical data , Rural Population/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Middle Aged , Adult , Immunization, Secondary/statistics & numerical data , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Vaccination/psychology , Time Factors , Aged , Young Adult , Surveys and Questionnaires , East Asian People
6.
Hum Vaccin Immunother ; 20(1): 2361946, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38845409

Introduction COVID-19 vaccines may be administered with other vaccines during the same healthcare visit. COVID-19 monovalent (Fall 2021) and bivalent (Fall 2022) vaccine recommendations coincided with annual seasonal influenza vaccination. Data describing the frequency of the co-administration of COVID-19 vaccines with other vaccines are limited. Methods We used V-safe, a voluntary smartphone-based U.S. safety surveillance system established by the CDC, to describe trends in the administration of COVID-19 vaccines with other vaccines reported to V-safe during December 14, 2020 - May 19, 2023. Results Of the 21 million COVID-19 vaccinations reported to V-safe, 2.2% (459,817) were administered with at least 1 other vaccine. Co-administration most frequently occurred during the first week of October 2023 (27,092; 44.1%). Most reports of co-administration included influenza vaccine (393,003; 85.5%). Co-administration was most frequently reported for registrants aged 6 months-6 years (4,872; 4.4%). Conclusion Reports of co-administration to V-safe peaked during October 2023, when influenza vaccination most often occurs, possibly reflecting increased opportunities for multiple vaccinations and greater acceptability of the co-administration of COVID-19 vaccine with other vaccines, especially influenza vaccine.


COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , United States , Adolescent , Adult , COVID-19/prevention & control , COVID-19/epidemiology , Young Adult , Child , Middle Aged , Aged , Male , Female , Child, Preschool , Infant , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Vaccination/methods , Vaccination/trends , Vaccination/statistics & numerical data , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Aged, 80 and over , SARS-CoV-2/immunology
7.
Front Immunol ; 15: 1386243, 2024.
Article En | MEDLINE | ID: mdl-38835757

Introduction: Current vaccines against COVID-19 administered via parenteral route have limited ability to induce mucosal immunity. There is a need for an effective mucosal vaccine to combat SARS-CoV-2 virus replication in the respiratory mucosa. Moreover, sex differences are known to affect systemic antibody responses against vaccines. However, their role in mucosal cellular responses against a vaccine remains unclear and is underappreciated. Methods: We evaluated the mucosal immunogenicity of a booster vaccine regimen that is recombinant protein-based and administered intranasally in mice to explore sex differences in mucosal humoral and cellular responses. Results: Our results showed that vaccinated mice elicited strong systemic antibody (Ab), nasal, and bronchiole alveolar lavage (BAL) IgA responses, and local T cell immune responses in the lung in a sex-biased manner irrespective of mouse genetic background. Monocytes, alveolar macrophages, and CD103+ resident dendritic cells (DCs) in the lungs are correlated with robust mucosal Ab and T cell responses induced by the mucosal vaccine. Discussion: Our findings provide novel insights into optimizing next-generation booster vaccines against SARS-CoV-2 by inducing spike-specific lung T cell responses, as well as optimizing mucosal immunity for other respiratory infections, and a rationale for considering sex differences in future vaccine research and vaccination practice.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccines, Subunit , Animals , Female , Mice , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Male , Antibodies, Viral/immunology , Antibodies, Viral/blood , Lung/immunology , Lung/virology , T-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Mice, Inbred C57BL , Administration, Intranasal , Sex Factors , Immunoglobulin A/immunology , Dendritic Cells/immunology , Immunization, Secondary , Immunity, Humoral
8.
Influenza Other Respir Viruses ; 18(6): e13312, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837866

BACKGROUND: To inform future response planning we aimed to assess SARS-CoV-2 trends in infection- and/or vaccine-induced immunity, including breakthrough infections, among (sub)groups, professions and regions in the Dutch population during the Variant of Concern (VOC)-era. METHODS: In this prospective population-based cohort, randomly selected participants (n = 9985) aged 1-92 years (recruited early-2020) donated home-collected fingerstick-blood samples at six timepoints in 2021/2022, covering waves dominated by Alpha, Delta, and multiple Omicron (sub-)variants. IgG antibody assessment against Spike-S1 and Nucleoprotein was combined with vaccination- and testing data to estimate infection-induced (inf) and total (infection- and vaccination-induced) seroprevalence. RESULTS: Nationwide inf-seroprevalence rose modestly from 12% (95% CI 11-13) since Alpha to 26% (95% CI 24-28) amidst Delta, while total seroprevalence increased rapidly to 87% (95% CI 85-88), particularly in elderly and those with comorbidities (i.e., vulnerable groups). Interestingly, highest infection rates were noticeable among low/middle educated elderly, non-Western, those in contact professions, adolescents and young adults, and in low-vaccination coverage regions. Following Omicron emergence, inf-seroprevalence elevated sharply to 62% (95% CI 59-65) and further to 86% (95% CI 83-90) in late-2022, with frequent breakthrough infections and decreasing seroprevalence dissimilarities between most groups. Whereas > 90% of < 60-year-olds had been infected at least once, 30% of vaccinated vulnerable individuals had still not acquired hybrid immunity. CONCLUSIONS: Groups identified to have been infected disproportionally during the acute phase of the pandemic require specific attention in evaluation of control measures and future response planning worldwide. Furthermore, ongoing tailored vaccination efforts and (sero-)monitoring of vulnerable groups may remain important.


Antibodies, Viral , COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/immunology , Seroepidemiologic Studies , Netherlands/epidemiology , Middle Aged , Adolescent , Adult , Aged , Child , Child, Preschool , SARS-CoV-2/immunology , Young Adult , Male , Female , Aged, 80 and over , Infant , Antibodies, Viral/blood , Prospective Studies , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunoglobulin G/blood , Vaccination/statistics & numerical data
9.
Hum Vaccin Immunother ; 20(1): 2363016, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38839044

Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.


SpikoGen is a more traditional COVID-19 vaccine comprising SARS-CoV-2 spike protein extracellular domain formulated with Advax-CpG adjuvantSpikoGen differs from the Novavax vaccine in major ways including its use of the soluble secreted spike protein ECD rather than nanoparticle formulation and the use of a different adjuvantSpikoGen demonstrates robust protection against homologous and heterologous SARS-CoV-2 strains in hamster, ferret and non-human primate challenge modelsSpikoGen induces broadly cross-neutralizing antibodies, but still protects even after these antibody levels waneIn a pivotal Phase 3 clinical trial, SpikoGen reduced the risk of severe infection by 77.5% and was not associated with myocarditis, thrombosis or any other adverse safety signalsSpikoGen received an Emergency Use Authorization in the Middle East on 6 October 2021, making it the first recombinant spike protein vaccine to achieve this milestoneEight million doses of SpikoGen vaccine have been safely delivered to dateProtein-based vaccines have a long history of reliability and safety.


COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Animals , Spike Glycoprotein, Coronavirus/immunology , Humans , COVID-19/prevention & control , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , SARS-CoV-2/immunology , Adjuvants, Vaccine/administration & dosage , Adjuvants, Immunologic/administration & dosage , Vaccine Development
10.
BMC Med ; 22(1): 227, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840159

BACKGROUND: We quantified SARS-CoV-2 dynamics in different community settings and the direct and indirect effect of the BNT162b2 mRNA vaccine in Monaco for different variants of concern (VOC). METHODS: Between July 2021 and September 2022, we prospectively investigated 20,443 contacts from 6320 index cases using data from the Monaco COVID-19 Public Health Programme. We calculated secondary attack rates (SARs) in households (n = 13,877), schools (n = 2508) and occupational (n = 6499) settings. We used binomial regression with a complementary log-log link function to measure adjusted hazard ratios (aHR) and vaccine effectiveness (aVE) for index cases to infect contacts and contacts to be infected in households. RESULTS: In households, the SAR was 55% (95% CI 54-57) and 50% (48-51) among unvaccinated and vaccinated contacts, respectively. The SAR was 32% (28-36) and 12% (10-13) in workplaces, and 7% (6-9) and 6% (3-10) in schools, among unvaccinated and vaccinated contacts respectively. In household, the aHR was lower in contacts than in index cases (aHR 0.68 [0.55-0.83] and 0.93 [0.74-1.1] for delta; aHR 0.73 [0.66-0.81] and 0.89 [0.80-0.99] for omicron BA.1&2, respectively). Vaccination had no significant effect on either direct or indirect aVE for omicron BA.4&5. The direct aVE in contacts was 32% (17, 45) and 27% (19, 34), and for index cases the indirect aVE was 7% (- 17, 26) and 11% (1, 20) for delta and omicron BA.1&2, respectively. The greatest aVE was in contacts with a previous SARS-CoV-2 infection and a single vaccine dose during the omicron BA.1&2 period (45% [27, 59]), while the lowest were found in contacts with either three vaccine doses (aVE - 24% [- 63, 6]) or one single dose and a previous SARS-CoV-2 infection (aVE - 36% [- 198, 38]) during the omicron BA.4&5 period. CONCLUSIONS: Protection conferred by the BNT162b2 mRNA vaccine against transmission and infection was low for delta and omicron BA.1&2, regardless of the number of vaccine doses and previous SARS-CoV-2 infection. There was no significant vaccine effect for omicron BA.4&5. Health authorities carrying out vaccination campaigns should bear in mind that the current generation of COVID-19 vaccines may not represent an effective tool in protecting individuals from either transmitting or acquiring SARS-CoV-2 infection.


BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Humans , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/transmission , Male , Adult , Female , Middle Aged , SARS-CoV-2/immunology , Adolescent , Young Adult , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Aged , Prospective Studies , Child , Child, Preschool , Infant , Spain/epidemiology
11.
Front Immunol ; 15: 1401728, 2024.
Article En | MEDLINE | ID: mdl-38827749

Background: Immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now widespread; however, the degree of cross-immunity between SARS-CoV-2 and endemic, seasonal human coronaviruses (HCoVs) remains unclear. Methods: SARS-CoV-2 and HCoV cross-immunity was evaluated in adult participants enrolled in a US sub-study in the phase III, randomized controlled trial (NCT04516746) of AZD1222 (ChAdOx1 nCoV-19) primary-series vaccination for one-year. Anti-HCoV spike-binding antibodies against HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63 were evaluated in participants following study dosing and, in the AZD1222 group, after a non-study third-dose booster. Timing of SARS-CoV-2 seroconversion (assessed via anti-nucleocapsid antibody levels) and incidence of COVID-19 were evaluated in those who received AZD1222 primary-series by baseline anti-HCoV titers. Results: We evaluated 2,020/21,634 participants in the AZD1222 group and 1,007/10,816 in the placebo group. At the one-year data cutoff (March 11, 2022) mean duration of follow up was 230.9 (SD: 106.36, range: 1-325) and 94.3 (74.12, 1-321) days for participants in the AZD1222 (n = 1,940) and placebo (n = 962) groups, respectively. We observed little elevation in anti-HCoV humoral titers post study-dosing or post-boosting, nor evidence of waning over time. The occurrence and timing of SARS-CoV-2 seroconversion and incidence of COVID-19 were not largely impacted by baseline anti-HCoV titers. Conclusion: We found limited evidence for cross-immunity between SARS-CoV-2 and HCoVs following AZD1222 primary series and booster vaccination. Susceptibility to future emergence of novel coronaviruses will likely persist despite a high prevalence of SARS-CoV-2 immunity in global populations.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Immunity, Humoral , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Male , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Middle Aged , Immunity, Humoral/drug effects , Cross Reactions/immunology , Seasons , Young Adult , Vaccination , Double-Blind Method
12.
Cancer Med ; 13(11): e7304, 2024 Jun.
Article En | MEDLINE | ID: mdl-38826094

BACKGROUND: The surge in omicron variants has caused nationwide breakthrough infections in mainland China since the December 2022. In this study, we report the neutralization profiles of serum samples from the patients with breast cancer and the patients with liver cancer who had contracted subvariant breakthrough infections. METHODS: In this real-world study, we enrolled 143 COVID-19-vaccinated (81 and 62 patients with breast and liver cancers) and 105 unvaccinated patients with cancer (58 and 47 patients with breast and liver cancers) after omicron infection. Anti-spike receptor binding domain (RBD) IgGs and 50% pseudovirus neutralization titer (pVNT50) for the preceding (wild type), circulating omicron (BA.4-BA.5, and BF.7), and new subvariants (XBB.1.5) were comprehensively analyzed. RESULTS: Patients with liver cancer receiving booster doses had higher levels of anti-spike RBD IgG against circulating omicron (BA.4-BA.5, and BF.7) and a novel subvariant (XBB.1.5) compared to patients with breast cancer after breakthrough infection. Additionally, all vaccinated patients produced higher neutralizing antibody titers against circulating omicron (BA.4-BA.5, and BF.7) compared to unvaccinated patients. However, the unvaccinated patients produced higher neutralizing antibody against XBB.1.5 than vaccinated patients after Omicron infection, with this trend being more pronounced in breast cancer than in liver cancer patients. Moreover, we found that there was no correlation between anti-spike RBD IgG against wildtype virus and the neutralizing antibody titer, but a positive correlation between anti-spike RBD IgG and the neutralizing antibody against XBB.1.5 was found in unvaccinated patients. CONCLUSION: Our study found that there may be differences in vaccine response and protective effect against COVID-19 infection in patients with liver and breast cancer. Therefore, we recommend that COVID-19 vaccine strategies should be optimized based on vaccine components and immunology profiles of different patients with cancer.


Antibodies, Neutralizing , Antibodies, Viral , Breast Neoplasms , COVID-19 Vaccines , COVID-19 , Liver Neoplasms , SARS-CoV-2 , Humans , Female , COVID-19/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Liver Neoplasms/virology , Liver Neoplasms/immunology , Liver Neoplasms/epidemiology , Breast Neoplasms/immunology , Breast Neoplasms/epidemiology , Breast Neoplasms/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , China/epidemiology , COVID-19 Vaccines/immunology , Adult , Aged , Spike Glycoprotein, Coronavirus/immunology , Male , Disease Outbreaks , Immunoglobulin G/blood , Immunoglobulin G/immunology
13.
Cell Commun Signal ; 22(1): 305, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831299

As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS­CoV­2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.


Autophagy , COVID-19 , Membrane Proteins , SARS-CoV-2 , Autophagy/immunology , Autophagy/drug effects , Humans , Membrane Proteins/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Animals , COVID-19 Vaccines/immunology , Immunity, Innate/drug effects , Adjuvants, Vaccine/therapeutic use , Adjuvants, Vaccine/pharmacology , Adjuvants, Immunologic/pharmacology
14.
J Korean Med Sci ; 39(21): e174, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38832478

BACKGROUND: Although guidelines recommend vaccination for individuals who have recovered from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to prevent reinfection, comprehensive evaluation studies are limited. We aimed to evaluate vaccine effectiveness against SARS-CoV-2 reinfection according to the primary vaccination status, booster vaccination status, and vaccination methods used. METHODS: This population-based case-control study enrolled all SARS-CoV-2-infected patients in Seoul between January 2020 and February 2022. Individuals were categorized into case (reinfection) and control (no reinfection) groups. Data were analyzed using conditional logistic regression after adjusting for underlying comorbidities using multiple regression. RESULTS: The case group included 7,678 participants (average age: 32.26 years). In all vaccinated individuals, patients who received the first and second booster doses showed reduced reinfection rates compared with individuals who received basic vaccination (odds ratio [OR] = 0.605, P < 0.001 and OR = 0.002, P < 0.001). Patients who received BNT162b2 or mRNA-1273, NVX-CoV2373 and heterologous vaccination showed reduced reinfection rates compared with unvaccinated individuals (OR = 0.546, P < 0.001; OR = 0.356, P < 0.001; and OR = 0.472, P < 0.001). However, the ChAdOx1-S or Ad26.COV2.S vaccination group showed a higher reinfection rate than the BNT162b2 or mRNA-1273 vaccination group (OR = 4.419, P < 0.001). CONCLUSION: In SARS-CoV-2-infected individuals, completion of the basic vaccination series showed significant protection against reinfection compared with no vaccination. If the first or second booster vaccination was received, the protective effect against reinfection was higher than that of basic vaccination; when vaccinated with BNT162b2 or mRNA-1273 only or heterologous vaccination, the protective effect was higher than that of ChAdOx1-S or Ad26.COV2.S vaccination only.


2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Reinfection , SARS-CoV-2 , Vaccine Efficacy , Humans , Male , Female , Case-Control Studies , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Adult , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , BNT162 Vaccine/immunology , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Reinfection/prevention & control , Reinfection/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Young Adult , Vaccination , ChAdOx1 nCoV-19 , Aged
15.
BMC Geriatr ; 24(1): 411, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720296

BACKGROUND: Impaired immune response in multiple myeloma renders the patients vulnerable to infections, such as COVID-19, and may cause worse response to vaccines. Researchers should analyze this issue to enable the planning for special preventive measures, such as increased booster doses. Therefore, this meta-analysis aimed to evaluate the response and efficacy of COVID-19 vaccines in patients with multiple myeloma. METHODS: This meta-analysis followed PRISMA 2020 guidelines, conducting a comprehensive database search using specified keywords. Study selection involved a two-phase title/abstract and full-text screening process. Data extraction was performed by two researchers, and statistical analysis involved meta-analysis, subgroup analysis based on vaccine dosage and study time, random effects meta-regression, and heterogeneity testing using the Q test. RESULTS: The meta-analysis revealed that patients with multiple myeloma (MM) had a lower likelihood of developing detectable antibodies after COVID-19 vaccination compared to healthy controls (Log odds ratio with 95% CI: -3.34 [-4.08, -2.60]). The analysis of antibody response after different doses showed consistent lower seropositivity in MM patients (after first dose: -2.09, [-3.49, -0.69], second: -3.80, 95%CI [-4.71, -3.01], a booster dose: -3.03, [-5.91, -0.15]). However, there was no significant difference in the mean level of anti-S antibodies between MM patients and controls (Cohen's d -0.72, [-1.86, 0.43]). Evaluation of T-cell responses indicated diminished T-cell-mediated immunity in MM patients compared to controls. Seven studies reported clinical response, with breakthrough infections observed in vaccinated MM patients. CONCLUSIONS: These findings highlight the impaired humoral and cellular immune responses in MM patients after COVID-19 vaccination, suggesting the need for further investigation and potential interventions.


COVID-19 Vaccines , COVID-19 , Multiple Myeloma , Multiple Myeloma/immunology , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , Vaccination/methods
16.
J Infect Dev Ctries ; 18(4): 513-519, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38728641

INTRODUCTION: Vaccination against coronavirus disease-19 (COVID-19) is highly effective in preventing severe disease and mortality. Adenoviral vector and mRNA vaccines were effective against intensive care unit (ICU) admission, but the effectiveness of inactivated vaccine on ICU admission was unclear. We aimed to evaluate the effect of vaccination status on ICU admission in hospitalized COVID-19 patients in a country with heterologous vaccination policy. METHODOLOGY: This is a retrospective multicenter study conducted in three hospitals in Izmir, Turkey between 1 January 2021 and 31 March 2022. Patients aged ≥ 18 years and hospitalized due to COVID-19 were included in the study. Patients who had never been vaccinated and patients who had been vaccinated with a single dose were considered unvaccinated. A logistic regression analysis was performed for evaluating risk factors for ICU admission. RESULTS: A total of 2,110 patients were included in the final analysis. The median age was 66 years (IQR, 53-76 years) and 54% of the patients were vaccinated. During the study period, 407 patients (19.3%) were transferred to the ICU due to disease severity. Patients who were admitted to the ICU were older (median age 68 vs. 65 years, p < 0.001); and the number of unvaccinated individuals was higher among ICU patients (57% vs. 45%, p < 0.001). In multivariate regression analysis, being unvaccinated was found to be the most important independent risk factor for ICU admission with an OR of 2.06 (95% CI, 1.64-2.59). CONCLUSIONS: Vaccination against COVID-19 is effective against ICU admission and hospital mortality.


COVID-19 Vaccines , COVID-19 , Hospitalization , Intensive Care Units , SARS-CoV-2 , Vaccination , Humans , COVID-19/prevention & control , Middle Aged , Aged , Male , Female , Retrospective Studies , Turkey , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Vaccination/statistics & numerical data , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , Risk Factors
17.
PLoS One ; 19(5): e0302579, 2024.
Article En | MEDLINE | ID: mdl-38722969

Since March 2020, the COVID-19 pandemic has swiftly propagated, triggering a competitive race among medical firms to forge vaccines that thwart the infection. Lebanon initiated its vaccination campaign on February 14, 2021. Despite numerous studies conducted to elucidate the characteristics of immune responses elicited by vaccination, the topic remains unclear. Here, we aimed to track the progression of anti-spike SARS-CoV-2 antibody titers at two-time points (T1: shortly after the second vaccination dose, T2: six months later) within a cohort of 201 adults who received Pfizer-BioNTech (BNT162b2), AstraZeneca, or Sputnik V vaccines in North Lebanon. Blood specimens were obtained from participants, and antibody titers against SARS-CoV-2 were quantified through the Elecsys-Anti-SARS-CoV-2 S assay (Roche Diagnostics, Switzerland). We used univariate analysis and multivariable logistic regression models to predict determinants influencing the decline in immune response and the occurrence of breakthrough infections among vaccinated patients. Among the 201 participants, 141 exhibited unchanging levels of antibody titers between the two sample collections, 55 displayed waning antibody titers, and only five participants demonstrated heightened antibody levels. Notably, age emerged as the sole variable significantly linked to the waning immune response. Moreover, the BNT162b2 vaccine exhibited significantly higher efficacy concerning the occurrence of breakthrough infections when compared with the AstraZeneca vaccine. Overall, our study reflected the immune status of a sample of vaccinated adults in North Lebanon. Further studies on a larger scale are needed at the national level to follow the immune response after vaccination, especially after the addition of the third vaccination dose.


Antibodies, Viral , COVID-19 , SARS-CoV-2 , Humans , Male , Lebanon/epidemiology , Female , Adult , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Vaccination , Aged , Young Adult , BNT162 Vaccine/immunology , Breakthrough Infections
19.
Influenza Other Respir Viruses ; 18(5): e13309, 2024 May.
Article En | MEDLINE | ID: mdl-38725111

BACKGROUND: The newly emerged SARS-CoV-2 possesses shared antigenic epitopes with other human coronaviruses. We investigated if COVID-19 vaccination or SARS-CoV-2 infection may boost cross-reactive antibodies to other human coronaviruses. METHODS: Prevaccination and postvaccination sera from SARS-CoV-2 naïve healthy subjects who received three doses of the mRNA vaccine (BioNTech, BNT) or the inactivated vaccine (CoronaVac, CV) were used to monitor the level of cross-reactive antibodies raised against other human coronaviruses by enzyme-linked immunosorbent assay. In comparison, convalescent sera from COVID-19 patients with or without prior vaccination history were also tested. Pseudoparticle neutralization assay was performed to detect neutralization antibody against MERS-CoV. RESULTS: Among SARS-CoV-2 infection-naïve subjects, BNT or CV significantly increased the anti-S2 antibodies against Betacoronaviruses (OC43 and MERS-CoV) but not Alphacoronaviruses (229E). The prevaccination antibody response to the common cold human coronaviruses did not negatively impact the postvaccination antibody response to SARS-CoV-2. Cross-reactive antibodies that binds to the S2 protein of MERS-CoV were similarly detected from the convalescent sera of COVID-19 patients with or without vaccination history. However, these anti-S2 antibodies do not possess neutralizing activity in MERS-CoV pseudoparticle neutralization tests. CONCLUSIONS: Our results suggest that SARS-CoV-2 infection or vaccination may potentially modulate population immune landscape against previously exposed or novel human coronaviruses. The findings have implications for future sero-epidemiological studies on MERS-CoV.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , SARS-CoV-2 , Humans , Cross Reactions/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Adult , Male , Female , Vaccination , Middle Aged , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Neutralization Tests , Middle East Respiratory Syndrome Coronavirus/immunology , Young Adult , mRNA Vaccines/immunology
20.
Elife ; 122024 May 08.
Article En | MEDLINE | ID: mdl-38716629

SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αß sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as 'sustainers'), but not in 'decliners'. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.


Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Spike Glycoprotein, Coronavirus/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Male , Epitopes, T-Lymphocyte/immunology , Adult , T-Lymphocytes, Helper-Inducer/immunology , Middle Aged
...