Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.099
Filter
1.
Sci Rep ; 14(1): 13062, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844557

ABSTRACT

Metals have been proved to be one of risk factors for chronic kidney disease (CKD) and diabetes, but the effect of mixed metal co-exposure and potential interaction between metals are still unclear. We assessed the urine and whole blood levels of cadmium (Cd), manganese (Mn), lead (Pb), mercury (Hg), and renal function in 3080 adults from National Health and Nutrition Survey (NHANES) (2011-2018) to explore the effect of mixed metal exposure on CKD especially in people with type 2 diabetes mellitus (T2DM). Weighted quantile sum regression model and Bayesian Kernel Machine Regression model were used to evaluate the overall exposure impact of metal mixture and potential interaction between metals. The results showed that the exposure to mixed metals was significantly associated with an increased risk of CKD in blood glucose stratification, with the risk of CKD being 1.58 (1.26,1.99) times in urine and 1.67 (1.19,2.34) times in whole blood higher in individuals exposed to high concentrations of the metal mixture compared to those exposed to low concentrations. The effect of urine metal mixture was elevated magnitude in stratified analysis. There were interactions between urine Pb and Cd, Pb and Mn, Pb and Hg, Cd and Mn, Cd and Hg, and blood Pb and Hg, Mn and Cd, Mn and Pb, Mn and Hg on the risk of CKD in patients with T2DM and no significant interaction between metals was observed in non-diabetics. In summary, mixed metal exposure increased the risk of CKD in patients with T2DM, and there were complex interactions between metals. More in-depth studies are needed to explore the mechanism and demonstrate the causal relationship.


Subject(s)
Environmental Exposure , Nutrition Surveys , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/urine , Female , Male , Middle Aged , Adult , Environmental Exposure/adverse effects , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Cadmium/blood , Cadmium/urine , Cadmium/adverse effects , Cadmium/toxicity , Risk Factors , Lead/blood , Lead/urine , Lead/toxicity , Metals, Heavy/blood , Metals, Heavy/urine , Metals, Heavy/adverse effects , Metals, Heavy/toxicity , Aged , Metals/urine , Metals/blood , Metals/adverse effects , Manganese/urine , Manganese/blood , Manganese/adverse effects , Bayes Theorem
2.
Pharmacol Res ; 205: 107251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862070

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide. Epidemiological studies have reported that exposure of the population to environmental endocrine-disrupting chemicals (EDCs) is associated with NAFLD. However, EDCs are of different types, and there are inconsistencies in the relevant evidence and descriptions, which have not been systematically summarized so far. Therefore, this study aimed to determine the association between population exposure to EDCs and NAFLD. Three databases, including PubMed, Web of science, and Embase were searched, and 27 articles were included in this study. Methodological quality, heterogeneity, and publication bias of the included studies were assessed using the Newcastle-Ottawa scale, I2 statistics, Begg's test, and Egger's test. The estimated effect sizes of the included studies were pooled and evaluated using the random-effects model (I2 > 50 %) and the fixed-effects model ( I2 < 50 %). The pooled-estimate effect sizes showed that population exposure to Phthalates (PAEs) (OR = 1.18, 95 % CI:1.03-1.34), cadmium (Cd) (OR = 1.37, 95 % CI:1.09-1.72), and bisphenol A (OR = 1.43, 95 % CI:1.24-1.65) were positively correlated with the risk of NAFLD. Exposure to mercury (OR =1.46, 95 % CI:1.17-1.84) and Cd increased the risk of "elevated alanine aminotransferase". On the contrary, no significant association was identified between perfluoroalkyl substances (OR =0.99, 95 % CI:0.93-1.06) and NAFLD. However, female exposure to perfluorooctanoic acid (OR =1.82, 95 % CI:1.01-3.26) led to a higher risk of NAFLD than male exposure. In conclusion, this study revealed that EDCs were risk factors for NAFLD. Nonetheless, the sensitivity analysis results of some of the meta-analyses were not stable and demonstrated high heterogeneity. The evidence for these associations is limited, and more large-scale population-based studies are required to confirm these findings.


Subject(s)
Endocrine Disruptors , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/chemically induced , Humans , Endocrine Disruptors/adverse effects , Endocrine Disruptors/toxicity , Phthalic Acids/adverse effects , Phthalic Acids/toxicity , Environmental Pollutants/adverse effects , Environmental Pollutants/toxicity , Phenols/adverse effects , Phenols/toxicity , Benzhydryl Compounds/adverse effects , Cadmium/adverse effects , Cadmium/toxicity , Fluorocarbons/adverse effects , Fluorocarbons/toxicity
3.
J Med Virol ; 96(6): e29765, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924102

ABSTRACT

This study aims to investigate the significant relationship between serum heavy metals (lead [Pb], cadmium [Cd], mercury [Hg]) and the risk of herpes simplex virus type 1 (HSV-1) infection. Data were derived from the National Health and Nutrition Examination Survey (NHANES) conducted in the United States from 2007 to 2016. This nationally representative survey, conducted by the National Center for Health Statistics, assessed the health status of participants through interviews, physical examinations, and laboratory tests. After excluding participants lacking serum Pb, Cd, and Hg data, as well as those missing HSV-1 testing data and pregnant women, the analysis included 13 772 participants, among whom 3363 were adolescents. A survey-weighted multivariate logistic regression model was used to evaluate the association between heavy metal exposure and the risk of HSV-1 infection, and to explore the dose-response relationship between them. In adults and adolescents, serum concentrations of Pb and Cd were higher in those infected with HSV-1 than in those not infected. However, an increase in serum Hg concentration was observed only in infected adolescents. After adjusting for potential confounders, elevated serum Pb and Cd concentrations in adults were associated with an increased risk of HSV-1 infection. Higher serum Pb and Cd concentrations were associated with an increased risk of HSV-2 infection, irrespective of HSV-1 infection status. In adults, serum concentrations of Pb and Hg showed an approximately linear relationship with HSV-1 infection risk (p for nonlinearity > 0.05), whereas the dose-response relationship between serum Cd concentration and HSV-1 infection was nonlinear (p for nonlinearity = 0.004). In adolescents, serum concentrations of heavy metals (Pb, Cd, Hg) showed an approximately linear relationship with HSV-1 infection (p for nonlinearity > 0.05). Furthermore, the study examined the relationship between serum heavy metal levels and the risk of HSV-1 infection across different genders, races, income levels, weight statuses, and immune statuses. In conclusion, there is a significant association between serum heavy metal concentrations and HSV-1 infection, which warrants further investigation into the causal relationship between them.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Metals, Heavy , Nutrition Surveys , Humans , Female , Male , Cross-Sectional Studies , Adolescent , Metals, Heavy/blood , Metals, Heavy/adverse effects , Herpes Simplex/epidemiology , Herpes Simplex/blood , Adult , Young Adult , Middle Aged , United States/epidemiology , Cadmium/blood , Cadmium/adverse effects , Lead/blood , Mercury/blood , Child , Risk Factors , Environmental Exposure/adverse effects , Aged
4.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928368

ABSTRACT

Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.


Subject(s)
Arsenic , Cadmium , Copper , Iron , Humans , Arsenic/toxicity , Arsenic/adverse effects , Iron/metabolism , Cadmium/toxicity , Cadmium/adverse effects , Copper/toxicity , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Liver/metabolism , Liver/drug effects , Metals, Heavy/toxicity , Oxidative Stress/drug effects
5.
Redox Biol ; 73: 103179, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733909

ABSTRACT

Increasing evidences demonstrate that environmental stressors are important inducers of acute kidney injury (AKI). This study aimed to investigate the impact of exposure to Cd, an environmental stressor, on renal cell ferroptosis. Transcriptomics analyses showed that arachidonic acid (ARA) metabolic pathway was disrupted in Cd-exposed mouse kidneys. Targeted metabolomics showed that renal oxidized ARA metabolites were increased in Cd-exposed mice. Renal 4-HNE, MDA, and ACSL4, were upregulated in Cd-exposed mouse kidneys. Consistent with animal experiments, the in vitro experiments showed that mitochondrial oxidized lipids were elevated in Cd-exposed HK-2 cells. Ultrastructure showed mitochondrial membrane rupture in Cd-exposed mouse kidneys. Mitochondrial cristae were accordingly reduced in Cd-exposed mouse kidneys. Mitochondrial SIRT3, an NAD+-dependent deacetylase that regulates mitochondrial protein stability, was reduced in Cd-exposed mouse kidneys. Subsequently, mitochondrial GPX4 acetylation was elevated and mitochondrial GPX4 protein was reduced in Cd-exposed mouse kidneys. Interestingly, Cd-induced mitochondrial GPX4 acetylation and renal cell ferroptosis were exacerbated in Sirt3-/- mice. Conversely, Cd-induced mitochondrial oxidized lipids were attenuated in nicotinamide mononucleotide (NMN)-pretreated HK-2 cells. Moreover, Cd-evoked mitochondrial GPX4 acetylation and renal cell ferroptosis were alleviated in NMN-pretreated mouse kidneys. These results suggest that mitochondrial GPX4 acetylation, probably caused by SIRT3 downregulation, is involved in Cd-evoked renal cell ferroptosis.


Subject(s)
Cadmium , Ferroptosis , Mitochondria , Phospholipid Hydroperoxide Glutathione Peroxidase , Sirtuin 3 , Animals , Ferroptosis/drug effects , Mice , Cadmium/toxicity , Cadmium/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Acetylation , Humans , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Cell Line , Male , Mice, Knockout , Coenzyme A Ligases
6.
PLoS One ; 19(5): e0303418, 2024.
Article in English | MEDLINE | ID: mdl-38776301

ABSTRACT

OBJECTIVE: Accumulating evidence showed that exposure to heavy metals was harmful to human health. Little is known regarding the mixing effects of multiple metal exposures on vertebral compression fracture (VCF) and femoral neck bone mineral density (BMD). This study aimed to explore the individual and joint effects of four heavy metals [manganese (Mn), lead (Pb), cadmium (Cd) and mercury (Hg)] on VCF risk and femoral neck BMD. METHODS: This cross-sectional study included 1,007 eligible individuals with vertebral fractures from National Health and Nutrition Examination Survey 2013-2014. The outcome was the risk of VCF and femoral neck BMD. Weighted multivariate logistic regression was used to explore the individual effect of four heavy metals on the VCF risk, separately. Weighted multivariate linear regression was used to explore the individual effect of four heavy metals on the femoral neck BMD, separately. Adopted bayesian kernel machine regression (BKMR) model and quantile-based g computation (qgcomp) to examine the joint effects of four heavy metals on the VCF risk and femoral neck BMD. RESULTS: Among the population, 57 individuals developed VCF. After adjusting covariates, we found no statistical differences regarding the individual effects of four heavy metals on the risk of VCF. BKMR model and qgcomp indicated that there were no statistical differences regarding the joint effects between four heavy metals on the VCF risk. In addition, we found that Cd was associated with femoral neck BMD, and an increase in the mixture of heavy metal exposures was associated with a decreased risk of femoral neck BMD. CONCLUSION: No significant correlation was observed between co-exposure to Mn, Pb, Cd and Hg and VCF risk. But co-exposure to Mn, Pb, Cd and Hg may be associated with femoral neck BMD.


Subject(s)
Bone Density , Femur Neck , Fractures, Compression , Metals, Heavy , Nutrition Surveys , Spinal Fractures , Humans , Bone Density/drug effects , Female , Male , Cross-Sectional Studies , Middle Aged , Metals, Heavy/adverse effects , Spinal Fractures/epidemiology , Spinal Fractures/physiopathology , Aged , Cadmium/adverse effects , Adult , Environmental Exposure/adverse effects , Mercury/adverse effects
7.
Environ Res ; 252(Pt 2): 118966, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38640992

ABSTRACT

OBJECTIVE: To evaluate the association between exposure to plastic-related endocrine-disrupting chemicals (EDCs), specifically Bisphenol A (BPA), Phthalates, Cadmium, and Lead, and the risk of estrogen-dependent diseases (EDDs) such as polycystic ovary syndrome (PCOS), endometriosis, or endometrial cancer by conducting a meta-analysis of relevant studies. METHODS: PubMed, Web of Science, and Cochrane Library databases were used for literature retrieval of articles published until the 21st of April 2023. Literature that evaluated the association between BPA, phthalates, cadmium, and/or lead exposure and the risk of PCOS, endometriosis, or endometrial cancer development or exacerbation were included in our analysis. STATA/MP 17.0 was used for all statistical analyses. RESULTS: Overall, 22 articles were included in our meta-analysis with a total of 83,641 subjects all of whom were females aged between 18 and 83 years old. The overall effect size of each study was as follows: endometriosis risk in relation to BPA exposure ES 1.82 (95% CI; 1.50, 2.20). BPA and PCOS risk ES 1.61 (95% CI; 1.39, 1.85). Phthalate metabolites and endometriosis risk; MBP ES 1.07 (95% CI; 0.86, 1.33), MEP ES 1.05 (95% CI; 0.87, 1.28), MEHP ES 1.15 (95% CI; 0.67, 1.98), MBzP ES 0.97 (95% CI; 0.63, 1.49), MEOHP ES 1.87 (95% CI; 1.21, 2.87), and MEHHP ES 1.98 (95% CI; 1.32, 2.98). Cadmium exposure and endometrial cancer risk ES 1.14 (95% CI; 0.92, 1.41). Cadmium exposure and the risk of endometriosis ES 2.54 (95% CI; 1.71, 3.77). Lead exposure and the risk of endometriosis ES 1.74 (95% CI; 1.13, 2.69). CONCLUSION: Increased serum, urinary, or dietary concentration of MBzP and MEHP in women is significantly associated with endometriosis risk. Increased cadmium concentration is associated with endometrial cancer risk.


Subject(s)
Endocrine Disruptors , Endometrial Neoplasms , Endometriosis , Humans , Female , Endocrine Disruptors/toxicity , Endocrine Disruptors/adverse effects , Endometriosis/chemically induced , Endometriosis/epidemiology , Endometrial Neoplasms/chemically induced , Endometrial Neoplasms/epidemiology , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/epidemiology , Adult , Phenols/toxicity , Phenols/adverse effects , Young Adult , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/adverse effects , Plastics , Phthalic Acids/urine , Phthalic Acids/toxicity , Middle Aged , Cadmium/toxicity , Cadmium/adverse effects , Environmental Exposure/adverse effects , Adolescent , Environmental Pollutants , Estrogens , Aged , Lead/blood , Lead/toxicity , Aged, 80 and over
8.
Sci Rep ; 14(1): 9947, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689029

ABSTRACT

Kawasaki disease (KD) is an acute systemic vasculitis primarily affecting young children, with an unclear etiology. We investigated the link between maternal heavy metal exposure and KD incidence in children using the Japan Environment and Children's Study, a large-scale nationwide prospective cohort with approximately 100,000 mother-child pairs. Maternal blood samples collected during the second/third trimester were analyzed for heavy metals [mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se), manganese (Mn)], divided into four quartiles based on concentration levels. KD incidence within the first year of life was tracked via questionnaire. Among 85,378 mother-child pairs, 316 children (0.37%) under one year were diagnosed with KD. Compared with the lowest concentration group (Q1), the highest (Q4) showed odds ratios (95% confidence interval) for Hg, 1.29 (0.82-2.03); Cd, 0.99 (0.63-1.58); Pb, 0.84 (0.52-1.34); Se, 1.17 (0.70-1.94); Mn, 0.70 (0.44-1.11), indicating no concentration-dependent increase. Sensitivity analyses with logarithmic transformation and extended outcomes up to age 3 yielded similar results. No significant association was found between maternal heavy metal levels and KD incidence, suggesting that heavy metal exposure does not increase KD risk.


Subject(s)
Maternal Exposure , Metals, Heavy , Mucocutaneous Lymph Node Syndrome , Humans , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/chemically induced , Mucocutaneous Lymph Node Syndrome/etiology , Mucocutaneous Lymph Node Syndrome/blood , Female , Japan/epidemiology , Metals, Heavy/blood , Metals, Heavy/adverse effects , Pregnancy , Maternal Exposure/adverse effects , Male , Adult , Prospective Studies , Infant , Incidence , Prenatal Exposure Delayed Effects/epidemiology , Child, Preschool , Cadmium/blood , Cadmium/adverse effects
9.
J Gynecol Obstet Hum Reprod ; 53(6): 102782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554943

ABSTRACT

BACKGROUND: Infertility has been defined as a failure to conceive for at least 12 months of regular unprotected sexual intercourse. The male factors are responsible for about 50 % of cases. Various factors such as endocrine, immunological, genetic, exposure to toxicants, and idiopathic factors are involved in male infertility. Recently, the role of PTEs in reproductive performance has been explored by various studies. OBJECTIVES: Current systematic review and meta-analysis have been carried out to compile and statistically analyze the findings of relevant studies and reach some conclusion. METHODOLOGY: A literature search was done according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines in three scientific literature databases; PubMed, Google Scholar, and Science Direct. Meta-analysis was performed using Review Manager 5.4 software. The study's protocol was registered in PROSPERO (CRD42023465776). RESULTS: Meta-analysis of lead in the blood of infertile cases and healthy controls indicated a significant association with male infertility, observed standard mean difference (SMD) was 0.67 at 95 % confidence interval (CI) (0.07, 1.28), and p = 0.03. In the case of lead analysis in semen, the values are as follows: SMD = 1.19 at 95 % CI (0.42, 1.96) with p = 0.002. Significant association appears for cadmium in semen with SMD 0.92 at 95 % CI (0.54, 1.29) and p < 0.00001. No significant association was observed for arsenic, barium, and mercury in blood. CONCLUSION: Most of the studies focus on the detection of PTE in semen samples followed by blood as sample type. Lead and cadmium exposure is significantly associated with male infertility. However, non-significant results for arsenic, barium, and mercury are observed.


Subject(s)
Infertility, Male , Humans , Male , Infertility, Male/etiology , Infertility, Male/blood , Cadmium/blood , Cadmium/adverse effects , Lead/blood , Mercury/blood , Mercury/adverse effects , Semen/chemistry , Semen/drug effects , Arsenic/blood , Arsenic/analysis , Environmental Exposure/adverse effects
10.
Environ Res ; 251(Pt 1): 118667, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462081

ABSTRACT

Environmental exposure is widely recognized as the primary sources of Cadmium (Cd) in the human body, and exposure to Cd is associated with kidney damage in adults. Nevertheless, the role of DNA methylation in Cd-induced kidney damage remains unclear. This study aimed to investigate the epigenome-wide association of environmental Cd-related DNA methylation changes with kidney damage. We included 300 non-smoking adults from the China in 2019. DNA methylation profiles were measured with Illumina Infinium MethylationEPIC BeadChip array. Linear mixed-effect model was employed to estimate the effects of urinary Cd with DNA methylation. Differentially methylated positions (DMPs) associated with urinary Cd were then tested for the association with kidney damage indicators. The mediation analysis was further applied to explore the potential DNA methylation based mediators. The prediction model was developed using a logistic regression model, and used 1000 bootstrap resampling for the internal validation. We identified 27 Cd-related DMPs mapped to 20 genes after the adjustment of false-discovery-rate for multiple testing among non-smoking adults. 17 DMPs were found to be associated with both urinary Cd and kidney damage, and 14 of these DMPs were newly identified within the Chinese. Mediation analysis revealed that DNA methylation of cg26907612 and cg16848624 mediated the Cd-related reduced kidney damage. In addition, ten variables were selected using the LASSO regression analysis and were utilized to develop the prediction model. It found that the nomogram model predicted the risk of kidney damage caused by environmental Cd with a corrected C-index of 0.779. Our findings revealed novel DMPs associated with both environmental Cd exposure and kidney damage among non-smoking adults, and developed an easy-to-use nomogram-illustrated model using these novel DMPs. These findings could provide a theoretical basis for formulating prevention and control strategies for kidney damage from the perspective of environmental pollution and epigenetic regulation.


Subject(s)
Cadmium , DNA Methylation , Environmental Exposure , Humans , DNA Methylation/drug effects , Cadmium/urine , Cadmium/toxicity , Cadmium/adverse effects , Male , Female , China , Environmental Exposure/adverse effects , Adult , Middle Aged , Environmental Pollutants/urine , Environmental Pollutants/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Kidney Diseases/urine , East Asian People
11.
J Affect Disord ; 351: 948-955, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38346648

ABSTRACT

BACKGROUND: Previous evidence demonstrated the inconsistent associations between metals and anxiety. The purpose of this study was to evaluate the individual and joint effects of blood lead (Pb), cadmium (Cd), mercury (Hg), selenium (Se) and manganese (Mn) on anxiety in the general population. METHODS: Data of 4000 participants (aged≥20 years) in the study were retrieved from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Multiple logistic regression, restricted cubic splines (RCS) logistic analysis, and weighted quantile sum (WQS) regression were fitted to explore the possible effects of single and mixed metal exposures on anxiety. Moreover, this association was assessed by smoking group. RESULTS: In the study, 24.60 % of participants were in an anxiety state. In logistic regression, blood Pb, Cd, Hg, Se and Mn were not significantly associated with anxiety in all participants. After stratified by smoking group, blood Cd was positively associated with anxiety in the current smoking group [P = 0.029, OR (95 %): 1.708(1.063, 3.040)], whereas not in other groups. In RCS regression, we observed a linear dose-response effect of blood Cd on anxiety stratified by smoking group. In WQS analysis, mixed metal exposures were positively associated with anxiety [P = 0.033, OR (95 %): 1.437(1.031, 2.003)], with Cd (33.69 %) contributing the largest weight to the index. CONCLUSIONS: Our study showed that excessive exposure to Cd is a significant risk factor for anxiety, and the co-exposures to Pb, Cd, Hg, Se and Mn were positively related with the risk of anxiety in current smokers.


Subject(s)
Mercury , Selenium , Adult , Humans , Cadmium/adverse effects , Nutrition Surveys , Cross-Sectional Studies , Lead , Anxiety/epidemiology
12.
BJOG ; 131(5): 589-597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38239019

ABSTRACT

OBJECTIVE: To study the association between maternal exposure to arsenic, cadmium, lead, manganese and mercury, time-to-pregnancy (TTP) and infertility. DESIGN: Pregnancy-based retrospective TTP cohort study. SETTING: Hospitals and clinics from ten cities across Canada. POPULATION: A total of 1784 pregnant women. METHODS: Concentrations of arsenic, cadmium, lead, manganese and mercury were measured in maternal whole blood during the first trimester of pregnancy as a proxy of preconception exposure. Discrete-time Cox proportional hazards models generated fecundability odds ratios (FOR) for the association between metals and TTP. Logistic regression generated odds ratios (OR) for the association between metals and infertility. Models were adjusted for maternal age, pre-pregnancy body mass index, education, income, recruitment site and plasma lipids. MAIN OUTCOME MEASURES: TTP was self-reported as the number of months of unprotected intercourse to become pregnant. Infertility was defined as TTP longer than 12 months. RESULTS: A total of 1784 women were eligible for the analysis. Mean ± SD maternal age and gestational age at interview were 32.2 ± 5.0 years, and 11.6 ± 1.6 weeks, respectively. Exposure to arsenic, cadmium, manganese or mercury was not associated with TTP or infertility. Increments of one standard deviation of lead concentrations resulted in a shorter TTP (adjusted FOR 1.09, 95% CI 1.02-1.16); however, the association was not linear when exposure was modelled in tertiles. CONCLUSION: Blood concentrations of metals at typical levels of exposure among Canadian pregnant women were not associated with TTP or infertility. Further studies are needed to assess the role of lead, if any, on TTP.


Subject(s)
Arsenic , Infertility , Mercury , Female , Pregnancy , Humans , Maternal Exposure , Cohort Studies , Manganese , Lead , Time-to-Pregnancy , Cadmium/adverse effects , Retrospective Studies , Canada
13.
Bone ; 179: 116989, 2024 02.
Article in English | MEDLINE | ID: mdl-38072370

ABSTRACT

BACKGROUND: Several studies have shown associations between cadmium (Cd) exposure and an increased risk of fractures. However, the size of the risk is still unclear and proper adjustment for smoking is a challenge. The aim of this study was to quantify the association between dietary cadmium measured in blood and fracture risk in the general Swedish population through a large population-based case-control study in never-smokers. METHODS: The study included 2113 incident cases with osteoporosis-related fractures and the same number of age- and sex-matched controls in never-smokers from the Swedish population-based Malmö Diet and Cancer study cohort. Cd in blood (B-Cd) was analyzed at baseline (1991-1996). Incident osteoporosis-related fractures (of the hip, distal radius, and proximal humerus) up to the year 2014 were identified using the National Patient Register. Associations between B-Cd and fractures were analyzed using logistic regression. RESULTS: Median B-Cd was 0.22 µg/L (P25 = 0.16, P75 = 0.31) among 2103 cases and 0.21 (P25 = 0.15, P75 = 0.30) among 2105 controls. The risk of fracture was significantly increased (OR 1.58; 95 % confidence interval 1.08-2.31, per µg/L of B-Cd), after adjustment for age, sex, BMI, physical activity, and fiber consumption. In analyses by cadmium quartiles, the OR increased monotonically and was significant in the highest quartile of B-Cd (for B-Cd > 0.31 versus B-Cd < 0.15 µg/L; OR 1.21; 95 % confidence interval 1.01-1.45). CONCLUSION: Even modestly increased blood cadmium in never-smokers is associated with increased risk of incident osteoporosis-related fractures.


Subject(s)
Neoplasms , Osteoporosis , Osteoporotic Fractures , Humans , Cadmium/adverse effects , Case-Control Studies , Smokers , Diet , Osteoporotic Fractures/chemically induced , Osteoporotic Fractures/epidemiology , Osteoporosis/chemically induced , Risk Factors , Neoplasms/epidemiology
14.
Ann Hum Biol ; 50(1): 360-369, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37615209

ABSTRACT

Background: The study was conducted in a Dallas lead smelter community following an Environmental Protection Agency (EPA) Superfund Cleanup project. Lead smelters operated in the Dallas community since the mid-1930s.Aim: To test the hypothesis that cadmium (Cd) exposure is associated with chronic kidney disease (CKD) ≥ stage 3.Subjects and methods: Subjects were African American residents aged ≥19 to ≤ 89 years (n=835). CKD ≥ stage 3 was predicted by blood Cd concentration with covariates.Results: In logistic regression analysis, CKD ≥ stage 3 was predicted by age ≥ 50 years (OR = 4.41, p < 0.0001), Cd level (OR = 1.89, p < .05), hypertension (OR = 3.15, p < 0.03), decades living in the community (OR = 1.34, p < 0.003) and T2DM (OR = 2.51, p < 0.01). Meta-analysis of 11 studies of Cd and CKD ≥ stage 3 yielded an ORRANDOM of 1.40 (p < 0.0001). Chronic environmental Cd exposure is associated with CKD ≥ stage 3 in a Dallas lead smelter community controlling covariates.Conclusion: Public health implications include screening for heavy metals including Cd, cleanup efforts to remove Cd from the environment and treating CKD with newer renal-sparing medications (e.g., SGLT-2 inhibitors, GLP-1s).


Subject(s)
Hypertension , Renal Insufficiency, Chronic , United States , Humans , Cadmium/adverse effects , Texas/epidemiology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/epidemiology , Public Health
15.
J Cardiovasc Transl Res ; 16(6): 1425-1438, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37468727

ABSTRACT

The aim of our study was to assess the effect of blood cadmium levels (B-Cd) on abdominal aortic calcification (AAC). We used the data from the 2013-2014 NHANES database. A total of 1530 participants were included in our study, with a mean AAC score of 1.40 ± 0.10, and a prevalence of severe AAC of 7.98%. Participants with higher B-Cd quartiles showed a higher prevalence of severe AAC. B-Cd was positively associated with higher AAC scores and increased risk of severe AAC. In the obese population, blood cadmium levels showed a positive association with the risk of severe AAC. There may be a positive correlation between B-Cd levels and AAC scores and risk of severe AAC, and this correlation is more pronounced in the obese population. Therefore, the cadmium load in AAC patients in the obese population should be considered in clinical work.


Subject(s)
Aortic Diseases , Vascular Calcification , Humans , Cadmium/adverse effects , Nutrition Surveys , Vascular Calcification/diagnostic imaging , Vascular Calcification/epidemiology , Obesity/diagnosis , Obesity/epidemiology , Obesity/complications , Aorta, Abdominal/diagnostic imaging , Aortic Diseases/diagnostic imaging , Aortic Diseases/epidemiology , Risk Factors
16.
Front Public Health ; 11: 1106732, 2023.
Article in English | MEDLINE | ID: mdl-37469695

ABSTRACT

Background: Cadmium is a commonly found heavy metal with a prolonged biological half-life, which results in long-term health burden for the population. Prior studies have demonstrated an association between blood cadmium and hypertension. However, few studies examined the relationship between blood cadmium and long-term health outcomes in patients with hypertension. This study aimed to investigate the association of blood cadmium with mortality in patients with hypertension. Methods: This study analyzed data from the National Health and Nutrition Examination Survey 1999-2012. Complex sampling-weighted multivariate Cox proportional hazards models were used to evaluate the hazard ratios (HRs) of all-cause, cardiovascular, and Alzheimer's disease mortality in patients with hypertension classified by blood cadmium concentrations' quantiles. Results: The study included 12,208 patients with hypertension with a median follow-up duration of 10.8 years. During this period, there were 4,485 all-cause deaths, including 1,520 cardiovascular deaths and 180 Alzheimer's disease deaths. Compared with the lowest quintile of blood cadmium (≤0.25 µg/L) group, the highest quintile of blood cadmium (≥0.80 µg/L) group's adjusted HRs were 1.85 (95% CI, 1.59-2.14) for all-cause mortality, 1.76 (95% CI, 1.33-2.34) for cardiovascular mortality, and 3.41 (95% CI, 1.54-7.51) for Alzheimer's disease mortality. Additionally, the adjusted HR for cardiovascular mortality was 2.12 (95% CI, 1.36-3.30) in never-smoking patients with hypertension. Conclusion: Higher blood cadmium is associated with increased risks of all-cause, cardiovascular, and Alzheimer's disease mortality in patients with hypertension. The effect of blood cadmium on cardiovascular mortality may be more pronounced in never-smoking hypertensive patients.


Subject(s)
Alzheimer Disease , Hypertension , Humans , Cadmium/adverse effects , Cause of Death , Nutrition Surveys , Hypertension/epidemiology
17.
J Am Heart Assoc ; 12(13): e029852, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37306302

ABSTRACT

Exposure to environmental pollutants is linked to increased risk of cardiovascular disease. Beyond the extensive evidence for particulate air pollution, accumulating evidence supports that exposure to nonessential metals such as lead, cadmium, and arsenic is a significant contributor to cardiovascular disease worldwide. Humans are exposed to metals through air, water, soil, and food and extensive industrial and public use. Contaminant metals interfere with critical intracellular reactions and functions leading to oxidative stress and chronic inflammation that result in endothelial dysfunction, hypertension, epigenetic dysregulation, dyslipidemia, and changes in myocardial excitation and contractile function. Lead, cadmium, and arsenic have been linked to subclinical atherosclerosis, coronary artery stenosis, and calcification as well as to increased risk of ischemic heart disease and stroke, left ventricular hypertrophy and heart failure, and peripheral artery disease. Epidemiological studies show that exposure to lead, cadmium, or arsenic is associated with cardiovascular death mostly attributable to ischemic heart disease. Public health measures reducing metal exposure are associated with reductions in cardiovascular disease death. Populations of color and low socioeconomic means are more commonly exposed to metals and therefore at greater risk of metal-induced cardiovascular disease. Together with strengthening public health measures to prevent metal exposures, development of more sensitive and selective measurement modalities, clinical monitoring of metal exposures, and the development of metal chelation therapies could further diminish the burden of cardiovascular disease attributable to metal exposure.


Subject(s)
Arsenic , Cardiovascular Diseases , Myocardial Ischemia , Humans , Cardiovascular Diseases/etiology , Cadmium/adverse effects , Lead/adverse effects , American Heart Association , Myocardial Ischemia/complications , Environmental Exposure/adverse effects
18.
Front Public Health ; 11: 1104692, 2023.
Article in English | MEDLINE | ID: mdl-37304094

ABSTRACT

Introduction: Prior studies indicate that exposure to metals may alter DNA methylation. Evidence also shows that global DNA methylation is associated with chronic kidney disease (CKD). This study aimed to examine the association between CKD and 5-methyl-2-deoxycytidine (5mdC, %), a marker of global DNA methylation, and to evaluate the interaction between metal exposures and 5mdC (%) on CKD. We also explored the mediation effect of 5mdC (%) on the association between metal exposures and renal function (i.e., estimated glomerular filtration rate, eGFR). Methods: A total of 218 CKD patients and 422 controls were recruited in this case-control study. 5mdC (%), concentrations of blood lead and cadmium, plasma selenium, and total urinary arsenic were measured. CKD cases were clinically defined among patients with eGFR <60 mL/min/1.73 m2 for at least 3 months and without hemodialysis. Odds ratio (OR) and 95% confidence interval (CI) were estimated by logistic regression models to examine the association between metal exposures, 5mdC (%), and CKD, adjusted for confounders. Multivariable linear regression models were used to examine associations between metal exposures, 5mdC (%), and eGFR. Results and Discussion: CKD cases compared to controls had 6.06-fold (95% CI: 3.11-11.81) higher odds of having high blood cadmium and high 5mdC (%) levels. A positive interaction on an additive scale was identified between blood cadmium and 5mdC (%) on CKD. Cases compared to controls had 4.73-fold (95% CI: 2.65-8.45) higher odds of having low plasma selenium and high 5mdC (%) levels; and a significant multiplicative interaction between plasma selenium and 5mdC (%) on CKD was observed. In addition, we found that blood lead and cadmium concentrations were positively associated, while plasma selenium concentrations were inversely associated, with 5mdC (%). The associations of blood lead and plasma selenium with eGFR were partially mediated by 5mdC (%). Our results suggest that 5mdC (%) may interact with plasma selenium and blood cadmium to influence the risk of CKD. The 5mdC (%) also potentially mediates the associations between exposure to metals and renal function.


Subject(s)
Renal Insufficiency, Chronic , Selenium , Humans , Cadmium/adverse effects , Case-Control Studies , DNA Methylation
19.
Rev. toxicol ; 40(1): 4-9, ene.-jun. 2023. ilus, tab
Article in English | IBECS | ID: ibc-222860

ABSTRACT

Over the last years, cadmium (Cd) contamination has become a worldwide problem as a result of its increasing use in industry, its long half-life inside the body, and its deleterious health effects. The aim of the present work was to evaluate the effect of chronic exposure to Cd on the kidneys and long bones. To this end, 16 young male Wistar rats were assigned to one of two groups: control and Cd. Rats in the Cd group were given drinking water containing 25 mg/L of CdCl2 for six months and control rats were given drinking water. After euthanasia, the kidneys, tibiae, and femurs were resected, processed histologically, and embedded in paraffin or methyl methacrylate. Urinary Cd, histopathological evaluation of kidney tissue, determination of catalase, superoxide dismutase, glutathione content, lipid peroxidation levels and the area of the proximal tubules expressing alkaline phosphatase were analyzed. Static and dynamic histomorphometric parameters of tibia and femur were determined. The data were statistically analyzed using Student’s t test (p<0.05). The Cd group showed greater urinary Cd excretion, glomerular and tubular damage, a significant decrease in alkaline phosphatase activity in the proximal tubules, and lower renal superoxide dismutase activity. The Cd group showed significantly more yellow bone marrow, fewer tartrate-resistant acid phosphatase positive osteoclasts and a lower percentage of runt-related transcription factor 2 in the growth plate than in controls. (AU)


En los últimos años, la contaminación por cadmio (Cd) se ha convertido en un problema mundial debido a su creciente uso en la industria, su larga vida media dentro del cuerpo y sus efectos nocivos para la salud. El objetivo del presente trabajo fue evaluar el efecto de la exposición crónica a Cd en riñones y huesos largos. Para ello, se asignaron 16 ratas Wistar macho jóvenes a uno de dos grupos: control y Cd. Las ratas del grupo Cd recibieron agua potable que contenía 25 mg/l de CdCl2 durante seis meses y las ratas de control recibieron agua potable. Después de la eutanasia, los riñones, las tibias y los fémures fueron resecados, procesados histológicamente e incluidos en parafina o metacrilato de metilo. Se analizó Cd urinario, evaluación histopatológica del tejido renal, determinación de catalasa, superóxido dismutasa, contenido de glutatión, niveles de peroxidación lipídica y área de los túbulos proximales que expresan fosfatasa alcalina. Se determinaron parámetros histomorfométricos estáticos y dinámicos de tibia y fémur. Los datos se analizaron estadísticamente mediante la prueba t de Student (p<0,05). El grupo Cd mostró una mayor excreción urinaria de Cd, daño glomerular y tubular, una disminución significativa de la actividad de la fosfatasa alcalina en los túbulos proximales y una menor actividad de la superóxido dismutasa renal. El grupo Cd mostró significativamente más médula ósea amarilla, menos osteoclastos positivos a la fosfatasa ácida resistentes al tartrato y un porcentaje más bajo de factor de transcripción 2 relacionado con el runt e n la placa de crecimiento que en los controles. (AU)


Subject(s)
Animals , Rats , Cadmium/toxicity , Cadmium/adverse effects , Drinking Water , Rats, Wistar , Oxidative Stress , Kidney
20.
J Bone Miner Metab ; 41(4): 501-511, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37036532

ABSTRACT

INTRODUCTION: To analyze the association between α-tocopherol intake and cadmium (Cd) exposure and osteoporosis in population ≥ 50 years. MATERIALS AND METHODS: Sociodemographic data, physical examination, and laboratory indicators including serum Cd level and dietary α-tocopherol intake of 8459 participants were extracted from the National Health and Nutrition Examination Survey (NHANES) database in this cross-sectional study. The associations between α-tocopherol intake, serum Cd levels and osteoporosis were evaluated using univariate and multivariate logistic regression analyses, with the estimated value (ß), odds ratios (ORs) and 95% confidence intervals (CIs). We further explored the impact of α-tocopherol intake on Cd exposure and the bone mineral density (BMD) in total femur and femur neck. RESULTS: A total of 543 old adults suffered from osteoporosis. The serum Cd level (0.52 µg/L vs. 0.37 µg/L) and α-tocopherol intake (5.28 mg vs. 6.50 mg) were statistical different in osteoporosis group and non-osteoporosis group, respectively. High level of Cd exposure was related to the increased risk of osteoporosis [OR = 1.60, 95% CI (1.15-2.21)]. In the total femur, α-tocopherol intake may improve the loss of BMD that associated with Cd exposure [ß = - 0.047, P = 0.037]. Moreover, high α-tocopherol intake combined with low Cd exposure [OR = 0.54, 95% CI (0.36-0.81)] was linked to the decreased risk of osteoporosis comparing with low α-tocopherol intake combined with high Cd exposure. CONCLUSION: High α-tocopherol intake may improve the Cd-related osteoporosis and loss of BMD that could provide some dietary reference for prevention of osteoporosis in population ≥ 50 years old.


Subject(s)
Osteoporosis , alpha-Tocopherol , Adult , Humans , Middle Aged , Cadmium/adverse effects , Nutrition Surveys , Cross-Sectional Studies , Osteoporosis/epidemiology , Osteoporosis/chemically induced , Bone Density , Eating
SELECTION OF CITATIONS
SEARCH DETAIL
...