Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.951
Filter
1.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949652

ABSTRACT

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Subject(s)
Caenorhabditis elegans , Microtubules , Protein Processing, Post-Translational , Tubulin , Animals , Tubulin/metabolism , Tubulin/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Microtubules/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Acetylation , Axons/metabolism , Axons/physiology , Phosphorylation , Nerve Regeneration , Kinesins/metabolism , Kinesins/genetics
2.
Proc Natl Acad Sci U S A ; 121(28): e2320796121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959036

ABSTRACT

Phoresy is an interspecies interaction that facilitates spatial dispersal by attaching to a more mobile species. Hitchhiking species have evolved specific traits for physical contact and successful phoresy, but the regulatory mechanisms involved in such traits and their evolution are largely unexplored. The nematode Caenorhabditis elegans displays a hitchhiking behavior known as nictation during its stress-induced developmental stage. Dauer-specific nictation behavior has an important role in natural C. elegans populations, which experience boom-and-bust population dynamics. In this study, we investigated the nictation behavior of 137 wild C. elegans strains sampled throughout the world. We identified species-wide natural variation in nictation and performed a genome-wide association mapping. We show that the variants in the promoter of nta-1, encoding a putative steroidogenic enzyme, underlie differences in nictation. This difference is due to the changes in nta-1 expression in glial cells, which implies that glial steroid metabolism regulates phoretic behavior. Population genetic analysis and geographic distribution patterns suggest that balancing selection maintained two nta-1 haplotypes that existed in ancestral C. elegans populations. Our findings contribute to further understanding of the molecular mechanism of species interaction and the maintenance of genetic diversity within natural populations.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Neuroglia , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neuroglia/metabolism , Genome-Wide Association Study , Behavior, Animal/physiology , Genetic Variation , Promoter Regions, Genetic/genetics , Steroids/metabolism , Steroids/biosynthesis
3.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38960623

ABSTRACT

In many animal species, the oocyte meiotic spindle, which is required for chromosome segregation, forms without centrosomes. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in Caenorhabditis elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly occurred after auxin-induced degradation of Ran-GEF, but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown. We found that the concentration of soluble tubulin in the metaphase spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules. Measurement of the volume occupied by yolk granules and mitochondria indicated that volume exclusion would be sufficient to explain the concentration of tubulin in the spindle volume. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes.


Subject(s)
Anaphase , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Oocytes , Spindle Apparatus , Tubulin , Animals , Caenorhabditis elegans/metabolism , Tubulin/metabolism , Spindle Apparatus/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oocytes/metabolism , Prometaphase , Meiosis/physiology , ran GTP-Binding Protein/metabolism , Guanosine Triphosphate/metabolism , Chromatin/metabolism , Chromosome Segregation
4.
Elife ; 122024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963411

ABSTRACT

Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , MicroRNAs , Transcription Factors , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/growth & development , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic , Transcription, Genetic , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Nucleus/metabolism
5.
Elife ; 132024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922671

ABSTRACT

Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cognitive Aging , Forkhead Transcription Factors , Neurons , Transcriptome , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Neurons/metabolism , Neurons/physiology , Aging/genetics , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Signal Transduction , Gene Expression Regulation , Memory/physiology , Gene Expression Profiling
6.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930783

ABSTRACT

Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as the antisolvent to separate the components containing UA from the crude extract of Cornus officinalis. The effect of COE on UVB damage was assessed using Caenorhabditis elegans. The results showed that COE could increase the lifespan and enhance the antioxidant enzyme activity of C. elegans exposed to UVB while decreasing the reactive oxygen species (ROS) level. At the same time, COE upregulated the expression of antioxidant-related genes and promoted the migration of SKN-1 to the nucleus. Moreover, COE inhibited the expression of the skn-1 downstream gene and the extension of the lifespan in skn-1 mutants exposed to UVB, indicating that SKN-1 was required for COE to function. Our findings indicate that COE mainly ameliorates the oxidative stress caused by UVB in C. elegans via the SKN-1/Nrf2 pathway.


Subject(s)
Antioxidants , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cornus , Oxidative Stress , Plant Extracts , Triterpenes , Ultraviolet Rays , Ursolic Acid , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Ultraviolet Rays/adverse effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oxidative Stress/drug effects , Cornus/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Skin Aging/drug effects , Skin Aging/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Longevity/drug effects , Longevity/radiation effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
7.
Sci Rep ; 14(1): 13713, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877105

ABSTRACT

Jujubae Fructus, the fruit of Ziziphus jujuba Mill has been used as one of the medicine food homology species for thousands of years in China. Studies have shown that the active ingredients of Jujubae Fructus have a variety of biological effects, but its role in the aging process still lacks knowledge. Here, we investigated the effect of Jujubae Fructus extract (JE) on Caenorhabditis elegans lifespan and its potential mechanism. The lifespan of C. elegans treated with JE was signifificantly increased in a dose-dependent manner. In addition, JE treatment prolonged the reproductive period and increased normal activity during aging in C. elegans. Similarly, JE supplementation also enhanced the resistance to heat and oxidative stress in C. elegans. Furthermore, the mutant worms' lifespan assays demonstrated that JE requires daf-16 to prolong lifespan. DAF-16::GFP analysis of TJ356 showed that JE treatment translocates DAF-16::GFP to nucleus in transgenic worms. By analyzing the downstream of daf-16, we identify that JE may regulate sod3 downstream of daf-16. Mutant worms' lifespan and transgenic reporter gene expression assays revealed that increasing SOD-3 expression was critical for extending longevity in C. elegans with JE therapy. Collectively, these data indicate that JE may have an important role in C. elegans longevity that is dependent on DAF-16 and SOD-3.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Forkhead Transcription Factors , Longevity , Oxidative Stress , Plant Extracts , Superoxide Dismutase , Ziziphus , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Longevity/drug effects , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Plant Extracts/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Ziziphus/chemistry , Oxidative Stress/drug effects , Fruit/chemistry
8.
J Toxicol Environ Health A ; 87(18): 730-751, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38904345

ABSTRACT

Achyrocline satureioides, popularly called "marcela" in Brazil, is used in traditional medicine in South America. A. satureioides, inflorescences are used for many conditions, including to minimize the Sars-Cov-2 symptoms. Therefore, the aim of this study was to determine the toxicity profile of A. satureioides aqueous extract (ASAE), using the Caenorhabditis elegans (C. elegans) alternative model. Survival, reproduction, development, and transgenerational assays were performed. The effects of ASAE were investigated under conditions of thermal stress and presence of oxidant hydrogen peroxide (H2O2). In addition, C. elegans strains containing high antioxidant enzyme levels and elevated lineages of daf-16, skn-1 and daf-2 regulatory pathways were examined. The ASAE LC50 value was found to be 77.3 ± 4 mg/ml. The concentration of ASAE 10 mg/ml (frequently used in humans) did not exhibit a significant reduction in worm survival at either the L1 or L4 stage, after 24 or 72 hr treatment. ASAE did not markedly alter the body area. In N2 strain, ASAE (10 or 25 mg/ml) reversed the damage initiated by H2O2. In addition, ASAE protected the damage produced by H2O2 in strains containing significant levels of sod-3, gst-4 and ctl - 1,2,3, suggesting modulation in these antioxidant systems by this plant extract. ASAE exposure activated daf-16 and skn-1 stress response transcriptional pathways independently of daf-2, even under extreme stress. Data suggest that ASAE, at the concentrations tested in C. elegans, exhibits a reliable toxicity profile, which may contribute to consideration for safe use in humans.


Subject(s)
Achyrocline , Caenorhabditis elegans , Plant Extracts , Animals , Caenorhabditis elegans/drug effects , Plant Extracts/toxicity , Plant Extracts/pharmacology , Achyrocline/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics
9.
PLoS Genet ; 20(6): e1011324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875298

ABSTRACT

The Transforming Growth Factor beta (TGF-ß) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that may enhance, repress, or generate novel functions. In the nematode Caenorhabditis elegans, there are only five TGF-ß ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-ß/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans. Here we show that all five TGF-ß ligands play a role in survival on bacterial pathogens. We also demonstrate that multiple TGF-ß ligand pairs act nonredundantly as part of this response. We show that the two BMP-like ligands-DBL-1 and TIG-2-function independently of each other in the immune response, while TIG-2/BMP and the TGF-ß/Activin-like ligand TIG-3 function together. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Additionally, we identify TIG-2 and TIG-3 as members of a rare subset of TGF-ß ligands lacking the conserved cysteine responsible for disulfide linking mature dimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-ß/Activin signaling pathway do not play a major role in survival. These results demonstrate a novel potential for BMP and TGF-ß/Activin subfamily ligands to interact and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.


Subject(s)
Bone Morphogenetic Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Immunity, Innate , Signal Transduction , Transforming Growth Factor beta , Animals , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/immunology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Immunity, Innate/genetics , Ligands , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Activins/metabolism , Activins/genetics , Neuropeptides
10.
Genes (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927595

ABSTRACT

Ageing has been identified as an independent risk factor for various diseases; however, the physiological basis and molecular changes related to ageing are still largely unknown. Here, we show that the level of APPL2, an adaptor protein, is significantly reduced in the major organs of aged mice. Knocking down APPL2 causes premature ageing of human umbilical vein endothelial cells (HUVECs). We find that a lack of T04C9.1, the homologue of mammalian APPL2, leads to premature ageing, slow movements, lipid deposition, decreased resistance to stresses, and shortened lifespan in Caenorhabditis elegans (C. elegans), which are associated with decreased autophagy. Activating autophagy by rapamycin or inhibition of let-363 suppresses the age-related alternations, impaired motility, and shortened lifespan of C. elegans, which are reversed by knocking down autophagy-related genes. Our work provides evidence that APPL2 and its C. elegans homologue T04C9.1 decrease with age and reveals that a lack of T04C9.1 bridges autophagy decline and ageing in C. elegans.


Subject(s)
Adaptor Proteins, Signal Transducing , Autophagy , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Longevity , Animals , Caenorhabditis elegans/genetics , Longevity/genetics , Autophagy/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aging, Premature/genetics , Mice , Human Umbilical Vein Endothelial Cells , Aging/genetics
11.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928105

ABSTRACT

Alcohol use disorder (AUD) is a chronic neurobehavioral condition characterized by a cycle of tolerance development, increased consumption, and reinstated craving and seeking behaviors during withdrawal. Understanding the intricate mechanisms of AUD necessitates reliable animal models reflecting its key features. Caenorhabditis elegans (C. elegans), with its conserved nervous system and genetic tractability, has emerged as a valuable model organism to study AUD. Here, we employ an ethanol vapor exposure model in Caenorhabditis elegans, recapitulating AUD features while maintaining high-throughput scalability. We demonstrate that ethanol vapor exposure induces intoxication-like behaviors, acute tolerance, and ethanol preference, akin to mammalian AUD traits. Leveraging this model, we elucidate the conserved role of c-jun N-terminal kinase (JNK) signaling in mediating acute ethanol tolerance. Mutants lacking JNK signaling components exhibit impaired tolerance development, highlighting JNK's positive regulation. Furthermore, we detect ethanol-induced JNK activation in C. elegans. Our findings underscore the utility of C. elegans with ethanol vapor exposure for studying AUD and offer novel insights into the molecular mechanisms underlying acute ethanol tolerance through JNK signaling.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Drug Tolerance , Ethanol , MAP Kinase Signaling System , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , MAP Kinase Signaling System/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Alcoholism/metabolism , Alcoholism/genetics , Disease Models, Animal
12.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38880992

ABSTRACT

Although evolution is driven by changes in how regulatory pathways control development, we know little about the molecular details underlying these transitions. The TRA-2 domain that mediates contact with TRA-1 is conserved in Caenorhabditis. By comparing the interaction of these proteins in two species, we identified a striking change in how sexual development is controlled. Identical mutations in this domain promote oogenesis in Caenorhabditis elegans but promote spermatogenesis in Caenorhabditis briggsae. Furthermore, the effects of these mutations involve the male-promoting gene fem-3 in C. elegans but are independent of fem-3 in C. briggsae. Finally, reciprocal mutations in these genes show that C. briggsae TRA-2 binds TRA-1 to prevent expression of spermatogenesis regulators. By contrast, in C. elegans TRA-1 sequesters TRA-2 in the germ line, allowing FEM-3 to initiate spermatogenesis. Thus, we propose that the flow of information within the sex determination pathway has switched directions during evolution. This result has important implications for how evolutionary change can occur.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Sex Determination Processes , Spermatogenesis , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Male , Spermatogenesis/genetics , Female , Caenorhabditis/genetics , Biological Evolution , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mutation , Oogenesis/genetics , Evolution, Molecular , Self-Fertilization , DNA-Binding Proteins , Transcription Factors
13.
Nat Commun ; 15(1): 4904, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851828

ABSTRACT

Age-related depletion of stem cells causes tissue degeneration and failure to tissue regeneration, driving aging at the organismal level. Previously we reported a cell-non-autonomous DAF-16/FOXO activity in antagonizing the age-related loss of germline stem/progenitor cells (GSPCs) in C. elegans, indicating that regulation of stem cell aging occurs at the organ system level. Here we discover the molecular effector that links the cell-non-autonomous DAF-16/FOXO activity to GSPC maintenance over time by performing a tissue-specific DAF-16/FOXO transcriptome analysis. Our data show that dos-3, which encodes a non-canonical Notch ligand, is a direct transcriptional target of DAF-16/FOXO and mediates the effect of the cell-non-autonomous DAF-16/FOXO activity on GSPC maintenance through activating Notch signaling in the germ line. Importantly, expression of a human homologous protein can functionally substitute for DOS-3 in this scenario. As Notch signaling controls the specification of many tissue stem cells, similar mechanisms may exist in other aging stem cell systems.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Forkhead Transcription Factors , Germ Cells , Receptors, Notch , Signal Transduction , Stem Cells , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Germ Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Stem Cells/metabolism , Stem Cells/cytology , Aging/metabolism , Aging/genetics , Humans
14.
Sci Rep ; 14(1): 12936, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839826

ABSTRACT

Circadian rhythms are endogenous oscillations in nearly all organisms, from prokaryotes to humans, allowing them to adapt to cyclical environments for close to 24 h. Circadian rhythms are regulated by a central clock, based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematode Caenorhabditis elegans, period and casein kinase 1ε/δ are conserved as lin-42 and kin-20, respectively. Here, we studied the involvement of lin-42 and kin-20 in the circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and epidermal seam cells, as well as in other cells. Depletion of LIN-42 and KIN-20, specifically in neuronal cells after development, was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Circadian Rhythm , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Gene Expression Regulation , Mutation , Neurons/metabolism , Transcription Factors
15.
Cells ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891110

ABSTRACT

Precise control of neuronal activity is crucial for the proper functioning of neurons. How lipid homeostasis contributes to neuronal activity and how much of it is regulated by cells autonomously is unclear. In this study, we discovered that absence of the lipid regulator nhr-49, a functional ortholog of the peroxisome proliferator-activated receptor (PPAR) in Caenorhabditis elegans, resulted in defective pathogen avoidance behavior against Pseudomonas aeruginosa (PA14). Functional NHR-49 was required in the neurons, and more specifically, in a set of oxygen-sensing body cavity neurons, URX, AQR, and PQR. We found that lowering the neuronal activity of the body cavity neurons improved avoidance in nhr-49 mutants. Calcium imaging in URX neurons showed that nhr-49 mutants displayed longer-lasting calcium transients in response to an O2 upshift, suggesting that excess neuronal activity leads to avoidance defects. Cell-specific rescue of NHR-49 in the body cavity neurons was sufficient to improve pathogen avoidance, as well as URX neuron calcium kinetics. Supplementation with oleic acid also improved avoidance behavior and URX calcium kinetics, suggesting that the defective calcium response in the neuron is due to lipid dysfunction. These findings highlight the role of cell-autonomous lipid regulation in neuronal physiology and immune behavior.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lipid Metabolism , Neurons , Pseudomonas aeruginosa , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Neurons/metabolism , Calcium/metabolism , Mutation/genetics , Avoidance Learning , Receptors, Cytoplasmic and Nuclear
16.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893565

ABSTRACT

L-theanine, a unique non-protein amino acid, is an important bioactive component of green tea. Previous studies have shown that L-theanine has many potent health benefits, such as anti-anxiety effects, regulation of the immune response, relaxing neural tension, and reducing oxidative damage. However, little is known concerning whether L-theanine can improve the clearance of mitochondrial DNA (mtDNA) damage in organisms. Here, we reported that L-theanine treatment increased ATP production and improved mitochondrial morphology to extend the lifespan of UVC-exposed nematodes. Mechanistic investigations showed that L-theanine treatment enhanced the removal of mtDNA damage and extended lifespan by activating autophagy, mitophagy, mitochondrial dynamics, and mitochondrial unfolded protein response (UPRmt) in UVC-exposed nematodes. In addition, L-theanine treatment also upregulated the expression of genes related to mitochondrial energy metabolism in UVC-exposed nematodes. Our study provides a theoretical basis for the possibility that tea drinking may prevent mitochondrial-related diseases.


Subject(s)
Caenorhabditis elegans , Glutamates , Longevity , Mitochondria , Ultraviolet Rays , Animals , Caenorhabditis elegans/drug effects , Glutamates/pharmacology , Ultraviolet Rays/adverse effects , Longevity/drug effects , Longevity/radiation effects , Mitochondria/metabolism , Mitochondria/drug effects , DNA, Mitochondrial/metabolism , Autophagy/drug effects , DNA Damage/drug effects , Mitophagy/drug effects , Unfolded Protein Response/drug effects , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/radiation effects , Adenosine Triphosphate/metabolism , Signal Transduction/drug effects , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics
17.
Nat Commun ; 15(1): 4935, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858388

ABSTRACT

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Dystrophin , Muscles , Wnt Signaling Pathway , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Dystrophin/metabolism , Dystrophin/genetics , Muscles/metabolism , Dishevelled Proteins/metabolism , Dishevelled Proteins/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Cell Membrane/metabolism , Dystrophin-Associated Protein Complex/metabolism , Dystrophin-Associated Protein Complex/genetics , Wnt Proteins/metabolism , Signal Transduction
18.
Chemosphere ; 361: 142499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824792

ABSTRACT

CPPD quinone (CPPDQ) is a member of PPDQs, which was widely distributed in different environments. Using Caenorhabditis elegans as an animal model, we here examined neurotoxicity and accumulation of CPPDQ and the underlying mechanism. After exposure to 0.01-10 µg/L CPPDQ, obvious body accumulation of CPDDQ was detected. Meanwhile, exposure to CPPDQ (0.01-10 µg/L) decreased head thrash, body bend, and forward turn, and increased backward turn. Nevertheless, only exposure to 10 µg/L CPPDQ induced neurodegeneration in GABAergic system. Exposure to CPPDQ (0.01-10 µg/L) further decreased expressions of daf-7 encoding TGF-ß ligand, jnk-1 encoding JNK MAPK, and mpk-1 encoding ERK MAPK. Additionally, among examined G protein-coupled receptor (GPCR) genes, exposure to CPPDQ (0.01-10 µg/L) decreased dcar-1 expression and increased npr-8 expression. RNAi of daf-7, jnk-1, mpk-1, and dcar-1 resulted in susceptibility, and nhr-8 RNAi caused resistance to CPPDQ neurotoxicity and accumulation. Moreover, in CPPDQ exposed nematodes, RNAi of dcar-1 decreased jnk-1 and mpk-1 expressions, and RNAi of npr-8 increased mpk-1 expression. Therefore, exposure to CPPDQ potentially resulted in neurotoxicity by inhibiting TGF-ß, JNK MAPK, and ERK MAPK signals. The inhibition in JNK MAPK and ERK MAPKs signals in CPPDQ exposed nematodes was further related to alteration in GPCRs of DCAR-1 and NHR-8 in nematodes.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Transforming Growth Factor beta/metabolism , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism
19.
Sci Adv ; 10(24): eadk9481, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865452

ABSTRACT

The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. In Caenorhabditis elegans, the neuroendocrine transforming growth factor-ß ligand, DAF-7, regulates diverse behavioral responses to bacterial food and pathogens. The dynamic neuron-specific expression of daf-7 is modulated by environmental and endogenous bacteria-derived cues. Here, we investigated natural variation in the expression of daf-7 from the ASJ pair of chemosensory neurons. We identified common genetic variants in gap-2, encoding a Ras guanosine triphosphatase (GTPase)-activating protein homologous to mammalian synaptic Ras GTPase-activating protein, which modify daf-7 expression cell nonautonomously and promote exploratory foraging behavior in a partially DAF-7-dependent manner. Our data connect natural variation in neuron-specific gene expression to differences in behavior and suggest that genetic variation in neuroendocrine signaling pathways mediating host-microbe interactions may give rise to diversity in animal behavior.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Genetic Variation , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Neurosecretory Systems/metabolism , Feeding Behavior , Behavior, Animal/physiology , Neurons/metabolism , Signal Transduction , Transforming Growth Factor beta
20.
Sci Adv ; 10(25): eadn0014, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905346

ABSTRACT

The central nervous system coordinates peripheral cellular stress responses, including the unfolded protein response of the mitochondria (UPRMT); however, the contexts for which this regulatory capability evolved are unknown. UPRMT is up-regulated upon pathogenic infection and in metabolic flux, and the olfactory nervous system has been shown to regulate pathogen resistance and peripheral metabolic activity. Therefore, we asked whether the olfactory nervous system in Caenorhabditis elegans controls the UPRMT cell nonautonomously. We found that silencing a single inhibitory olfactory neuron pair, AWC, led to robust induction of UPRMT and reduction of oxidative phosphorylation dependent on serotonin signaling and parkin-mediated mitophagy. Further, AWC ablation confers resistance to the pathogenic bacteria Pseudomonas aeruginosa partially dependent on the UPRMT transcription factor atfs-1 and fully dependent on mitophagy machinery. These data illustrate a role for the olfactory nervous system in regulating whole-organism mitochondrial dynamics, perhaps in preparation for postprandial metabolic stress or pathogenic infection.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Mitochondria , Mitophagy , Smell , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Mitochondria/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Smell/physiology , Unfolded Protein Response , Pseudomonas aeruginosa/physiology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Oxidative Phosphorylation , Signal Transduction , Serotonin/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...