Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201779

ABSTRACT

Alzheimer's disease (AD) is the most common age-associated neurodegenerative disorder, characterized by progressive cognitive decline, memory impairment, and structural brain changes, primarily involving Aß plaques and neurofibrillary tangles of hyperphosphorylated tau protein. Recent research highlights the significance of smaller Aß and Tau oligomeric aggregates (AßO and TauO, respectively) in synaptic dysfunction and disease progression. Calcineurin (CaN), a key calcium/calmodulin-dependent player in regulating synaptic function in the central nervous system (CNS) is implicated in mediating detrimental effects of AßO on synapses and memory function in AD. This study aims to investigate the specific impact of CaN on both exogenous and endogenous TauO through the acute and chronic inhibition of CaN. We previously demonstrated the protective effect against AD of the immunosuppressant CaN inhibitor, FK506, but its influence on TauO remains unclear. In this study, we explored the short-term effects of acute CaN inhibition on TauO phosphorylation and TauO-induced memory deficits and synaptic dysfunction. Mice received FK506 post-TauO intracerebroventricular injection and TauO levels and phosphorylation were assessed, examining their impact on CaN and GSK-3ß. The study investigated FK506 preventive/reversal effects on TauO-induced clustering of CaN and GSK-3ß. Memory and synaptic function in TauO-injected mice were evaluated with/without FK506. Chronic FK506 treatment in 3xTgAD mice explored its influence on CaN, Aß, and Tau levels. This study underscores the significant influence of CaN inhibition on TauO and associated AD pathology, suggesting therapeutic potential in targeting CaN for addressing various aspects of AD onset and progression. These findings provide valuable insights for potential interventions in AD, emphasizing the need for further exploration of CaN-targeted strategies.


Subject(s)
Calcineurin Inhibitors , Calcineurin , Disease Models, Animal , Hippocampus , Synapses , Tacrolimus , tau Proteins , Animals , tau Proteins/metabolism , Tacrolimus/pharmacology , Male , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Calcineurin/metabolism , Synapses/drug effects , Synapses/metabolism , Calcineurin Inhibitors/pharmacology , Phosphorylation/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Glycogen Synthase Kinase 3 beta/metabolism
2.
J Virol ; 98(7): e0084624, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38899900

ABSTRACT

Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.


Subject(s)
Cyclosporine , Disease Models, Animal , Hepatitis E virus , Hepatitis E , Immunosuppression Therapy , Immunosuppressive Agents , Tacrolimus , Animals , Rabbits , Hepatitis E/immunology , Hepatitis E/virology , Hepatitis E/drug therapy , Hepatitis E virus/immunology , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , Prednisolone/therapeutic use , Prednisolone/pharmacology , Male , Immunity, Innate/drug effects , Mycophenolic Acid/pharmacology , Hepatitis, Chronic/drug therapy , Hepatitis, Chronic/immunology , Hepatitis, Chronic/virology , Chronic Disease , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use
3.
Acta Physiol (Oxf) ; 240(8): e14189, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860527

ABSTRACT

Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.


Subject(s)
Calcineurin Inhibitors , Calcineurin , Hyperkalemia , Potassium , Hyperkalemia/metabolism , Animals , Humans , Calcineurin/metabolism , Potassium/metabolism , Calcineurin Inhibitors/adverse effects , Calcineurin Inhibitors/pharmacology , Kidney/metabolism , Kidney/drug effects
4.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38886057

ABSTRACT

Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.


Subject(s)
Calcineurin , Casein Kinase II , Receptors, AMPA , Spinal Cord , Tacrolimus , Animals , Receptors, AMPA/metabolism , Mice , Calcineurin/metabolism , Male , Female , Tacrolimus/pharmacology , Spinal Cord/metabolism , Spinal Cord/drug effects , Casein Kinase II/metabolism , Neurons/metabolism , Neurons/drug effects , Mice, Inbred C57BL , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Synapses/drug effects , Synapses/metabolism , Synapses/physiology , Calcineurin Inhibitors/pharmacology , Phenotype , Calcium Channels
5.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828727

ABSTRACT

Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.


Subject(s)
Calcineurin Inhibitors , Graft vs Host Disease , Isoantigens , Memory T Cells , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/pathology , Animals , Mice , Isoantigens/immunology , Calcineurin Inhibitors/pharmacology , Chronic Disease , Memory T Cells/immunology , Tacrolimus/pharmacology , CD4-Positive T-Lymphocytes/immunology , Cyclosporine/pharmacology , Female , CD8-Positive T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology
6.
Acta Physiol (Oxf) ; 240(7): e14161, 2024 07.
Article in English | MEDLINE | ID: mdl-38747643

ABSTRACT

AIMS: With a focus on the discrepancy between preclinical and clinical findings, this review will gather comprehensive information about the effects of calcineurin inhibitors (CNI) on cognitive function and related brain pathology from in vitro, in vivo, and clinical studies. We also summarize the potential mechanisms that underlie the pathways related to CNI-induced cognitive impairment. METHODS: We systematically searched articles in PubMed using keywords 'calcineurin inhibitor*' and 'cognition' to identify related articles, which the final list pertaining to underlying mechanisms of CNI on cognition. RESULTS: Several studies have reported an association between calcineurin and the neuropathology of Alzheimer's disease (AD). AD is the most common neurocognitive disorder associated with amyloid plaques and neurofibrillary tangles in the brain, leading to cognitive impairment. CNI, including tacrolimus and cyclosporin A, are commonly prescribed for patients with transplantation of solid organs such as kidney, liver, or heart, those drugs are currently being used as long-term immunosuppressive therapy. Although preclinical models emphasize the favorable effects of CNI on the restoration of brain pathology due to the impacts of calcineurin on the alleviation of amyloid-beta deposition and tau hyperphosphorylation, or rescuing synaptic and mitochondrial functions, treatment-related neurotoxicity, resulting in cognitive dysfunctions has been observed in clinical settings of patients who received CNI. CONCLUSION: Inconsistent results of CNI on cognition from clinical studies have been observed due to impairment of the blood-brain barrier, neuroinflammation mediated by reactive oxygen species, and alteration in mitochondrial fission, and extended research is required to confirm its promising use in cognitive impairment.


Subject(s)
Calcineurin Inhibitors , Cognition , Humans , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use , Calcineurin Inhibitors/adverse effects , Animals , Cognition/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Brain/drug effects , Brain/metabolism , Calcineurin/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects
7.
Eur J Clin Pharmacol ; 80(8): 1219-1227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38691139

ABSTRACT

OBJECTIVES: To describe the pharmacokinetic (PK) characteristics of nirmatrelvir/ritonavir in renal transplant recipients and explore the potential factors that related to the PK variance of nirmatrelvir/ritonavir and its interaction with calcineurin inhibitor (CNI). METHODS: Renal transplant recipients treated with CNI and nirmatrelvir/ritonavir were prospectively enrolled. Steady-state plasma concentrations of nirmatrelvir/ritonavir were determined by high-performance liquid chromatography-tandem mass spectrometry, and the PK parameters were calculated using non-compartmental analysis. Spearman correlation analysis was used for exploring influencing factors. RESULTS: A total of eight recipients were enrolled; for nirmatrelvir and ritonavir, AUC/dose was 0.24179 ± 0.14495 and 0.06196 ± 0.03767 µg·h·mL-1·mg-1. Red blood cell (RBC), hematocrit (Ht), hemoglobins (Hb), and creatinine clearance (Ccr) were negatively correlated with AUC/dose of nirmatrelvir, while Ccr, CYP3A5 genotype, and CYP3A4 genotype were related to the AUC/dose of ritonavir. Ccr was negatively correlated with the C0/dose of tacrolimus (TAC) after termination of nirmatrelvir/ritonavir (rs = -0.943, p = 0.008). CONCLUSIONS: The PK characteristics of nirmatrelvir/ritonavir vary greatly among renal transplant recipients. Factors including Ccr and CYP3A5 genotype were related to the in vivo exposure of nirmatrelvir/ritonavir. During the whole process before and after nirmatrelvir/ritonavir therapy, it is recommended to adjust the CNI basing on renal function to avoid CNI toxicity exposure.


Subject(s)
Calcineurin Inhibitors , Drug Interactions , Kidney Transplantation , Ritonavir , Humans , Ritonavir/pharmacokinetics , Ritonavir/pharmacology , Male , Calcineurin Inhibitors/pharmacokinetics , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/administration & dosage , Female , Middle Aged , Adult , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/administration & dosage , Prospective Studies , Tacrolimus/pharmacokinetics , Tacrolimus/administration & dosage , Tacrolimus/pharmacology , Genotype , Area Under Curve , Transplant Recipients
8.
Exp Brain Res ; 242(6): 1507-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719948

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Current treatments are unable to achieve satisfactory therapeutic effects or reverse the progression of the disease. Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and neuronal calcineurin may be hyperactivated in AD. To investigate the effects and underlying mechanisms of FK506, a calcineurin inhibitor, on Alzheimer-like behavior and synaptic dysfunction in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease, we investigated the effect of FK506 on cognitive function and synaptic plasticity in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease. The results showed that FK506 treatment ameliorated cognitive deficits, as indicated by the decreased latency in the water maze, and attenuated tau hyperphosphorylation in 3 × Tg-AD mice. Treatment with FK506 also reduced the levels of certain markers of postsynaptic deficits, including PSD-95 and NR2B, and reversed the long-term potentiation deficiency and dendritic spine impairments in 3 × Tg-AD mice. These findings suggest that treatment with calcineurin inhibitors such as FK506 can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial Alzheimer's disease and related tauopathies.


Subject(s)
Alzheimer Disease , Calcineurin Inhibitors , Disease Models, Animal , Mice, Transgenic , Tacrolimus , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Tacrolimus/pharmacology , Calcineurin Inhibitors/pharmacology , Mice , Maze Learning/drug effects , Maze Learning/physiology , Calcineurin/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , tau Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Synapses/drug effects , Synapses/metabolism , Disks Large Homolog 4 Protein/metabolism
9.
J Cardiovasc Transl Res ; 17(3): 481-495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652413

ABSTRACT

The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.


Subject(s)
Calcineurin , Dantrolene , Disease Models, Animal , Down-Regulation , Mice, Inbred C57BL , Myocytes, Cardiac , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Ryanodine Receptor Calcium Release Channel , Signal Transduction , Tumor Necrosis Factor-alpha , Animals , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/drug effects , Calcineurin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Dantrolene/pharmacology , Male , Calcineurin Inhibitors/pharmacology , NFATC Transcription Factors/metabolism , Cells, Cultured , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Cardiomegaly/pathology , Cardiomegaly/drug therapy , Rats, Sprague-Dawley , Rats , Hypertrophy, Left Ventricular/prevention & control , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology
10.
Front Immunol ; 15: 1326066, 2024.
Article in English | MEDLINE | ID: mdl-38665907

ABSTRACT

Introduction: Defective interleukin-2 (IL-2) production contributes to immune system imbalance in patients with systemic erythematosus lupus (SLE). Recent clinical studies suggested that low-dose IL-2 treatment is beneficial for SLE and the therapeutic effect is associated with regulatory T cell (Treg) expansion. Pharmacological calcineurin inhibition induces a reduction in the number of Tregs because they require stimulation of T cell receptor signaling and IL-2 for optimal proliferation. However, the activation of T cell receptor signaling is partially dispensable for the expansion of Tregs, but not for that of conventional T cells if IL-2 is present. Aim: We examined whether addition of IL-2 restores the Treg proportion even with concurrent use of a calcineurin inhibitor and if the follicular helper T cell (Tfh) proportion is reduced in an SLE-like murine chronic graft versus host disease model. Methods: Using a parent-into-F1 model, we investigated the effect of IL-2 plus tacrolimus on Treg and Tfh proportions and the therapeutic effect. Results: Treatment with a combination of IL-2 and tacrolimus significantly delayed the initiation of proteinuria and decreased the urinary protein concentration, whereas tacrolimus or IL-2 monotherapy did not significantly attenuate proteinuria. Phosphorylation of signal transducer and activator of transcription 3, a positive regulator of Tfh differentiation, was reduced by combination treatment, whereas phosphorylation of signal transducer and activator of transcription 5, a negative regulator, was not reduced. Conclusion: Addition of calcineurin inhibitors as adjunct agents may be beneficial for IL-2-based treatment of lupus nephritis.


Subject(s)
Interleukin-2 , Lupus Nephritis , T-Lymphocytes, Regulatory , Tacrolimus , Animals , Tacrolimus/therapeutic use , Tacrolimus/pharmacology , Lupus Nephritis/drug therapy , Lupus Nephritis/immunology , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Disease Models, Animal , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Drug Therapy, Combination , Female , T Follicular Helper Cells/immunology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , Calcineurin Inhibitors/therapeutic use , Calcineurin Inhibitors/pharmacology , Bronchiolitis Obliterans Syndrome
11.
J Physiol ; 602(10): 2179-2197, 2024 May.
Article in English | MEDLINE | ID: mdl-38630836

ABSTRACT

Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.


Subject(s)
Calcineurin , Neurons , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Receptors, AMPA , Tacrolimus , Animals , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Calcineurin/metabolism , Male , Tacrolimus/pharmacology , Rats , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Calcium/metabolism , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Calcineurin Inhibitors/pharmacology , Synapses/physiology , Synapses/drug effects , Synapses/metabolism
12.
mBio ; 15(4): e0039224, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38411085

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


Subject(s)
COVID-19 , SARS-CoV-2 , Signal Transduction , Viral Nonstructural Proteins , Humans , Antiviral Agents , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , COVID-19/virology , Cyclosporine/pharmacology , NFATC Transcription Factors/metabolism , SARS-CoV-2/physiology , Viral Nonstructural Proteins/metabolism
13.
Bone Marrow Transplant ; 59(3): 373-379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177221

ABSTRACT

The reduced risk of chronic graft-versus-host-disease (GVHD) with posttransplant cyclophosphamide (ptCy) in the setting of haploidentical related donor and more recently, with HLA-matched related and matched and mismatched unrelated donor allogeneic transplantation has been established. There is, however, paucity of data to show if ptCy impacts chronic GVHD pathogenesis, its phenotype and evolution after HCT regardless of the donor status. We examined the differences in chronic GVHD incidence and presentation in 314 consecutive patients after receiving their first allogeneic transplantation (HCT) using ptCy-based GVHD prophylaxis (ptCy-HCT; n = 120; including 95 with haploidentical related donor) versus conventional calcineurin inhibitor-based prophylaxis (CNI-MUD; n = 194) between 2012 and 2019. The 1-year cumulative incidence of all-grade chronic GVHD and moderate/severe chronic GVHD was 24% and 12%, respectively, after ptCy-HCT and 40% and 23% in the CNI-MUD recipients (p = 0.0003 and 0.007). Multivariable analysis confirmed that use of CNI-based GVHD prophylaxis and peripheral blood stem cell graft as the risk factors for chronic GVHD. The cumulative incidence of visceral (involving ≥1 of the following organs: liver, lungs, gastrointestinal tract, serous membranes) chronic GVHD was significantly higher with CNI-MUD vs. ptCy-HCT (27% vs. 15% at 1 year, p = 0.009). The incidence of moderate/severe visceral chronic GVHD was 20% in CNI-MUD group vs. 7.7% in the ptCy-HCT group at 1 year (p = 0.002). In addition, significantly fewer ptCy-HCT recipients developed severe chronic GVHD in ≥3 organs (0.8%) vs. 8.8% in the CNI-MUD group at 1-year posttransplant (p = 0.004). There was no significant different in relapse, non-relapse mortality, and relapse-free and overall survival between the two groups. Further investigation is needed to confirm that reduced risk and severity of chronic GVHD, less visceral organ distribution with ptCy-HCT leads to improved quality of life.


Subject(s)
Bronchiolitis Obliterans Syndrome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use , Methotrexate/pharmacology , Methotrexate/therapeutic use , Quality of Life , Graft vs Host Disease/etiology , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Unrelated Donors , Retrospective Studies
14.
Zhonghua Nei Ke Za Zhi ; 62(11): 1266-1281, 2023 Nov 01.
Article in Chinese | MEDLINE | ID: mdl-37935492

ABSTRACT

Calcineurin inhibitors (CNI), including oral cyclosporin A and tacrolimus, are intensive immunosuppressants that are extensively used in the treatment of rheumatic and immunologic diseases in China. CNI selectively inhibit the activation and proliferation of T lymphocytes and the transcription of cytokines [such as tumor necrosis factor-α, interleukin (IL)-6, and IL-17] through inhibiting the activation of calcineurin in cells and reducing the release of IL-2. To standardize the use of CNI in the field of rheumatic and immunologic diseases, this consensus statement was developed by the National Clinical Research Center for Dermatologic and Immunologic Diseases (Peking Union Medical College Hospital), in conjunction with the Chinese Association of Rheumatology and Immunology Physicians, the Chinese Research Hospital Association, the Rheumatology and Immunology Professional Committee, and the Chinese Association of Rehabilitation Medicine. The 2011 Oxford Centre for Evidence-Based Medicine Levels of Evidence was used to rate the quality of the evidence and the strength of the recommendations, and the RIGHT (Reporting Items for practice Guidelines in HealThcare) checklist was followed to report the consensus. The consensus offers recommendations addressing nine clinical challenges to Chinese clinicians. The primary objective of this consensus is to deliver scientific and detailed guidance on CNI for Chinese clinicians, and to improve the quality of patient-centered medical services.


Subject(s)
Immune System Diseases , Rheumatic Diseases , Humans , Calcineurin Inhibitors/therapeutic use , Calcineurin Inhibitors/pharmacology , Immunosuppressive Agents/therapeutic use , Tacrolimus/pharmacology , T-Lymphocytes , Rheumatic Diseases/drug therapy
15.
Pharmacol Rep ; 75(5): 1240-1253, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37658979

ABSTRACT

BACKGROUND: The effect of multidrug immunosuppressive protocols on the salivary glands is still unknown. This study aimed to determine the influence of immunosuppressive regimens based on calcineurin inhibitors (CNIs) and conversion to rapamycin on the morphology, apoptosis, and proliferation of rat salivary glands. METHODS: Male rats received cyclosporin A (CsA), tacrolimus (FK-506), mycophenolate mofetil (MMF), rapamycin (Rapa), and prednisone (Pre) according to three-drug protocols: CMP (CsA, MMF, and Pre), CMP/R (CsA, MMF, and Pre with conversion to Rapa), TMP (FK-506, MMF, and Pre), and TMP/R (FK-506, MMF, and Pre with conversion to Rapa). Morphological and immunohistochemical and quantitative analyses of the salivary glands were performed. RESULTS: Structural changes in salivary glands were observed in all experimental groups, especially in the submandibular gland. In the salivary glands, the percentages of collagen fibers and TUNEL-, Ki67- and PCNA-positive cells were higher in the experimental groups vs. the control but were lower in the CMP/R and TMP/R groups vs. the CMP and TMP groups, with the exception of collagen fibers in the parotid gland in the TMP/R group vs. the TMP group. CONCLUSIONS: Long-term administration of CNIs in triple regimens and after conversion to rapamycin monotherapy, causes morphological changes in the salivary glands of rats. Immunosuppressive treatment based on CNIs is associated with an increase in collagen accumulation. The effects of the conversion of treatment with CNIs to rapamycin in immunosuppressive protocols in rat salivary glands lead to decreased fibrosis, apoptosis, and proliferation. These changes may possibly prevent abnormalities resulting from the application of CNIs.


Subject(s)
Calcineurin Inhibitors , Sirolimus , Male , Rats , Animals , Calcineurin Inhibitors/pharmacology , Sirolimus/pharmacology , Tacrolimus/pharmacology , Immunosuppressive Agents , Cyclosporine/pharmacology , Mycophenolic Acid/pharmacology , Mycophenolic Acid/therapeutic use , Apoptosis , Cell Proliferation
16.
Circ Res ; 133(7): 611-627, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37605933

ABSTRACT

BACKGROUND: Calcineurin is highly enriched in immune T cells and the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. In this study, we determined whether α2δ-1 plays a role in calcineurin inhibitor-induced synaptic NMDAR hyperactivity in the PVN and hypertension development. METHODS: Immunoblotting and coimmunoprecipitation assays were used to quantify synaptic protein levels and the physical interaction between GluN1 (the obligatory NMDAR subunit) and α2δ-1. Whole-cell patch-clamp recordings of retrogradely labeled, spinally projecting PVN were conducted in perfused brain slices to measure presynaptic and postsynaptic NMDAR activity. Radio-telemetry was implanted in rodents to continuously record arterial blood pressure in conscious states. RESULTS: Prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1, and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice. CONCLUSIONS: α2δ-1 is essential for calcineurin inhibitor-induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor-induced hypertension. Gabapentinoids (gabapentin and pregabalin) could be repurposed for treating calcineurin inhibitor-induced neurogenic hypertension.


Subject(s)
Calcineurin Inhibitors , Hypertension , Animals , Mice , Rats , Calcineurin Inhibitors/pharmacology , Receptors, N-Methyl-D-Aspartate , Tacrolimus/toxicity , Gabapentin , Brain , Hypertension/chemically induced , Aspartic Acid
17.
Blood ; 142(5): 477-492, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37216687

ABSTRACT

Calcineurin inhibitor-based graft-versus-host disease (GVHD) prophylaxis is standard in allogeneic hematopoietic stem cell transplantation (HCT) but fails to induce long-term tolerance without chronic GVHD (cGVHD) in a considerable number of patients. In this study, we addressed this long-standing question in mouse models of HCT. After HCT, alloreactive donor T cells rapidly differentiated into PD-1+ TIGIT+ terminally exhausted T cells (terminal Tex). GVHD prophylaxis with cyclosporine (CSP) suppressed donor T-cell expression of TOX, a master regulator to promote differentiation of transitory exhausted T cells (transitory Tex), expressing both inhibitory receptors and effector molecules, into terminal Tex, and inhibited tolerance induction. Adoptive transfer of transitory Tex, but not terminal Tex, into secondary recipients developed cGVHD. Transitory Tex maintained alloreactivity and thus PD-1 blockade restored graft-versus-leukemia (GVL) activity of transitory Tex and not terminal Tex. In conclusion, CSP inhibits tolerance induction by suppressing the terminal exhaustion of donor T cells, while maintaining GVL effects to suppress leukemia relapse.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Mice , Animals , Calcineurin Inhibitors/pharmacology , T-Lymphocytes , Graft vs Host Disease/prevention & control , Programmed Cell Death 1 Receptor , Cyclosporine/pharmacology , Immune Tolerance
18.
Pancreatology ; 23(4): 333-340, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37031049

ABSTRACT

OBJECTIVE: There is an urgent need for safe and targeted interventions to mitigate post-ERCP pancreatitis (PEP). Calcineurin inhibitors (CnIs) offer therapeutic promise as calcineurin signaling within acinar cells is a key initiating event in PEP. In previous proof-of-concept studies using experimental models, we showed that concurrent intra-pancreatic ductal administration of the CnIs, tacrolimus (Tac) or cyclosporine A (CsA) with the ERCP radiocontrast agent (RC) prevented PEP. To translate this finding clinically, we investigated potential toxic effects of intraductal delivery of a single-dose RC-CnI formulation on endocrine pancreas function and systemic toxicities in a preclinical PEP model. METHODS: C57BL/6J mice underwent ductal cannulation and received a single, intra-pancreatic ductal infusion of RC or RC with Tac or CsA (treatment groups) or underwent ductal cannulation without infusion ('sham' group). To assess endocrine function, intraperitoneal glucose tolerance test (IPGTT) was performed at two days before infusion and on day 2 and 14 post-surgery. To evaluate off-target tissue toxicities, renal and hepatic function-related parameters including blood urea nitrogen, plasma creatinine, potassium, aspartate aminotransferase, alanine aminotransferase, and total bilirubin were measured at the same time-points as IPGTT. Histological and biochemical indicators of pancreas injury and inflammation were also evaluated. RESULTS: No abnormalities in glucose metabolism, hepatic or renal function were observed on day 2 or 14 in mice administered with intraductal RC or RC with Tac or CsA. CONCLUSION: Intraductal delivery of RC-CnI formulation was safe and well-tolerated with no significant acute or subacute endocrine or systemic toxicities, underscoring its clinical utility to prevent PEP.


Subject(s)
Calcineurin Inhibitors , Pancreatitis , Mice , Animals , Calcineurin Inhibitors/therapeutic use , Calcineurin Inhibitors/pharmacology , Cholangiopancreatography, Endoscopic Retrograde/adverse effects , Mice, Inbred C57BL , Tacrolimus/therapeutic use , Tacrolimus/pharmacology , Cyclosporine/therapeutic use , Pancreatitis/etiology , Pancreatitis/prevention & control , Pancreatitis/pathology , Contrast Media
19.
Am J Physiol Renal Physiol ; 324(5): F433-F445, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36927118

ABSTRACT

Use of immunosuppressant calcineurin inhibitors (CNIs) is limited by irreversible kidney damage, hallmarked by renal fibrosis. CNIs directly damage many renal cell types. Given the diverse renal cell populations, additional targeted cell types and signaling mechanisms warrant further investigation. We hypothesized that fibroblasts contribute to CNI-induced renal fibrosis and propagate profibrotic effects via the transforming growth factor-ß (TGF-ß)/Smad signaling axis. To test this, kidney damage-resistant mice (C57BL/6) received tacrolimus (10 mg/kg) or vehicle for 21 days. Renal damage markers and signaling mediators were assessed. To investigate their role in renal damage, mouse renal fibroblasts were exposed to tacrolimus (1 nM) or vehicle for 24 h. Morphological and functional changes in addition to downstream signaling events were assessed. Tacrolimus-treated kidneys displayed evidence of renal fibrosis. Moreover, α-smooth muscle actin expression was significantly increased, suggesting the presence of fibroblast activation. TGF-ß receptor activation and downstream Smad2/3 signaling were also upregulated. Consistent with in vivo findings, tacrolimus-treated renal fibroblasts displayed a phenotypic switch known as fibroblast-to-myofibroblast transition (FMT), as α-smooth muscle actin, actin stress fibers, cell motility, and collagen type IV expression were significantly increased. These findings were accompanied by concomitant induction of TGF-ß signaling. Pharmacological inhibition of the downstream TGF-ß effector Smad3 attenuated tacrolimus-induced phenotypic changes. Collectively, these findings suggest that 1) tacrolimus inhibits the calcineurin/nuclear factor of activated T cells axis while inducing TGF-ß1 ligand secretion and receptor activation in renal fibroblasts; 2) aberrant TGF-ß receptor activation stimulates Smad-mediated production of myofibroblast markers, notable features of FMT; and 3) FMT contributes to extracellular matrix expansion in tacrolimus-induced renal fibrosis. These results incorporate renal fibroblasts into the growing list of CNI-targeted cell types and identify renal FMT as a process mediated via a TGF-ß-dependent mechanism.NEW & NOTEWORTHY Renal fibrosis, a detrimental feature of irreversible kidney damage, remains a sinister consequence of long-term calcineurin inhibitor (CNI) immunosuppressive therapy. Our study not only incorporates renal fibroblasts into the growing list of cell types negatively impacted by CNIs but also identifies renal fibroblast-to-myofibroblast transition as a process mediated via a TGF-ß-dependent mechanism. This insight will direct future studies investigating the feasibility of inhibiting TGF-ß signaling to maintain CNI-mediated immunosuppression while ultimately preserving kidney health.


Subject(s)
Myofibroblasts , Renal Insufficiency , Tacrolimus , Transforming Growth Factor beta1 , Animals , Mice , Actins/metabolism , Calcineurin Inhibitors/pharmacology , Fibroblasts/metabolism , Fibrosis , Mice, Inbred C57BL , Myofibroblasts/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Tacrolimus/pharmacology , Transforming Growth Factor beta1/metabolism , Renal Insufficiency/pathology
20.
Hepatol Commun ; 7(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36976659

ABSTRACT

BACKGROUND: Autoimmune hepatitis (AIH) can be clinically controlled by first-line immunosuppressive therapy in the majority of patients. However, a selective decrease in intrahepatic regulatory T cells (Treg) was observed with immunosuppressive therapy, which was even more pronounced in patients with incomplete responses than in patients who achieved biochemical remission. The effects of salvage therapies on the number of intrahepatic T and B cells, including Treg, are unclear. The hypothesis was that calcineurin inhibitors would further decrease intrahepatic Treg numbers, and the mammalian target of rapamycin inhibitors would increase intrahepatic Treg numbers. METHODS: In this retrospective study at 2 centers, CD4+, CD8+ and CD4+FOXP3+ T cells, and CD79a+ B cells were quantified in surveillance biopsies under non-standard-of-care treatment [non-SOC: calcineurin inhibitor (n=10), second-line antimetabolites (n=9), mammalian target of rapamycin inhibitors (n=4)] compared with patients under the standard-of-care treatment (SOC). RESULTS: Intrahepatic T-cell and B-cell counts were not significantly different between patients with biochemical remission under SOC and non-SOC. However, patients with incomplete response under non-SOC had significantly lower liver infiltration with T and B cells, whereas Treg were not reduced compared with SOC. This resulted in an even higher ratio of Treg to T and B cells in non-SOC compared with SOC when biochemical remission was not achieved. The different non-SOC regimens showed no significant difference in liver infiltration with T cells, including Treg and B cells. CONCLUSIONS: Non-SOC in AIH partially controls intrahepatic inflammation by limiting the hepatic infiltration of total T and B cells as the main drivers of inflammation without further decreasing intrahepatic Treg. A negative effect of calcineurin inhibitor and a positive effect of mammalian target of rapamycin inhibitors on the number of intrahepatic Treg was not observed.


Subject(s)
Hepatitis, Autoimmune , Humans , T-Lymphocytes, Regulatory , Retrospective Studies , Salvage Therapy , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use , Inflammation , TOR Serine-Threonine Kinases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL