Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28.119
Filter
1.
Cell Biochem Funct ; 42(5): e4082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38944766

ABSTRACT

Calcium (Ca2+) has been observed as the most important ion involved in a series of cellular processes and its homeostasis is critical for normal cellular functions. Mitochondrial calcium uniporter (MCU) complex has been recognized as the most important calcium-specific channel located in the inner mitochondrial membrane and is one of the major players in maintaining the Ca2+ homeostasis by transporting Ca2+ across the mitochondrial membrane. Furthermore, dysregulation of the mitochondrial Ca2+ homeostasis has been orchestrated to neurodegenerative response. This necessitates quantitative evaluation of the MCU-dependent mROS production and subsequent cellular responses for more specific therapeutic interventions against neurodegenerative disorders. Towards this goal, here we present a biological regulatory network of MCU to dynamically simulate the MCU-mediated ROS production and its response in neurodegeneration. Previously, ruthenium complex RuRed and its derivatives have been reported to show low nM to high µM potency against MCU to maintain cytosolic Ca2+ (cCa2+) homeostasis by modulating mitochondrial Ca2+ (mCa2+) uptake. Therefore, structural modeling and dynamic simulation of MCU pore-forming subunit is performed to probe the interaction profiling of previously reported Ru265 and its derivatives compounds with MCU. The current study highlighted MCU as a potential drug target in neurodegenerative disorders. Furthermore, ASP261 and GLU264 amino acid residues in DIME motif of MCU pore-forming subunits are identified as crucial for modulating the activity of MCU in neurodegenerative disorders.


Subject(s)
Calcium Channels , Calcium , Neurodegenerative Diseases , Calcium Channels/metabolism , Calcium Channels/chemistry , Calcium/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects
2.
Elife ; 132024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896440

ABSTRACT

The CALHM proteins constitute a family of large pore channels that contains six closely related paralogs in humans. Two family members, CALHM1 and 3, have been associated with the release of ATP during taste sensation. Both proteins form heteromeric channels that activate at positive potential and decreased extracellular Ca2+ concentration. Although the structures of several family members displayed large oligomeric organizations of different size, their function has in most cases remained elusive. Our previous study has identified the paralogs CALHM2, 4 and, 6 to be highly expressed in the placenta and defined their structural properties as membrane proteins exhibiting features of large pore channels with unknown activation properties (Drozdzyk et al., 2020). Here, we investigated whether these placental paralogs would form heteromers and characterized heteromeric complexes consisting of CALHM2 and CALHM4 subunits using specific binders as fiducial markers. Both proteins assemble with different stoichiometries with the largest population containing CALHM2 as the predominant component. In these oligomers, the subunits segregate and reside in their preferred conformation found in homomeric channels. Our study has thus revealed the properties that govern the formation of CALHM heteromers in a process of potential relevance in a cellular context.


Subject(s)
Protein Multimerization , Female , Humans , Calcium Channels/metabolism , Calcium Channels/chemistry , Calcium Channels/genetics , HEK293 Cells , Placenta/metabolism , Protein Conformation
4.
Front Immunol ; 15: 1389194, 2024.
Article in English | MEDLINE | ID: mdl-38840905

ABSTRACT

Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.


Subject(s)
Calcium Channels , Endosomes , Lysosomes , Neoplasms , Transient Receptor Potential Channels , Humans , Neoplasms/immunology , Neoplasms/metabolism , Lysosomes/metabolism , Lysosomes/immunology , Endosomes/metabolism , Endosomes/immunology , Animals , Transient Receptor Potential Channels/metabolism , Calcium Channels/metabolism , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/immunology , Two-Pore Channels
5.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891114

ABSTRACT

Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for ß-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.


Subject(s)
Calcium , Hippocampus , Presynaptic Terminals , Animals , Calcium/metabolism , Presynaptic Terminals/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Mice , Mice, Knockout , Calcium Channels/metabolism , Calcium Channels/genetics , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Calcium Signaling , Gene Knockout Techniques , Neurexins
6.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850699

ABSTRACT

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Subject(s)
Alkanesulfonic Acids , Autophagy , Calcium , Coenzyme A Ligases , Ferroptosis , Fluorocarbons , Non-alcoholic Fatty Liver Disease , Ferroptosis/drug effects , Fluorocarbons/toxicity , Animals , Alkanesulfonic Acids/toxicity , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Autophagy/drug effects , Coenzyme A Ligases/metabolism , Humans , Calcium/metabolism , Calcium Channels/metabolism , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line , Hepatocytes/drug effects
7.
Nutr Diabetes ; 14(1): 43, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862477

ABSTRACT

BACKGROUND: We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown. METHODS: We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon. RESULTS: Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 µM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 µM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon. CONCLUSIONS: L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.


Subject(s)
Glucagon-Like Peptide 1 , Intestine, Small , KATP Channels , Valine , Animals , Glucagon-Like Peptide 1/metabolism , Male , Valine/pharmacology , Rats , Mice , Intestine, Small/metabolism , Intestine, Small/drug effects , KATP Channels/metabolism , Calcium Channels/metabolism , Colon/metabolism , Colon/drug effects , Mice, Inbred C57BL , Rats, Wistar
8.
Cell Death Dis ; 15(6): 419, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879621

ABSTRACT

TRPV6 calcium channel is a prospective target in prostate cancer (PCa) since it is not expressed in healthy prostate while its expression increases during cancer progression. Despite the role of TRPV6 in PCa cell survival and apoptotic resistance has been already established, no reliable tool to target TRPV6 channel in vivo and thus to reduce tumor burden is known to date. Here we report the generation of mouse monoclonal antibody mAb82 raised against extracellular epitope of the pore region of the channel. mAb82 inhibited TRPV6 currents by 90% at 24 µg/ml in a dose-dependent manner while decreasing store-operated calcium entry to 56% at only 2.4 µg/ml. mAb82 decreased PCa survival rate in vitro by 71% at 12 µg/ml via inducing cell death through the apoptosis cascade via activation of the protease calpain, following bax activation, mitochondria enlargement, and loss of cristae, Cyt C release, pro-caspase 9 cleavage with the subsequent activation of caspases 3/7. In vivo, mice bearing either PC3Mtrpv6+/+ or PC3Mtrpv6-/-+pTRPV6 tumors were successfully treated with mAb82 at the dose as low as 100 µg/kg resulting in a significant reduction tumor growth by 31% and 90%, respectively. The survival rate was markedly improved by 3.5 times in mice treated with mAb82 in PC3Mtrpv6+/+ tumor group and completely restored in PC3Mtrpv6-/-+pTRPV6 tumor group. mAb82 showed a TRPV6-expression dependent organ distribution and virtually no toxicity in the same way as mAbAU1, a control antibody of the same Ig2a isotype. Overall, our data demonstrate for the first time the use of an anti-TRPV6 monoclonal antibody in vitro and in vivo in the treatment of the TRPV6-expressing PCa tumors.


Subject(s)
Antibodies, Monoclonal , Apoptosis , Calcium Channels , Prostatic Neoplasms , TRPV Cation Channels , Male , TRPV Cation Channels/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Apoptosis/drug effects , Humans , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Mice , Calcium Channels/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Calpain/metabolism , Calcium/metabolism
9.
Free Radic Biol Med ; 221: 111-124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763207

ABSTRACT

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.


Subject(s)
Apoptosis , Calcium Channels , Dynamins , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis/genetics , Caco-2 Cells , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Disease Models, Animal , Dynamins/metabolism , Dynamins/genetics , Intestines/blood supply , Intestines/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
10.
Science ; 384(6699): eadd6260, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815015

ABSTRACT

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Calcium , Homeostasis , Neuroprotective Agents , Septins , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/drug effects , Cytoskeleton/metabolism , Cytoskeleton/drug effects , Disease Models, Animal , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Septins/metabolism , tau Proteins/metabolism
12.
Cell Calcium ; 121: 102907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788256

ABSTRACT

Calcium (Ca2+) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca2+ Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca2+ signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca2+ signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca2+ signalling in different tissues.


Subject(s)
Calcium Channels , Calcium Signaling , Mitochondria , Organ Specificity , Humans , Calcium Channels/metabolism , Animals , Mitochondria/metabolism , Calcium/metabolism
13.
Circ Res ; 135(1): 26-40, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38747181

ABSTRACT

BACKGROUND: Calcium (Ca2+) uptake by mitochondria occurs via the mitochondrial Ca2+ uniporter. Mitochondrial Ca2+ uniporter exists as a complex, regulated by 3 MICU (mitochondrial Ca2+ uptake) proteins localized in the intermembrane space: MICU1, MICU2, and MICU3. Although MICU3 is present in the heart, its role is largely unknown. METHODS: We used CRISPR-Cas9 to generate a mouse with global deletion of MICU3 and an adeno-associated virus (AAV9) to overexpress MICU3 in wild-type mice. We examined the role of MICU3 in regulating mitochondrial calcium ([Ca2+]m) in ex vivo hearts using an optical method following adrenergic stimulation in perfused hearts loaded with a Ca2+-sensitive fluorophore. Additionally, we studied how deletion and overexpression of MICU3, respectively, impact cardiac function in vivo by echocardiography and the molecular composition of the mitochondrial Ca2+ uniporter complex via Western blot, immunoprecipitation, and Blue native-PAGE analysis. Finally, we measured MICU3 expression in failing human hearts. RESULTS: MICU3 knock out hearts and cardiomyocytes exhibited a significantly smaller increase in [Ca2+]m than wild-type hearts following acute isoproterenol infusion. In contrast, heart with overexpression of MICU3 exhibited an enhanced increase in [Ca2+]m compared with control hearts. Echocardiography analysis showed no significant difference in cardiac function in knock out MICU3 mice relative to wild-type mice at baseline. However, mice with overexpression of MICU3 exhibited significantly reduced ejection fraction and fractional shortening compared with control mice. We observed a significant increase in the ratio of heart weight to tibia length in hearts with overexpression of MICU3 compared with controls, consistent with hypertrophy. We also found a significant decrease in MICU3 protein and expression in failing human hearts. CONCLUSIONS: Our results indicate that increased and decreased expression of MICU3 enhances and reduces, respectively, the uptake of [Ca2+]m in the heart. We conclude that MICU3 plays an important role in regulating [Ca2+]m physiologically, and overexpression of MICU3 is sufficient to induce cardiac hypertrophy, making MICU3 a possible therapeutic target.


Subject(s)
Calcium-Binding Proteins , Calcium , Mice, Knockout , Mitochondria, Heart , Mitochondrial Membrane Transport Proteins , Myocytes, Cardiac , Animals , Humans , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Mitochondria, Heart/metabolism , Mice , Myocytes, Cardiac/metabolism , Male , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Calcium/metabolism , Cardiomegaly/metabolism , Cardiomegaly/genetics , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Calcium Signaling , Heart Failure/metabolism , Heart Failure/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Female
14.
Nihon Yakurigaku Zasshi ; 159(3): 165-168, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692881

ABSTRACT

Molecular oxygen suffices the ATP production required for the survival of us aerobic organisms. But it is also true that oxygen acts as a source of reactive oxygen species that elicit a spectrum of damages in living organisms. To cope with such intrinsic ambiguity of biological activity oxygen exerts, aerobic mechanisms are equipped with an exquisite adaptive system, which sensitively detects partial pressure of oxygen within the body and controls appropriate oxygen supply to the tissues. Physiological responses to hypoxia are comprised of the acute and chronic phases, in the former of which the oxygen-sensing remains controversial particularly from mechanistic points of view. Recently, we have revealed that the prominently redox-sensitive cation channel TRPA1 plays key roles in oxygen-sensing mechanisms identified in the peripheral tissues and the central nervous system. In this review, we summarize recent development of researches on oxygen-sensing mechanisms including that in the carotid body, which has been recognized as the oxygen receptor organ central to acute oxygen-sensing. We also discuss how ubiquitously the TRPA1 contributes to the mechanisms underlying the acute phase of adaptation to hypoxia.


Subject(s)
Oxygen , TRPA1 Cation Channel , Transient Receptor Potential Channels , TRPA1 Cation Channel/metabolism , Humans , Oxygen/metabolism , Animals , Transient Receptor Potential Channels/metabolism , Hypoxia/metabolism , Calcium Channels/metabolism , Nerve Tissue Proteins/metabolism , Reactive Oxygen Species/metabolism , Carotid Body/metabolism
15.
Science ; 384(6695): 573-579, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696577

ABSTRACT

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Subject(s)
Calcium Channels , Habenula , Neurogenesis , Neurons , Wnt Signaling Pathway , Zebrafish Proteins , Zebrafish , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Habenula/metabolism , Habenula/embryology , Loss of Function Mutation , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neurons/metabolism , Receptors, Wnt/metabolism , Receptors, Wnt/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Calcium Channels/genetics , Calcium Channels/metabolism
16.
Food Funct ; 15(12): 6459-6474, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38804659

ABSTRACT

Deoxynivalenol (DON) pollution is prevalent in crops, and can induce oxidative stress and intestinal injury. Hesperidin is one of the major flavonoids in citrus fruits that has various biological activities such as antioxidant and anti-inflammatory activities. However, whether hesperidin could alleviate DON-induced intestinal injury and the mechanism remain unclear. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) have attracted attention for their crucial signaling points to regulate ER-mitochondria calcium transfer. This study aims to evaluate the effects of hesperidin on the intestinal barrier, mitochondrial function, MAMs, and inositol 1,4,5-triphosphate receptor (IP3R)-mitochondrial calcium uniporter (MCU) calcium axis in the intestine of piglets exposed to DON. Twenty-four piglets were randomly divided into four groups in a 2 × 2 factorial arrangement for a 21-d experiment: Control: basal diet; hesperidin group: basal diet + 300 mg kg-1 hesperidin; DON: basal diet + 1.5 mg kg-1 DON; DON + hesperidin group: basal diet + 1.5 mg kg-1 DON + 300 mg kg-1 hesperidin. The data showed that when compared with the DON group, hesperidin improved growth performance and the intestinal barrier, alleviated intestinal oxidative stress and ER stress, and decreased the serum alanine aminotransferase (ALT) level (P < 0.05). Hesperidin also alleviated mitochondrial dysfunction and ferroptosis in the intestine of piglets exposed to DON (P < 0.05). Importantly, hesperidin prevented excessive MAM formation by downregulating the protein levels of Mitofusin 2 (Mfn2) and glucose-regulated protein 75 (GRP75), decreasing the ratio of the mitochondria with MAMs/total mitochondria and the ratio of MAM length/mitochondrial perimeter and lengthening the mitochondria-ER distance in MAMs (P < 0.05). Furthermore, hesperidin regulated the IP3R-glucose-regulated protein 75 (GRP75)-voltage-dependent anion channel 1 (VDAC1)-MCU calcium axis by decreasing the protein levels of GRP75 and MCU and the calcium level of the mitochondria compared with the DON group (P < 0.05). An in vitro experiment was conducted to further explore whether IP3R-mediated ER-mitochondria calcium transfer was involved in the protective effects of hesperidin on the intestinal epithelium barrier and mitochondria. Data showed that hesperidin may exert protective effects on the intestinal epithelium barrier and mitochondria via inhibiting ER-mitochondrial calcium transfer mediated by IP3Rs. These data suggested that hesperidin could alleviate MAM-mediated mitochondrial calcium overload, thereby improving mitochondrial function and alleviating oxidative stress and intestinal injury in DON-challenged piglets.


Subject(s)
Calcium , Endoplasmic Reticulum , Hesperidin , Inositol 1,4,5-Trisphosphate Receptors , Intestines , Mitochondria , Trichothecenes , Animals , Swine , Mitochondria/drug effects , Mitochondria/metabolism , Trichothecenes/toxicity , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Hesperidin/pharmacology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Calcium/metabolism , Intestines/drug effects , Calcium Channels/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Oxidative Stress/drug effects , Male
17.
Chem Senses ; 492024 Jan 01.
Article in English | MEDLINE | ID: mdl-38761122

ABSTRACT

Taste receptor cells are morphologically classified as types II and III. Type II cells form a unique type of synapses referred to as channel synapses where calcium homeostasis modulator 1 (CALHM1) together with CALHM3 forms voltage-gated channels that release the neurotransmitter, adenosine triphosphate (ATP). To validate the proposed structural model of channel synapses, the ultrastructural localization of CALHM1 in type II cells of both fungiform and circumvallate taste buds was examined. A monoclonal antibody against CALHM1 was developed and its localization was evaluated via immunofluorescence and immunoelectron microscopy using the immunogold-silver labeling technique. CALHM1 was detected as puncta using immunofluorescence and along the presynaptic membrane of channel synapses facing atypical mitochondria, which provide ATP, by immunoelectron microscopy. In addition, it was detected along the plasma membrane lined by subsurface cisternae at sites apposed to afferent nerve fibers. Our results support the validity of a previously proposed structural model for channel synapses and provide insights into the function of subsurface cisternae whose function in taste receptor cells is unknown. We also examined the localization of CALHM1 in hybrid synapses of type III cells, which are conventional chemical synapses accompanied by mitochondria similar to atypical mitochondria of channel synapses. CALHM1 was not detected in the six hybrid synapses examined using immunoelectron microscopy. We further performed double immunolabeling for CALHM1 and Bassoon, which is detected as puncta corresponding to conventional vesicular synapses in type III cells. Our observations suggest that at least some, and probably most, hybrid synapses are not accompanied by CALHM1.


Subject(s)
Calcium Channels , Taste Buds , Animals , Taste Buds/metabolism , Taste Buds/ultrastructure , Mice , Calcium Channels/metabolism , Synapses/metabolism , Synapses/ultrastructure , Microscopy, Immunoelectron , Mice, Inbred C57BL , Antibodies, Monoclonal/metabolism
18.
Brain Nerve ; 76(5): 630-634, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38741506

ABSTRACT

Lambert-Eaton myasthenic syndrome (LEMS), an autoimmune disorder that affects the neuromuscular junction, is characterized by proximal muscle weakness, reduction of tendon reflexes, and autonomic dysfunction. LEMS shows a prevalence of approximately 0.25-0.27 per 100,000 population. The characteristic muscle weakness observed in patients with LEMS is attributed to the role of pathogenic autoantibodies directed against voltage-gated calcium channels (VGCC) present on the presynaptic nerve terminal. Notably, 50-60% of patients with LEMS have an associated tumor, small-cell lung carcinoma (SCLC), which also expresses functional voltage-gated calcium channels (VGCC). The Japanese LEMS diagnostic criteria 2022 recommend documentation of typical electrophysiological abnormalities combined with myasthenic symptoms for accurate diagnosis. P/Q-type VGCC antibody positivity strongly supports the diagnosis. Treatment options are categorized as oncological treatment, immunotherapy, and symptomatic treatments. Effective treatment of the tumor can improve LEMS in patients with SCLC. Most patients benefit from 3,4-diaminopyridine administration for symptomatic treatment. A treatment algorithm is established by the clinical practice guidelines 2022.


Subject(s)
Lambert-Eaton Myasthenic Syndrome , Lambert-Eaton Myasthenic Syndrome/diagnosis , Lambert-Eaton Myasthenic Syndrome/therapy , Lambert-Eaton Myasthenic Syndrome/immunology , Lambert-Eaton Myasthenic Syndrome/physiopathology , Lambert-Eaton Myasthenic Syndrome/drug therapy , Humans , Autoantibodies/immunology , Calcium Channels/immunology
19.
Bratisl Lek Listy ; 125(6): 354-359, 2024.
Article in English | MEDLINE | ID: mdl-38757591

ABSTRACT

BACKGROUND: In the present study, two structurally similar alkaloids from trees of Cinchona genus, chloroquine and cinchonine, were examined for their vasorelaxant effects in a model of phenylephrine-induced smooth muscle contractions. METHODS: Potential mechanisms of action associated with endothelial vasorelaxant compounds, voltage-gated Ca2+ channels (LTCCs), and inositol triphosphate receptors were examined in isolated rat aortic rings. Also, an in silico approach was used to predict the activity of the two test compounds. RESULTS: Experimental results revealed that both chloroquine and cinchonine significantly decrease phenylephrine-induced smooth muscle contractions, although to a different extent. Evaluated mechanisms of action indicate that endothelium is not involved in the vasorelaxant action of the two tested alkaloids. On the other hand, voltage-gated Ca2+ channels were found to be the dominant way of action associated with the vasorelaxant action of chloroquine and cinchonine. Finally, IP3R is found to have only a small impact on the observed activity of the tested compounds. CONCLUSION: Molecular docking studies predicted that chloroquine possesses a significant activity toward a suitable model of LTCCs, while cinchonine does not. The results of the present study point to the fact that great caution should be paid while administering chloroquine to vulnerable patients, especially those with cardiovascular disorders (Tab. 3, Fig. 3, Ref. 28).


Subject(s)
Calcium Channels , Chloroquine , Molecular Docking Simulation , Muscle, Smooth, Vascular , Animals , Chloroquine/pharmacology , Rats , Muscle, Smooth, Vascular/drug effects , Calcium Channels/drug effects , Calcium Channels/metabolism , Vasodilator Agents/pharmacology , Muscle Tonus/drug effects , Male , Rats, Wistar , Computer Simulation , Phenylephrine/pharmacology
20.
Nat Commun ; 15(1): 3682, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693121

ABSTRACT

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Subject(s)
Diet, High-Fat , Galectin 3 , Insulin Secretion , Insulin-Secreting Cells , Animals , Humans , Male , Mice , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Galectin 3/metabolism , Galectin 3/genetics , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...