Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.727
Filter
1.
Elife ; 132024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896440

ABSTRACT

The CALHM proteins constitute a family of large pore channels that contains six closely related paralogs in humans. Two family members, CALHM1 and 3, have been associated with the release of ATP during taste sensation. Both proteins form heteromeric channels that activate at positive potential and decreased extracellular Ca2+ concentration. Although the structures of several family members displayed large oligomeric organizations of different size, their function has in most cases remained elusive. Our previous study has identified the paralogs CALHM2, 4 and, 6 to be highly expressed in the placenta and defined their structural properties as membrane proteins exhibiting features of large pore channels with unknown activation properties (Drozdzyk et al., 2020). Here, we investigated whether these placental paralogs would form heteromers and characterized heteromeric complexes consisting of CALHM2 and CALHM4 subunits using specific binders as fiducial markers. Both proteins assemble with different stoichiometries with the largest population containing CALHM2 as the predominant component. In these oligomers, the subunits segregate and reside in their preferred conformation found in homomeric channels. Our study has thus revealed the properties that govern the formation of CALHM heteromers in a process of potential relevance in a cellular context.


Subject(s)
Protein Multimerization , Female , Humans , Calcium Channels/metabolism , Calcium Channels/chemistry , Calcium Channels/genetics , HEK293 Cells , Placenta/metabolism , Protein Conformation
2.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891114

ABSTRACT

Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for ß-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.


Subject(s)
Calcium , Hippocampus , Presynaptic Terminals , Animals , Calcium/metabolism , Presynaptic Terminals/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Mice , Mice, Knockout , Calcium Channels/metabolism , Calcium Channels/genetics , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Calcium Signaling , Gene Knockout Techniques , Neurexins
3.
Free Radic Biol Med ; 221: 111-124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763207

ABSTRACT

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.


Subject(s)
Apoptosis , Calcium Channels , Dynamins , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis/genetics , Caco-2 Cells , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Disease Models, Animal , Dynamins/metabolism , Dynamins/genetics , Intestines/blood supply , Intestines/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
4.
Circ Res ; 135(1): 26-40, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38747181

ABSTRACT

BACKGROUND: Calcium (Ca2+) uptake by mitochondria occurs via the mitochondrial Ca2+ uniporter. Mitochondrial Ca2+ uniporter exists as a complex, regulated by 3 MICU (mitochondrial Ca2+ uptake) proteins localized in the intermembrane space: MICU1, MICU2, and MICU3. Although MICU3 is present in the heart, its role is largely unknown. METHODS: We used CRISPR-Cas9 to generate a mouse with global deletion of MICU3 and an adeno-associated virus (AAV9) to overexpress MICU3 in wild-type mice. We examined the role of MICU3 in regulating mitochondrial calcium ([Ca2+]m) in ex vivo hearts using an optical method following adrenergic stimulation in perfused hearts loaded with a Ca2+-sensitive fluorophore. Additionally, we studied how deletion and overexpression of MICU3, respectively, impact cardiac function in vivo by echocardiography and the molecular composition of the mitochondrial Ca2+ uniporter complex via Western blot, immunoprecipitation, and Blue native-PAGE analysis. Finally, we measured MICU3 expression in failing human hearts. RESULTS: MICU3 knock out hearts and cardiomyocytes exhibited a significantly smaller increase in [Ca2+]m than wild-type hearts following acute isoproterenol infusion. In contrast, heart with overexpression of MICU3 exhibited an enhanced increase in [Ca2+]m compared with control hearts. Echocardiography analysis showed no significant difference in cardiac function in knock out MICU3 mice relative to wild-type mice at baseline. However, mice with overexpression of MICU3 exhibited significantly reduced ejection fraction and fractional shortening compared with control mice. We observed a significant increase in the ratio of heart weight to tibia length in hearts with overexpression of MICU3 compared with controls, consistent with hypertrophy. We also found a significant decrease in MICU3 protein and expression in failing human hearts. CONCLUSIONS: Our results indicate that increased and decreased expression of MICU3 enhances and reduces, respectively, the uptake of [Ca2+]m in the heart. We conclude that MICU3 plays an important role in regulating [Ca2+]m physiologically, and overexpression of MICU3 is sufficient to induce cardiac hypertrophy, making MICU3 a possible therapeutic target.


Subject(s)
Calcium-Binding Proteins , Calcium , Mice, Knockout , Mitochondria, Heart , Mitochondrial Membrane Transport Proteins , Myocytes, Cardiac , Animals , Humans , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Mitochondria, Heart/metabolism , Mice , Myocytes, Cardiac/metabolism , Male , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Calcium/metabolism , Cardiomegaly/metabolism , Cardiomegaly/genetics , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Calcium Signaling , Heart Failure/metabolism , Heart Failure/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Female
5.
Science ; 384(6695): 573-579, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696577

ABSTRACT

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Subject(s)
Calcium Channels , Habenula , Neurogenesis , Neurons , Wnt Signaling Pathway , Zebrafish Proteins , Zebrafish , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Habenula/metabolism , Habenula/embryology , Loss of Function Mutation , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neurons/metabolism , Receptors, Wnt/metabolism , Receptors, Wnt/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Calcium Channels/genetics , Calcium Channels/metabolism
6.
Nat Commun ; 15(1): 3682, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693121

ABSTRACT

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Subject(s)
Diet, High-Fat , Galectin 3 , Insulin Secretion , Insulin-Secreting Cells , Animals , Humans , Male , Mice , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Galectin 3/metabolism , Galectin 3/genetics , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout
7.
Physiol Rep ; 12(9): e16043, 2024 May.
Article in English | MEDLINE | ID: mdl-38724885

ABSTRACT

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Subject(s)
Calcium Channels , Urinary Tract , Animals , Female , Male , Mice , Calcium Channels/genetics , Calcium Channels/metabolism , Epithelial Cells/metabolism , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Urinary Tract/metabolism , Urothelium/metabolism , Urothelium/cytology
8.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38749701

ABSTRACT

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.


Subject(s)
Hippocampus , Mice, Knockout , Proto-Oncogene Proteins c-fos , Seizures , Animals , Seizures/metabolism , Seizures/genetics , Seizures/pathology , Hippocampus/metabolism , Hippocampus/pathology , Proto-Oncogene Proteins c-fos/metabolism , Male , Calcium Channels/metabolism , Calcium Channels/genetics , Mice, Inbred C57BL , Pentylenetetrazole , Mice , Disease Models, Animal , Neurons/metabolism , Neurons/pathology , Convulsants/toxicity
9.
J Histochem Cytochem ; 72(5): 275-287, 2024 05.
Article in English | MEDLINE | ID: mdl-38725415

ABSTRACT

The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.


Subject(s)
Calcium , Isothiocyanates , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Isothiocyanates/pharmacology , Mice , Calcium/metabolism , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/agonists , Capsaicin/pharmacology , In Situ Hybridization , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/agonists , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Male
10.
Nature ; 629(8014): 1118-1125, 2024 May.
Article in English | MEDLINE | ID: mdl-38778102

ABSTRACT

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Subject(s)
Arabidopsis , Calcium Signaling , Calcium , Germination , Osmolar Concentration , Pollen , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Germination/genetics , Mutation , Pollen/genetics , Pollen/metabolism , Water/metabolism , HEK293 Cells , Humans , Dehydration
11.
Genes (Basel) ; 15(4)2024 04 19.
Article in English | MEDLINE | ID: mdl-38674446

ABSTRACT

Obesity is a public health crisis, and its prevalence disproportionately affects African Americans in the United States. Dysregulation of organelle calcium homeostasis is associated with obesity. The mitochondrial calcium uniporter (MCU) complex is primarily responsible for mitochondrial calcium homeostasis. Obesity is a multifactorial disease in which genetic underpinnings such as single-nucleotide polymorphisms (SNPs) may contribute to disease progression. The objective of this study was to identify genetic variations of MCU with anthropometric measurements and obesity in the All of Us Research Program. METHODS: We used an additive genetic model to assess the association between obesity traits (body mass index (BMI), waist and hip circumference) and selected MCU SNPs in 19,325 participants (3221 normal weight and 16,104 obese). Eleven common MCU SNPs with a minor allele frequency ≥ 5% were used for analysis. RESULTS: We observed three MCU SNPs in self-reported Black/African American (B/AA) men, and six MCU SNPs in B/AA women associated with increased risk of obesity, whereas six MCU SNPs in White men, and nine MCU SNPs in White women were protective against obesity development. CONCLUSIONS: This study found associations of MCU SNPs with obesity, providing evidence of a potential predictor of obesity susceptibility in B/AA adults.


Subject(s)
Calcium Channels , Obesity , Polymorphism, Single Nucleotide , Adult , Female , Humans , Male , Middle Aged , Black or African American/genetics , Body Mass Index , Calcium Channels/genetics , Genetic Predisposition to Disease , Obesity/genetics , United States/epidemiology , White People/genetics , White
12.
Genes (Basel) ; 15(4)2024 03 31.
Article in English | MEDLINE | ID: mdl-38674378

ABSTRACT

Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.


Subject(s)
Migraine with Aura , Humans , Migraine with Aura/genetics , Mutation , Genetic Predisposition to Disease , NAV1.1 Voltage-Gated Sodium Channel/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Genetic Linkage , Calcium Channels/genetics
13.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557489

ABSTRACT

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Subject(s)
Calcium Channels , Calcium , Mice , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium/metabolism , Pancreas/metabolism , Exocytosis/physiology , Secretory Vesicles/genetics
14.
J Gastroenterol ; 59(7): 556-571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38536483

ABSTRACT

BACKGROUND: Calcium voltage-gated channel auxiliary subunit alpha 2/delta 1 (CACNA2D1), a gene encoding a voltage-gated calcium channel, has been reported as an oncogene in several cancers. However, its role in colon cancer (CC) remains unclear. This study aimed to investigate the function of CACNA2D1 and its effect on the microenvironment in CC. METHODS: Immunohistochemistry (IHC) analysis was performed on samples collected from 200 patients with CC who underwent curative colectomy. Knockdown experiments were performed using CACNA2D1 siRNA in the human CC cell lines HCT116 and RKO, and cell proliferation, cycle, apoptosis, and migration were then analyzed. The fibroblast cell line CCD-18Co was co-cultured with CC cell lines to determine the effect of CACNA2D1 on fibroblasts and the relationship between CACNA2D1 and the cancer microenvironment. Gene expression profiles of cells were analyzed using microarray analysis. RESULTS: IHC revealed that high CACNA2D1 expression was an independent poor prognostic factor in patients with CC and that CACNA2D1 expression and the stroma are correlated. CACNA2D1 depletion decreased cell proliferation and migration; CACNA2D1 knockdown increased the number of cells in the sub-G1 phase and induced apoptosis. CCD-18Co and HCT116 or RKO cell co-culture revealed that CACNA2D1 affects the cancer microenvironment via fibroblast regulation. Furthermore, microarray analysis showed that the p53 signaling pathway and epithelial-mesenchymal transition-associated pathways were enhanced in CACNA2D1-depleted HCT116 cells. CONCLUSIONS: CACNA2D1 plays an important role in the progression and the microenvironment of CC by regulating fibroblasts and may act as a biomarker for disease progression and a therapeutic target for CC.


Subject(s)
Apoptosis , Calcium Channels , Cell Movement , Cell Proliferation , Colonic Neoplasms , Disease Progression , Tumor Microenvironment , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Tumor Microenvironment/genetics , Cell Proliferation/genetics , Male , Female , Calcium Channels/genetics , Calcium Channels/metabolism , Apoptosis/genetics , Cell Movement/genetics , Middle Aged , Cell Line, Tumor , HCT116 Cells , Prognosis , Aged , Gene Expression Regulation, Neoplastic , Fibroblasts/metabolism , Fibroblasts/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Knockdown Techniques , Coculture Techniques
15.
Biol Cell ; 116(5): e2300067, 2024 May.
Article in English | MEDLINE | ID: mdl-38537110

ABSTRACT

BACKGROUND INFORMATION: Two pore channels (TPCs) are voltage-gated ion channel superfamily members that release Ca2+ from acidic intracellular stores and are ubiquitously present in both animals and plants. Starvation initiates multicellular development in Dictyostelium discoideum. Increased intracellular calcium levels bias Dictyostelium cells towards the stalk pathway and thus we decided to analyze the role of TPC2 in development, differentiation, and autophagy. RESULTS: We showed TPC2 protein localizes in lysosome-like acidic vesicles and the in situ data showed stalk cell biasness. Deletion of tpc2 showed defective and delayed development with formation of multi-tipped structures attached to a common base, while tpc2OE cells showed faster development with numerous small-sized aggregates and wiry fruiting bodies. The tpc2OE cells showed higher intracellular cAMP levels as compared to the tpc2- cells while pinocytosis was found to be higher in the tpc2- cells. Also, TPC2 regulates cell-substrate adhesion and cellular morphology. Under nutrient starvation, deletion of tpc2 reduced autophagic flux as compared to Ax2. During chimera formation, tpc2- cells showed a bias towards the prestalk/stalk region while tpc2OE cells showed a bias towards the prespore/spore region. tpc2 deficient strain exhibits aberrant cell-type patterning and loss of distinct boundary between the prestalk/prespore regions. CONCLUSION: TPC2 is required for effective development and differentiation in Dictyostelium and supports autophagic cell death and cell-type patterning. SIGNIFICANCE: Decreased calcium due to deletion of tpc2 inhibit autophagic flux.


Subject(s)
Autophagy , Dictyostelium , Protozoan Proteins , Dictyostelium/genetics , Dictyostelium/metabolism , Dictyostelium/cytology , Dictyostelium/growth & development , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Gene Deletion , Calcium Channels/metabolism , Calcium Channels/genetics , Calcium/metabolism , Cell Differentiation
16.
Biomed Pharmacother ; 174: 116472, 2024 May.
Article in English | MEDLINE | ID: mdl-38531121

ABSTRACT

The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.


Subject(s)
Calcium Channels, L-Type , Neuralgia , Neuralgia/drug therapy , Neuralgia/metabolism , Animals , Ligands , Humans , Male , Calcium Channels/metabolism , Calcium Channels/genetics , Gabapentin/pharmacology , Rats, Sprague-Dawley , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Rats , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Analgesics/pharmacology , Disease Models, Animal , Pregabalin/pharmacology
17.
Anim Genet ; 55(3): 344-351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38426585

ABSTRACT

Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.


Subject(s)
Ataxia , Calcium Channels , Cattle Diseases , Seizures , Animals , Cattle/genetics , Calcium Channels/genetics , Ataxia/veterinary , Ataxia/genetics , Cattle Diseases/genetics , Seizures/veterinary , Seizures/genetics , Male , Female , Whole Genome Sequencing/veterinary , Genes, Dominant , Mutation
18.
J Bone Miner Res ; 39(3): 298-314, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38477790

ABSTRACT

Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.


The ability of bone to sense and respond to forces generated during daily physical activities is essential to skeletal health. Although several bone cell types contribute to the maintenance of bone health, osteocytes are thought to be the primary mechanosensitive cells; however, the mechanisms through which these cells perceive mechanical stimuli remains unclear. Previous work has shown that voltage sensitive calcium channels are necessary for bone to sense mechanical force; yet the means by which those channels translate the physical signal into a biochemical signal is unclear. Data within this manuscript demonstrate that the extracellular α2δ1 subunit of voltage sensitive calcium channels is necessary for load-induced bone formation as well as to enable calcium influx within osteocytes. As this subunit enables physical interactions of the channel pore with the extracellular matrix, our data demonstrate the need for the α2δ1 subunit for mechanically induced bone adaptation, thus serving as a physical conduit through which mechanical signals from the bone matrix are transduced into biochemical signals by enabling calcium influx into osteocytes.


Subject(s)
Osteocytes , Osteogenesis , Mice , Male , Female , Animals , Osteocytes/metabolism , Osteogenesis/genetics , Calcium/metabolism , X-Ray Microtomography , Mice, Inbred C57BL , Osteoblasts/metabolism , Femur/diagnostic imaging , Femur/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism
19.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 99-109, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372107

ABSTRACT

This study aimed to explore the involvement of Transmembrane and coiled-coil domains 1 (TMCO1) in ovarian cancer progression and its regulatory mechanisms in cisplatin resistance. Using the GEPIA database, we analyzed TMCO1 expression in ovarian cancer and normal tissues. In a cohort of 99 ovarian cancer patients, immunohistochemistry and immunofluorescence were employed to assess TMCO1 expression in tumor and adjacent tissues, correlating findings with clinical and pathological characteristics. TMCO1 overexpression and knockout cell models were constructed, and their impact on non-cisplatin-resistant (SK-OV-3) and cisplatin-resistant (SK-OV-3-CDDP) ovarian cancer cells was investigated through cloning, wound healing, Fluo 4, and Transwell experiments. Knocking down CALR and VDAC1 was performed to examine their effects on TMCO1, cell proliferation, and malignant markers. Subcutaneous tumor models in nude mice elucidated the in vivo role of TMCO1 in tumor growth. Expression levels of CALR, VDAC1, angiogenesis indicators (CD34), and epithelial-mesenchymal transition (EMT) markers were evaluated. TMCO1 expression in ovarian cancer tissue significantly differed from normal tissue, correlating with survival rates. TMCO1 overexpression was associated with lymph node metastases, late FIGO stage, and larger tumors. TMCO1 promoted proliferation, calcium ion elevation, cytoskeletal remodeling, and metastasis in SK-OV-3 and SK-OV-3-CDDP cells, upregulating VDAC1, CALR, Vimentin, N-cadherin, ß-catenin, and downregulating E-cadherin. Silencing TMCO1 inhibited cell growth, proliferation, and angiogenesis in vivo, suppressing the expression of CALR, VDAC1, Vimentin, N-cadherin, and ß-catenin. Overall, this study highlighted TMCO1 as a crucial regulator in ovarian cancer progression, influencing VDAC1 through CALR and impacting diverse cellular processes, offering potential as a targeted therapeutic strategy for ovarian cancer.


Subject(s)
Calcium Channels , Calreticulin , Ovarian Neoplasms , Animals , Female , Humans , Mice , beta Catenin/metabolism , Cadherins/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cisplatin/pharmacology , Cisplatin/therapeutic use , Epithelial-Mesenchymal Transition/genetics , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Vimentin/metabolism , Calreticulin/genetics , Calreticulin/metabolism
20.
Sci Adv ; 10(7): eadk2317, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354239

ABSTRACT

Lysosomal calcium (Ca2+) release is critical to cell signaling and is mediated by well-known lysosomal Ca2+ channels. Yet, how lysosomes refill their Ca2+ remains hitherto undescribed. Here, from an RNA interference screen in Caenorhabditis elegans, we identify an evolutionarily conserved gene, lci-1, that facilitates lysosomal Ca2+ entry in C. elegans and mammalian cells. We found that its human homolog TMEM165, previously designated as a Ca2+/H+ exchanger, imports Ca2+ pH dependently into lysosomes. Using two-ion mapping and electrophysiology, we show that TMEM165, hereafter referred to as human LCI, acts as a proton-activated, lysosomal Ca2+ importer. Defects in lysosomal Ca2+ channels cause several neurodegenerative diseases, and knowledge of lysosomal Ca2+ importers may provide previously unidentified avenues to explore the physiology of Ca2+ channels.


Subject(s)
Calcium , Cation Transport Proteins , Animals , Humans , Calcium/metabolism , Caenorhabditis elegans/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Signal Transduction , Lysosomes/metabolism , Calcium Signaling , Mammals/metabolism , Antiporters/metabolism , Cation Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...