Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.299
1.
Nat Commun ; 15(1): 5188, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38898014

Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.


Arabidopsis Proteins , Arabidopsis , Autophagosomes , Autophagy , Calcium-Binding Proteins , Endosomal Sorting Complexes Required for Transport , Arabidopsis/metabolism , Arabidopsis/genetics , Autophagosomes/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Phosphatidylinositol Phosphates/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Vacuoles/metabolism , Phase Separation
2.
Sci Rep ; 14(1): 13810, 2024 06 14.
Article En | MEDLINE | ID: mdl-38877292

Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.


Calcium-Binding Proteins , Crohn Disease , Extracellular Matrix Proteins , Fibroblasts , Fibrosis , Matrix Gla Protein , Thrombospondins , Crohn Disease/pathology , Crohn Disease/metabolism , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Extracellular Matrix Proteins/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Thrombospondins/metabolism , Thrombospondins/genetics , Male , Female , Adult , Middle Aged , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Aged , Immunohistochemistry
3.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article En | MEDLINE | ID: mdl-38892455

Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.


Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Female , Male , Adult , Middle Aged , Membrane Proteins/genetics , Cadherins/genetics , Desmosomes/genetics , Desmosomes/metabolism , Genetic Predisposition to Disease , Genetic Variation , Filamins/genetics , Retrospective Studies , Italy , Calcium-Binding Proteins/genetics , Antigens, CD/genetics
4.
Cells ; 13(12)2024 Jun 08.
Article En | MEDLINE | ID: mdl-38920632

Non-coding RNAs (ncRNAs) have emerged as pivotal regulators in cellular biology, dispelling their former perception as 'junk transcripts'. Notably, the DLK1-DIO3 region harbors numerous ncRNAs, including long non-coding RNAs (lncRNAs) and over 50 microRNA genes. While papillary thyroid cancer showcases a pervasive decrease in DLK1-DIO3-derived ncRNA expression, the precise mechanisms driving this alteration remain elusive. We hypothesized that epigenetic alterations underlie shifts in ncRNA expression during thyroid cancer initiation and progression. This study aimed to elucidate the epigenetic mechanisms governing DLK1-DIO3 region expression in this malignancy. We have combined the analysis of DNA methylation by bisulfite sequencing together with that of histone modifications through ChIP-qPCR to gain insights into the epigenetic contribution to thyroid cancer in cell lines representing malignancies with different genetic backgrounds. Our findings characterize the region's epigenetic signature in thyroid cancer, uncovering distinctive DNA methylation patterns, particularly within CpG islands on the lncRNA MEG3-DMR, which potentially account for its downregulation in tumors. Pharmacological intervention targeting DNA methylation combined with histone deacetylation restored ncRNA expression. These results contribute to the understanding of the epigenetic mechanisms controlling the DLK1-DIO3 region in thyroid cancer, highlighting the combined role of DNA methylation and histone marks in regulating the locus' expression.


Calcium-Binding Proteins , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Iodide Peroxidase , RNA, Long Noncoding , Thyroid Neoplasms , Humans , DNA Methylation/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , CpG Islands/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Histones/metabolism , Membrane Proteins
5.
Life Sci Alliance ; 7(9)2024 Sep.
Article En | MEDLINE | ID: mdl-38876797

Calcium is critical for regulating the waveform of motile cilia and flagella. Calaxin is currently the only known molecule involved in the calcium-dependent regulation in ascidians. We have recently shown that Calaxin stabilizes outer arm dynein (OAD), and the knockout of Calaxin results in primary ciliary dyskinesia phenotypes in vertebrates. However, from the knockout experiments, it was not clear which functions depend on calcium and how Calaxin regulates the waveform. To address this question, here, we generated transgenic zebrafish expressing a mutant E130A-Calaxin deficient in calcium binding. E130A-Calaxin restored the OAD reduction of calaxin -/- sperm and the abnormal movement of calaxin -/- left-right organizer cilia, showing that Calaxin's stabilization of OADs is calcium-independent. In contrast, our quantitative analysis of E130A-Calaxin sperms showed that the calcium-induced asymmetric beating was not restored, linking Calaxin's calcium-binding ability with an asymmetric flagellar beating for the first time. Our data show that Calaxin is a calcium-dependent regulator of the ciliary beating and a calcium-independent OAD stabilizer.


Animals, Genetically Modified , Calcium , Dyneins , Spermatozoa , Zebrafish Proteins , Zebrafish , Animals , Male , Calcium/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Dyneins/metabolism , Dyneins/genetics , Cilia/metabolism , Flagella/metabolism , Flagella/physiology , Sperm Motility/genetics , Sperm Motility/physiology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics
6.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715103

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Calcium-Binding Proteins , Chromosomes, Human, Pair 14 , DNA Methylation , Genomic Imprinting , Intercellular Signaling Peptides and Proteins , Humans , Calcium-Binding Proteins/genetics , DNA Methylation/genetics , Chromosomes, Human, Pair 14/genetics , Intercellular Signaling Peptides and Proteins/genetics , Genomic Imprinting/genetics , Membrane Proteins/genetics , Child , Male , Comparative Genomic Hybridization/methods , Female , Chromosome Deletion , Child, Preschool , Phenotype , Abnormalities, Multiple/genetics , Imprinting Disorders , Muscle Hypotonia , Facies
7.
Nat Commun ; 15(1): 4235, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762489

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


COVID-19 , Endothelial Cells , Lung , Macrophage Activation , SARS-CoV-2 , Animals , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/virology , Endothelial Cells/immunology , SARS-CoV-2/physiology , Lung/virology , Lung/pathology , Lung/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Mice, Inbred C57BL , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Male , Macrophages/metabolism , Macrophages/immunology , Female , Mice, Knockout , Extracellular Matrix Proteins
8.
PLoS One ; 19(5): e0301855, 2024.
Article En | MEDLINE | ID: mdl-38753592

Calcium binding protein, spermatid associated 1 (CABS1) is a protein most widely studied in spermatogenesis. However, mRNA for CABS1 has been found in numerous tissues, albeit with little information about the protein. Previously, we identified CABS1 mRNA and protein in human salivary glands and provided evidence that in humans CABS1 contains a heptapeptide near its carboxyl terminus that has anti-inflammatory activities. Moreover, levels of an immunoreactive form of CABS1 were elevated in psychological stress. To more fully characterize human CABS1 we developed additional polyclonal and monoclonal antibodies to different sections of the protein and used these antibodies to characterize CABS1 in an overexpression cell lysate, human salivary glands, saliva, serum and testes using western blot, immunohistochemistry and bioinformatics approaches exploiting the Gene Expression Omnibus (GEO) database. CABS1 appears to have multiple molecular weight forms, consistent with its recognition as a structurally disordered protein, a protein with structural plasticity. Interestingly, in human testes, its cellular distribution differs from that in rodents and pigs, and includes Leydig cells, primary spermatogonia, Sertoli cells and developing spermatocytes and spermatids, Geodata suggests that CABS1 is much more widely distributed than previously recognized, including in the urogenital, gastrointestinal and respiratory tracts, as well as in the nervous system, immune system and other tissues. Much remains to be learned about this intriguing protein.


Calcium-Binding Proteins , Testis , Humans , Male , Testis/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Animals , Saliva/metabolism , Salivary Glands/metabolism , Spermatids/metabolism , Spermatogenesis
9.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791441

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.


Bone Morphogenetic Protein Receptors, Type II , Endothelial Cells , PPAR gamma , Proto-Oncogene Proteins c-akt , Pulmonary Artery , Receptor, Notch1 , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Endothelial Cells/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Male , Cell Proliferation , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Female , Cells, Cultured
10.
Circ Res ; 135(1): 26-40, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38747181

BACKGROUND: Calcium (Ca2+) uptake by mitochondria occurs via the mitochondrial Ca2+ uniporter. Mitochondrial Ca2+ uniporter exists as a complex, regulated by 3 MICU (mitochondrial Ca2+ uptake) proteins localized in the intermembrane space: MICU1, MICU2, and MICU3. Although MICU3 is present in the heart, its role is largely unknown. METHODS: We used CRISPR-Cas9 to generate a mouse with global deletion of MICU3 and an adeno-associated virus (AAV9) to overexpress MICU3 in wild-type mice. We examined the role of MICU3 in regulating mitochondrial calcium ([Ca2+]m) in ex vivo hearts using an optical method following adrenergic stimulation in perfused hearts loaded with a Ca2+-sensitive fluorophore. Additionally, we studied how deletion and overexpression of MICU3, respectively, impact cardiac function in vivo by echocardiography and the molecular composition of the mitochondrial Ca2+ uniporter complex via Western blot, immunoprecipitation, and Blue native-PAGE analysis. Finally, we measured MICU3 expression in failing human hearts. RESULTS: MICU3 knock out hearts and cardiomyocytes exhibited a significantly smaller increase in [Ca2+]m than wild-type hearts following acute isoproterenol infusion. In contrast, heart with overexpression of MICU3 exhibited an enhanced increase in [Ca2+]m compared with control hearts. Echocardiography analysis showed no significant difference in cardiac function in knock out MICU3 mice relative to wild-type mice at baseline. However, mice with overexpression of MICU3 exhibited significantly reduced ejection fraction and fractional shortening compared with control mice. We observed a significant increase in the ratio of heart weight to tibia length in hearts with overexpression of MICU3 compared with controls, consistent with hypertrophy. We also found a significant decrease in MICU3 protein and expression in failing human hearts. CONCLUSIONS: Our results indicate that increased and decreased expression of MICU3 enhances and reduces, respectively, the uptake of [Ca2+]m in the heart. We conclude that MICU3 plays an important role in regulating [Ca2+]m physiologically, and overexpression of MICU3 is sufficient to induce cardiac hypertrophy, making MICU3 a possible therapeutic target.


Calcium-Binding Proteins , Calcium , Mice, Knockout , Mitochondria, Heart , Mitochondrial Membrane Transport Proteins , Myocytes, Cardiac , Animals , Humans , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Mitochondria, Heart/metabolism , Mice , Myocytes, Cardiac/metabolism , Male , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Calcium/metabolism , Cardiomegaly/metabolism , Cardiomegaly/genetics , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Calcium Signaling , Heart Failure/metabolism , Heart Failure/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Female
11.
Development ; 151(11)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38770916

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.


Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors , Endothelial Cells , Hypoxia-Inducible Factor-Proline Dioxygenases , Receptors, Notch , Retinal Neovascularization , Signal Transduction , Up-Regulation , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice , Receptors, Notch/metabolism , Receptors, Notch/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Retinal Neovascularization/metabolism , Retinal Neovascularization/genetics , Retinal Neovascularization/pathology , Endothelial Cells/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Retina/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Retinal Vessels/metabolism , Angiogenesis
12.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38738874

Calpains are cysteine proteinases responsible for many biological roles in muscle, including protein degradation, muscle growth, and myoblast fusion. Calpains are inhibited by calpastatin, an endogenous inhibitor. Other factors, such as variations in pH, ionic strength, and oxidation influence calpain activity. This study aimed to determine the extent to which oxidation influences calpastatin inhibition of calpain-1. A series of order of addition assays were used to determine calpain-1 calcium activation and autolysis after exposure to an oxidizing agent (n-ethylmaleimide [NEM] or hydrogen peroxide [H2O2]. In the first series, purified calpastatin was added to the assay before or after oxidizing exposure at 165 mM NaCl, pH 6.5. In the second series, incubation buffer ionic strength (165 mM or 295 mM NaCl) was evaluated. The inhibitory activities of purified porcine calpastatin, purified human calpastatin domain I, or a subdomain B inhibitor peptide were evaluated in the third series. In the fourth series, a maleimide-polyethylene glycol molecule (MAL-PEG; MW = 5,000 Dalton) was used to evaluate the accessibility of free sulfhydryl groups and tagging of calpain-1 under each condition through a molecular weight shift assay. Results from this study indicate that autolysis of calpain-1, when used as an indicator of activation, occurred when the calpain-1/calpastatin complex was exposed to an oxidant or cysteine modifier such as NEM. However, when calpain-1 was exposed to the cysteine modifier before calpastatin, autolysis of calpain-1 did not occur or was significantly decreased (P < 0.05). Irreversible modification of cysteine residues by NEM prevented activation of calpain-1 in the absence of calpastatin, but if the cysteine modification is potentially reversible (H2O2), calpain-1 activity can be recovered. Results from this study indicate that when calpastatin is bound to calpain-1, calpain-1 activation can occur even after being exposed to a cysteine modifier (NEM) or hydrogen peroxide (H2O2). Calpain-1 is not tagged with maleimide-polyethylene glycol (MAL-PEG) in the presence of calpastatin, indicating that calpastatin blocks or covers free cysteines on calpain-1 from modification. Moreover, exposure to calpain-1/calpastatin complex with a cysteine modifier allows activation of calpain-1, indicating that the inhibitory action of calpastatin is compromised. These results indicate a regulatory role for calpastatin that is not inhibitory but protective for calpain-1.


Protein degradation in skeletal muscle is a key component of protein turnover and maintenance of muscle function. Protein degradation in postmortem muscle is commonly observed and is associated with the accumulation of degradation products and improved meat tenderness. Because there is significant evidence that calpain-1 is involved with proteolysis of muscle proteins in both situations, defining the factors that regulate calpain activity will position scientists to improve calpain-1 activity in both contexts. Calpain-1 is a neutral calcium-dependent proteinase that is inhibited by calpastatin, oxidation, and slightly acidic pH environments. Because oxidation of the calpain/calpastatin complex with hydrogen peroxide appeared to activate calpain-1, we hypothesize that calpastatin binding to calpain may protect the active site cysteine. In the current study, we tested this hypothesis and investigated how n-ethyl maleimide (NEM), an alkylating agent, affects the regulation of calpain in the presence and absence of calpastatin molecules. The results suggest that calpastatin can protect calpain-1 from reacting with maleimide-polyethylene glycol but that exposure of calpain-1/calpastatin complex to NEM or hydrogen peroxide resulted in autolysis and activation of calpain. Under some circumstances, calpastatin appears to protect calpain-1 from inhibition by modification of active site cysteine. These novel observations show a different role for calpastatin and give reason to interpret calpastatin abundance and activity data in a different light.


Calcium-Binding Proteins , Calpain , Oxidation-Reduction , Calpain/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/chemistry , Animals , Hydrogen Peroxide/pharmacology , Swine , Calcium/metabolism , Ethylmaleimide/pharmacology , Humans
13.
Cell Commun Signal ; 22(1): 298, 2024 May 29.
Article En | MEDLINE | ID: mdl-38812013

BACKGROUND: Nucleobindin-2 (Nucb2) and nesfatin-1 (N1) are widely distributed hormones that regulate numerous physiological processes, from energy homeostasis to carcinogenesis. However, the role of nesfatin-2 (N2), the second product of Nucb2 proteolytic processing, remains elusive. To elucidate the relationship between the structure and function of nesfatins, we investigated the properties of chicken and human homologs of N1, as well as a fragment of Nucb2 consisting of N1 and N2 conjoined in a head-to-tail manner (N1/2). RESULTS: Our findings indicate that Zn(II) sensing, in the case of N1, is conserved between chicken and human species. However, the data presented here reveal significant differences in the molecular features of the analyzed peptides, particularly in the presence of Zn(II). We demonstrated that Zn(II) has a Janus effect on the M30 region (a crucial anorexigenic core) of N1 and N1/2. In N1 homologs, Zn(II) binding results in the concealment of the M30 region driven by a disorder-to-order transition and adoption of the amyloid fold. In contrast, in N1/2 molecules, Zn(II) binding causes the exposure of the M30 region and its destabilization, resulting in strong exposure of the region recognized by prohormone convertases within the N1/2 molecule. CONCLUSIONS: In conclusion, we found that Zn(II) binding is conserved between chicken and human N1. However, despite the high homology of chicken and human N1, their interaction modes with Zn(II) appear to differ. Furthermore, Zn(II) binding might be essential for regulating the function of nesfatins by spatiotemporally hindering the N1 anorexigenic M30 core and concomitantly facilitating N1 release from Nucb2.


Chickens , Nucleobindins , Zinc , Nucleobindins/metabolism , Zinc/metabolism , Humans , Animals , Amino Acid Sequence , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167251, 2024 Aug.
Article En | MEDLINE | ID: mdl-38795835

Exposure of articular cartilage to excessive mechanical loading is closely related to the pathogenesis of osteoarthritis (OA). However, the exact molecular mechanism by which excessive mechanical loading drives OA remains unclear. In vitro, primary chondrocytes were exposed to cyclic tensile strain at 0.5 Hz and 10 % elongation for 30 min to simulate excessive mechanical loading in OA. In vivo experiments involved mice undergoing anterior cruciate ligament transection (ACLT) to model OA, followed by interventions on Rcn2 expression through adeno-associated virus (AAV) injection and tamoxifen-induced gene deletion. 10 µL AAV2/5 containing AAV-Rcn2 or AAV-shRcn2 was administered to the mice by articular injection at 1 week post ACLT surgery, and Col2a1-creERT: Rcn2flox/flox mice were injected with tamoxifen intraperitoneally to obtain Rcn2-conditional knockout mice. Finally, we explored the mechanism of Rcn2 affecting OA. Here, we identified reticulocalbin-2 (Rcn2) as a mechanosensitive factor in chondrocytes, which was significantly elevated in chondrocytes under mechanical overloading. PIEZO type mechanosensitive ion channel component 1 (Piezo1) is a critical mechanosensitive ion channel, which mediates the effect of mechanical loading on chondrocytes, and we found that increased Rcn2 could be suppressed through knocking down Piezo1 under excessive mechanical loading. Furthermore, chondrocyte-specific deletion of Rcn2 in adult mice alleviated OA progression in the mice receiving the surgery of ACLT. On the contrary, articular injection of Rcn2-expressing adeno-associated virus (AAV) accelerated the progression of ACLT-induced OA in mice. Mechanistically, Rcn2 accelerated the progression of OA through promoting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (Stat3).


Chondrocytes , Mice, Knockout , Osteoarthritis , Animals , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Mice , Chondrocytes/metabolism , Chondrocytes/pathology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Ion Channels/metabolism , Ion Channels/genetics , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Stress, Mechanical , Up-Regulation , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Male , Weight-Bearing , Disease Models, Animal , Mice, Inbred C57BL
15.
Int J Biochem Cell Biol ; 172: 106589, 2024 Jul.
Article En | MEDLINE | ID: mdl-38772475

OBJECTIVES: The decline in vascular capacity within the meniscus is a well-documented phenomenon during both development and degeneration. Maintaining vascular integrity has been proposed as a potential therapeutic strategy for osteoarthritis. Therefore, our study aims to investigate the characteristics of endothelial cells and blood vessels in embryonic and degenerated meniscus tissues. METHODS: Human embryonic and mature menisci were used for histological analyses. Single-cell RNA sequencing was used to identify cell clusters and their significant genes in embryo meniscus to uncover characteristic of endothelial cells. Computer analysis and various staining techniques were used to characterize vessels in development and osteoarthritis meniscus. RESULTS: Vessels structure first observed in E12w and increasing in E14w. Vessels were veins majorly and arteries growth in E35w. Endothelial cells located not only perivascular but also in the surface of meniscus. The expression of DLL1 was observed to be significantly altered in endothelial cells within the vascular network that failed to form. Meniscus tissues affected by osteoarthritis, characterized by diminished vascular capacity, displayed reduced levels of DLL1 expression. Experiment in vitro confirmed DLL1/NOTCH1 be vital to angiogenesis. CONCLUSION: Lack of DLL1/NOTCH1 signaling pathway was mechanism of vascular declination in development and degenerated meniscus.


Calcium-Binding Proteins , Osteoarthritis , Receptor, Notch1 , Signal Transduction , Humans , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Meniscus/metabolism , Meniscus/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Neovascularization, Physiologic , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Male , Angiogenesis
16.
Commun Biol ; 7(1): 623, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802487

Nesfatin-1 (NESF-1) has been shown to modulate lipid metabolism. We have identified a nesfatin-1-like-peptide (NLP) processed from a related precursor nucleobindin 1 (NUCB1). Here we determined if NLP, like NESF-1, regulates lipid accumulation in vitro, and tested if the disruption of nucb1 gene affects hepatic lipid metabolism genes in mice. Hepatocytes (HepG2/C3A cells) express NLP and NESF-1 and both peptides significantly reduced lipogenic enzyme mRNAs and enhanced beta-oxidation enzyme mRNAs. Lipid contents in oleic acid induced HepG2/C3A cells were attenuated by NESF-1 and NLP. The inhibitory effect on cellular lipid content was blocked by compound C, an inhibitor of AMPK. The disruption of nucb1 gene affected lipid metabolism-related enzyme mRNAs, endogenous nucb2 mRNA and AMPK phosphorylation. The lipid-lowering effects identified here highlights the potential of nucleobindins and peptides processed from them to address lipid disorders, and its possible benefits in metabolic disease management.


Calcium-Binding Proteins , DNA-Binding Proteins , Hepatocytes , Lipid Metabolism , Nerve Tissue Proteins , Nucleobindins , Nucleobindins/metabolism , Nucleobindins/genetics , Animals , Humans , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Hep G2 Cells , Male , Mice, Inbred C57BL
17.
PLoS One ; 19(5): e0302780, 2024.
Article En | MEDLINE | ID: mdl-38713738

Reticulocalbin 1 (RCN1) is a calcium-binding protein involved in the regulation of calcium homeostasis in the endoplasmic reticulum. The aim of this study was to explore the clinical value and biological role of RCN1 in esophageal squamous cell carcinoma (ESCC). In addition, we investigated the effect of RCN1 on the polarization of tumor-associated macrophages (TAMs). The GSE53625 dataset from the Gene Expression Omnibus database was used to analyze the expression of RCN1 mRNA and its relationship with clinical value and immune cell infiltration. Immunohistochemistry was used to validate the expression of RCN1 and its correlation with clinicopathological characteristics. Subsequently, transwell and cell scratch assays were conducted to evaluate the migration and invasion abilities of ESCC cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot, while apoptosis was detected by flow cytometry and western blot. Additionally, qRT‒PCR was utilized to evaluate the role of RCN1 in macrophage polarization. RCN1 was significantly upregulated in ESCC tissues and was closely associated with lymphatic metastasis and a poor prognosis, and was an independent prognostic factor for ESCC in patients. Knockdown of RCN1 significantly inhibited the migration, invasion, and EMT of ESCC cells, and promoted cell apoptosis. In addition, RCN1 downregulation inhibited M2 polarization. RCN1 is upregulated in ESCC patients and is negatively correlated with patient prognosis. Knocking down RCN1 inhibits ESCC progression and M2 polarization. RCN1 can serve as a potential diagnostic and prognostic indicator for ESCC, and targeting RCN1 is a very promising therapeutic strategy.


Calcium-Binding Proteins , Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Macrophages , Female , Humans , Male , Apoptosis , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Macrophages/metabolism , Prognosis , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
18.
Plant Mol Biol ; 114(3): 53, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714550

Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.


Plant Proteins , Signal Transduction , Stress, Physiological , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants/genetics , Plants/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism
19.
JCI Insight ; 9(12)2024 May 23.
Article En | MEDLINE | ID: mdl-38781018

We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.


Endothelial Cells , Fracture Healing , Jagged-1 Protein , Periosteum , Signal Transduction , Animals , Mice , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics , Endothelial Cells/metabolism , Periosteum/metabolism , Periosteum/cytology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mesenchymal Stem Cells/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Osteogenesis/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
20.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743266

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
...