Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.880
1.
Mol Plant Pathol ; 25(6): e13483, 2024 Jun.
Article En | MEDLINE | ID: mdl-38829344

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.


Calcium , Disease Resistance , Gossypium , Plant Diseases , Plant Proteins , Gossypium/microbiology , Gossypium/genetics , Gossypium/metabolism , Gossypium/immunology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plant Proteins/genetics , Calcium/metabolism , Gene Expression Regulation, Plant , Calmodulin/metabolism , Calmodulin/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Ascomycota/physiology , Ascomycota/pathogenicity , Plants, Genetically Modified , Verticillium/physiology , Verticillium/pathogenicity
2.
Commun Biol ; 7(1): 567, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745046

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Carcinoma, Squamous Cell , Cell Movement , Mitochondria , Mouth Neoplasms , Receptors, Prostaglandin E, EP4 Subtype , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mitochondria/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Animals , Mice , Cell Line, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calmodulin/metabolism , Calmodulin/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
3.
Pathol Res Pract ; 258: 155326, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754328

BACKGROUND: Calmodulin 2 (CALM2) belongs to the highly conserved calcium-binding protein family, implicated in the pathogenesis of various malignant tumors. However, its involvement in breast cancer (BRCA) remains unclear. This study aimed to examine CALM2 expression in BRCA and its associations with prognosis, clinicopathological features, protein-protein interactions, and immune cell infiltration. MATERIALS AND METHODS: Online bioinformatics tools were employed to assess CALM2 expression and its clinical relevance in BRCA. Western blotting and immunohistochemistry were utilized to evaluate CALM2 expression in BRCA cell lines and tissues. Logistic regression was applied to analyze the relationship between CALM2 expression levels and clinicopathological parameters. Transwell assay was performed to validate the role of CALM2 in BRCA migration and invasion. RESULTS: CALM2 expression was significantly elevated in BRCA, with increased levels predicting poor overall survival (OS) and disease-free survival (DFS). Moreover, high CALM2 expression correlated with poorer DFS specifically in triple-negative breast cancer (TNBC). CALM2 expression in BRCA showed significant associations with lymph node metastasis, TP53 mutation status, and menopause status. Silencing CALM2 in BRCA cells demonstrated inhibition of cell migration and invasion in vitro. CONCLUSIONS: CALM2 is overexpressed in BRCA and its upregulation is significantly correlated with poor patient prognosis. Elevated CALM2 expression holds promise as a potential molecular marker for predicting poor survival and as a therapeutic target in BRCA.


Biomarkers, Tumor , Breast Neoplasms , Calmodulin , Humans , Female , Calmodulin/metabolism , Calmodulin/genetics , Prognosis , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Adult , Cell Movement , Aged , Disease-Free Survival , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
4.
Int J Biol Macromol ; 269(Pt 2): 132095, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710255

Plant viruses are the most abundant destructive agents that exist in every ecosystem, causing severe diseases in multiple crops worldwide. Currently, a major gap is present in computational biology determining plant viruses interaction with its host. We lay out a strategy to extract virus-host protein interactions using various protein binding and interface methods for Geminiviridae, a second largest virus family. Using this approach, transcriptional activator protein (TrAP/C2) encoded by Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Multan virus (CLCuMV) showed strong binding affinity with calmodulin-like (CML) protein of Gossypium hirsutum (Gh-CML11). Higher negative value for the change in Gibbs free energy between TrAP and Gh-CML11 indicated strong binding affinity. Consensus from gene ontology database and in-silico nuclear localization signal (NLS) tools identified subcellular localization of TrAP in the nucleus associated with Gh-CML11 for virus infection. Data based on interaction prediction and docking methods present evidences that full length and truncated C2 strongly binds with Gh-CML11. This computational data was further validated with molecular results collected from yeast two-hybrid, bimolecular fluorescence complementation system and pull down assay. In this work, we also show the outcomes of full length and truncated TrAP on plant machinery. This is a first extensive report to delineate a role of CML protein from cotton with begomoviruses encoded transcription activator protein.


Calmodulin , Computational Biology , Geminiviridae , Gossypium , Protein Binding , Viral Proteins , Gossypium/virology , Gossypium/genetics , Computational Biology/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Geminiviridae/genetics , Calmodulin/metabolism , Calmodulin/chemistry , Calmodulin/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Molecular Docking Simulation , Host-Pathogen Interactions
5.
Genome Med ; 16(1): 73, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816749

BACKGROUND: KCNE1 encodes a 129-residue cardiac potassium channel (IKs) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility. METHODS: In this study, we leveraged the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein-coding KCNE1 variants. RESULTS: We comprehensively assayed KCNE1 variant cell surface expression (2554/2709 possible single-amino-acid variants) and function (2534 variants). Our study identified 470 loss- or partial loss-of-surface expression and 574 loss- or partial loss-of-function variants. Of the 574 loss- or partial loss-of-function variants, 152 (26.5%) had reduced cell surface expression, indicating that most functionally deleterious variants affect channel gating. Nonsense variants at residues 56-104 generally had WT-like trafficking scores but decreased functional scores, indicating that the latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation (with > 70% loss-of-function variants) were in predicted close contact with binding partners KCNQ1 or calmodulin. Our functional assay data were consistent with gold standard electrophysiological data (ρ = - 0.64), population and patient cohorts (32/38 presumed benign or pathogenic variants with consistent scores), and computational predictors (ρ = - 0.62). Our data provide moderate-strength evidence for the American College of Medical Genetics/Association of Molecular Pathology functional criteria for benign and pathogenic variants. CONCLUSIONS: Comprehensive variant effect maps of KCNE1 can both provide insight into I Ks channel biology and help reclassify variants of uncertain significance.


Calmodulin , Potassium Channels, Voltage-Gated , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Humans , Calmodulin/genetics , Calmodulin/metabolism , Arrhythmias, Cardiac/genetics , High-Throughput Nucleotide Sequencing , Genetic Variation , Protein Transport , HEK293 Cells
6.
Plant Physiol Biochem ; 210: 108642, 2024 May.
Article En | MEDLINE | ID: mdl-38643538

Calmodulin-like proteins (CMLs) are unique Ca2+ sensors and play crucial roles in response to abiotic stress in plants. A salt-repressed PvCML9 from halophyte seashore paspalum (Paspalum vaginatum O. Swartz) was identified. PvCML9 was localized in the cytoplasm and nucleus and highly expressed in roots and stems. Overexpression of PvCML9 led to reduced salt tolerance in rice and seashore paspalum, whereas downregulating expression of PvCML9 showed increased salt tolerance in seashore paspalum as compared with the wild type (WT), indicating that PvCML9 regulated salt tolerance negatively. Na+ and K+ homeostasis was altered by PvCML9 expression. Lower level of Na+/K+ ratio in roots and shoots was maintained in PvCML9-RNAi lines compared with WT under salt stress, but higher level in overexpression lines. Moreover, higher levels of SOD and CAT activities and proline accumulation were observed in PvCML9-RNAi lines compared with WT under salt stress, but lower levels in overexpression lines, which altered ROS homeostasis. Based on the above data, mutation of its homolog gene OsCML9 in rice by CRISPR/Cas9 was performed. The mutant had enhanced salt tolerance without affecting rice growth and development, suggesting that OsCML9 gene is an ideal target gene to generate salt tolerant cultivars by genome editing in the future.


Calmodulin , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Salt Tolerance , Plant Proteins/metabolism , Plant Proteins/genetics , Salt Tolerance/genetics , Oryza/genetics , Oryza/metabolism , Calmodulin/metabolism , Calmodulin/genetics , Potassium/metabolism , Plants, Genetically Modified , Sodium/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Homeostasis
7.
Insect Biochem Mol Biol ; 169: 104126, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663758

Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes fatty acyl-CoA reductase (CsFAR) and calmodulin (CsCaM) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of CsCaM apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the CsCaM might act as a main upstream regulator of fatty acid biosynthesis pathway.


Calmodulin , Fatty Acids , Waxes , Animals , Calmodulin/metabolism , Calmodulin/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Waxes/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Biosynthetic Pathways
9.
Plant Physiol ; 195(2): 1624-1641, 2024 May 31.
Article En | MEDLINE | ID: mdl-38441329

Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells to manipulate host immune processes. In this report, we present an important Pst effector, Pst03724, whose mRNA expression level increases during Pst infection of wheat (Triticum aestivum). Silencing of Pst03724 reduced the growth and development of Pst. Pst03724 targeted the wheat calmodulin TaCaM3-2B, a positive regulator of wheat immunity. Subsequent investigations revealed that Pst03724 interferes with the TaCaM3-2B-NAD kinase (NADK) TaNADK2 association and thus inhibits the enzyme activity of TaNADK2 activated by TaCaM3-2B. Knocking down TaNADK2 expression by virus-mediated gene silencing significantly increased fungal growth and development, suggesting a decrease in resistance against Pst infection. In conclusion, our findings indicate that Pst effector Pst03724 inhibits the activity of NADK by interfering with the TaCaM3-2B-TaNADK2 association, thereby facilitating Pst infection.


Calmodulin , Plant Diseases , Plant Immunity , Triticum , Calmodulin/metabolism , Calmodulin/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Triticum/metabolism , Plant Immunity/genetics , Puccinia/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Gene Silencing , Host-Pathogen Interactions , Enzyme Activation
10.
Plant Physiol ; 195(2): 1660-1680, 2024 May 31.
Article En | MEDLINE | ID: mdl-38445796

Low-temperature sensitivity at the germination stage is a challenge for direct seeding of rice in Asian countries. How Ca2+ and auxin (IAA) signaling regulate primary root growth under chilling remains unexplored. Here, we showed that OsCML16 interacted specifically with OsPILS7a to improve primary root elongation of early rice seedlings under chilling. OsCML16, a subgroup 6c member of the OsCML family, interacted with multiple cytosolic loop regions of OsPILS7a in a Ca2+-dependent manner. OsPILS7a localized to the endoplasmic reticulum membranes and functioned as an auxin efflux carrier in a yeast growth assay. Transgenics showed that presence of OsCML16 enhanced primary root elongation under chilling, whereas the ospils7a knockout mutant lines showed the opposite phenotype. Moreover, under chilling conditions, OsCML16 and OsPILS7a-mediated Ca2+ and IAA signaling and regulated the transcription of IAA signaling-associated genes (OsIAA11, OsIAA23, and OsARF16) and cell division marker genes (OsRAN1, OsRAN2, and OsLTG1) in primary roots. These results show that OsCML16 and OsPILS7a cooperatively regulate primary root elongation of early rice seedlings under chilling. These findings enhance our understanding of the crosstalk between Ca2+ and IAA signaling and reveal insights into the mechanisms underlying cold-stress response during rice germination.


Cold Temperature , Gene Expression Regulation, Plant , Indoleacetic Acids , Oryza , Plant Proteins , Plant Roots , Seedlings , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Indoleacetic Acids/metabolism , Calmodulin/metabolism , Calmodulin/genetics , Calcium/metabolism , Plants, Genetically Modified , Signal Transduction
11.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Article En | MEDLINE | ID: mdl-38493663

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Oryza , Oryza/physiology , Cyclic Nucleotide-Gated Cation Channels/genetics , Germination/genetics , Pollen/metabolism , Pollen Tube/genetics , Calmodulin/genetics , Calmodulin/metabolism , Phosphotransferases , Nucleotides, Cyclic/metabolism
12.
Plant Biotechnol J ; 22(6): 1703-1723, 2024 Jun.
Article En | MEDLINE | ID: mdl-38319003

It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.


Abscisic Acid , Calcium , Carica , Ethylenes , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Signal Transduction , Abscisic Acid/metabolism , Ethylenes/metabolism , Carica/metabolism , Carica/genetics , Carica/growth & development , Calcium/metabolism , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Calmodulin/metabolism , Calmodulin/genetics , Plant Growth Regulators/metabolism
13.
Kurume Med J ; 69(3.4): 185-193, 2024 May 14.
Article En | MEDLINE | ID: mdl-38233176

The identification of Aspergillus species has been performed mainly by morphological classification. In recent years, however, the revelation of the existence of cryptic species has required genetic analysis for accurate identification. The purpose of this study was to investigate five Aspergillus section Nigri strains isolated from a patient and the environment in a university hospital. Species identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry identified all five black Aspergillus strains as Aspergillus niger. However, calmodulin gene sequence analysis revealed that all five strains were cryptic species, four of which, including the clinical strain, were Aspergillus tubingensis. Hospital-acquired infection of the patient with the A. tubingensis strain introduced from the environment was suspected, but sequencing of six genes from four A. tubingensis strains revealed no environmental strain that completely matched the patient strain. The amount of in vitro biofilm formation of the four examples of the A. tubingensis strain was comparable to that of Aspergillus fumigatus. An extracellular matrix was observed by electron microscopy of the biofilm of the clinical strain. This study suggests that various types of biofilm-forming A. tubingensis exist in the hospital environment and that appropriate environmental management is required.


Aspergillosis , Aspergillus , Biofilms , Cross Infection , Humans , Cross Infection/microbiology , Aspergillus/genetics , Aspergillus/isolation & purification , Aspergillosis/microbiology , Aspergillosis/diagnosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Calmodulin/genetics , Male , Hospitals, University , Environmental Microbiology
14.
Plant Cell Physiol ; 65(2): 282-300, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38036467

Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Salinity , Transcription Factors/metabolism , Salt Stress
15.
Biochem J ; 481(1): 17-32, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38032258

Aquaporin-0 (AQP0) is the main water channel in the mammalian lens and is involved in accommodation and maintaining lens transparency. AQP0 binds the Ca2+-sensing protein calmodulin (CaM) and this interaction is believed to gate its water permeability by closing the water-conducting pore. Here, we express recombinant and functional human AQP0 in Pichia pastoris and investigate how phosphorylation affects the interaction with CaM in vitro as well as the CaM-dependent water permeability of AQP0 in proteoliposomes. Using microscale thermophoresis and surface plasmon resonance technology we show that the introduction of the single phospho-mimicking mutations S229D and S235D in AQP0 reduces CaM binding. In contrast, CaM interacts with S231D with similar affinity as wild type, but in a different manner. Permeability studies of wild-type AQP0 showed that the water conductance was significantly reduced by CaM in a Ca2+-dependent manner, whereas AQP0 S229D, S231D and S235D were all locked in an open state, insensitive to CaM. We propose a model in which phosphorylation of AQP0 control CaM-mediated gating in two different ways (1) phosphorylation of S229 or S235 abolishes binding (the pore remains open) and (2) phosphorylation of S231 results in CaM binding without causing pore closure, the functional role of which remains to be elucidated. Our results suggest that site-dependent phosphorylation of AQP0 dynamically controls its CaM-mediated gating. Since the level of phosphorylation increases towards the lens inner cortex, AQP0 may become insensitive to CaM-dependent gating along this axis.


Aquaporins , Calmodulin , Animals , Humans , Aquaporins/genetics , Calcium/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Lens, Crystalline/metabolism , Mammals/metabolism , Phosphorylation , Water/metabolism
16.
Plant Dis ; 108(1): 149-161, 2024 Jan.
Article En | MEDLINE | ID: mdl-37578368

Cercospora leaf blight (CLB) of soybean, caused by Cercospora cf. flagellaris, C. kikuchii, and C. cf. sigesbeckiae, is an economically important disease in the southern United States. Cultivar resistance to CLB is inconsistent; therefore, fungicides in the quinone outside inhibitor (QoI) class have been relied on to manage the disease. Approximately 620 isolates from plants exhibiting CLB were collected between 2018 and 2021 from 19 locations in eight southern states. A novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on two genes, calmodulin and histone h3, was developed to differentiate between the dominant species of Cercospora, C. cf. flagellaris, and C. cf. sigesbeckiae. A multilocus phylogenetic analysis of actin, calmodulin, histone h3, ITS rDNA, and transcription elongation factor 1-α was used to confirm PCR-RFLP results and identify remaining isolates. Approximately 80% of the isolates collected were identified as C. cf. flagellaris, while 15% classified as C. cf. sigesbeckiae, 2% as C. kikuchii, and 3% as previously unreported Cercospora species associated with CLB in the United States. PCR-RFLP of cytochrome b (cytb) identified QoI-resistance conferred by the G143A substitution. Approximately 64 to 83% of isolates were determined to be QoI-resistant, and all contained the G143A substitution. Results of discriminatory dose assays using azoxystrobin (1 ppm) were 100% consistent with PCR-RFLP results. To our knowledge, this constitutes the first report of QoI resistance in CLB pathogen populations from Alabama, Arkansas, Kentucky, Mississippi, Missouri, Tennessee, and Texas. In areas where high frequencies of resistance have been identified, QoI fungicides should be avoided, and fungicide products with alternative modes-of-action should be utilized in the absence of CLB-resistant soybean cultivars.


Ascomycota , Fungicides, Industrial , United States , Fungicides, Industrial/pharmacology , Cercospora , Glycine max , Phylogeny , Calmodulin/genetics , Histones/genetics , Arkansas , Quinones
17.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Article En | MEDLINE | ID: mdl-38103971

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Elongation Factor 2 Kinase , Protein Biosynthesis , Elongation Factor 2 Kinase/chemistry , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Phosphorylation , Calmodulin/chemistry , Calmodulin/genetics , Calmodulin/metabolism
18.
Virulence ; 15(1): 2290757, 2024 12.
Article En | MEDLINE | ID: mdl-38085844

In pathogenic fungi, calcium-calmodulin-dependent serine-threonine-specific phosphatase calcineurin is involved in morphogenesis and virulence. Therefore, calcineurin and its tightly related protein complexes are attractive antifungal drug targets. However, there is limited knowledge available on the relationship between in vivo Ca2+-binding sites of calmodulin (CaM) and its functions in regulating stress responses, morphogenesis, and pathogenesis. In the current study, we demonstrated that calmodulin is required for hyphal growth, conidiation, and virulence in the human fungal pathogen, Aspergillus fumigatus. Site-directed mutations of calmodulin revealed that a single Ca2+-binding site mutation had no significant effect on A. fumigatus hyphal development, but multiple Ca2+-binding site mutations exhibited synergistic effects, especially when cultured at 42 °C, indicating that calmodulin function in response to temperature stress depends on its Ca2+-binding sites. Western blotting implied that mutations in Ca2+-binding sites caused highly degraded calmodulin fragments, suggesting that the loss of Ca2+-binding sites results in reduced protein stability. Moreover, normal intracellular calcium homeostasis and the nuclear translocation of the transcriptional factor CrzA are dependent on Ca2+-binding sites of AfCaM, demonstrating that Ca2+-binding sites of calmodulin are required for calcium signalling and its major transcription factor CrzA. Importantly, in situ mutations for four Ca2+-binding sites of calmodulin resulted in an almost complete loss of virulence in the Galleria mellonella wax moth model. This study shed more light on the functional characterization of putative calcium-binding sites of calmodulin in the morphogenesis and virulence of A. fumigatus, which enhances our understanding of calmodulin biological functions in cells of opportunistic fungal pathogens.


Aspergillus fumigatus , Calmodulin , Humans , Calmodulin/genetics , Calmodulin/metabolism , Calmodulin/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Calcium/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Calcineurin/pharmacology , Virulence , Temperature , Transcription Factors/genetics , Binding Sites
19.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article En | MEDLINE | ID: mdl-37958810

Calmodulin-like proteins (CMLs) are an important family of plant calcium sensor proteins that sense and decode changes in the intracellular calcium concentration in response to environmental and developmental stimuli. Nonetheless, the specific functions of individual CML family members remain largely unknown. This study aims to explore the role of the Vitis amurensis VaCML92 gene in the development of its high stress resistance and the production of stilbenes. The expression of VaCML92 was sharply induced in V. amurensis cuttings after cold stress. The VaCML92 gene was cloned and its role in the abiotic stress responses and stilbene production in grapevine was further investigated. The VaCML92-overexpressing callus cell cultures of V. amurensis and soil-grown plants of Arabidopsis thaliana exhibited enhanced tolerance to cold stress and, to a lesser extent, to the drought, while their tolerance to heat stress and high salinity was not affected. In addition, the overexpression of VaCML92 increased stilbene production in the V. amurensis cell cultures by 7.8-8.7-fold. Taken together, the data indicate that the VaCML92 gene is involved as a strong positive regulator in the rapid response to cold stress, the induction of cold stress resistance and in stilbene production in wild grapevine.


Arabidopsis , Stilbenes , Vitis , Calmodulin/genetics , Calmodulin/metabolism , Stilbenes/pharmacology , Stilbenes/metabolism , Calcium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response , Arabidopsis/genetics , Vitis/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
20.
J Chem Inf Model ; 63(23): 7487-7498, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-38016288

Calmodulin (CaM) is a universal regulatory protein that modulates numerous cellular processes by using calcium (Ca2+) as the signal. In smooth muscle cells (SMC), one major target of CaM is myosin light chain kinase (MLCK), a kinase that phosphorylates the myosin regulatory light chain and thereby regulates cell contraction. In the absence of CaM, MLCK remains inhibited by its autoinhibitory domain (AID). While it is well established that CaM activates MLCK, the molecular interactions between these two proteins remain elusive due to the lack of structural data. In this work, we constructed a molecular model of mammalian CaM (mCaM) in complex with MLCK leveraging AlphaFold, published biochemical data, and protein-protein docking. The model, along with a strategic set of CaM mutants including a inhibitory variant soybean CaM isoform 4 (sCaM-4), was subject to molecular dynamics (MD) simulations. Using principal component analysis (PCA), we mapped out the transition path for the removal of the AID from the MLCK kinase domain to provide molecular basis of MLCK activation. Additionally, we established MLCK conformations that correspond to the active and inactive states of the kinase. We showed that mCaM and sCaM-4 cause MLCK to undergo the transition to the active and inactive states, respectively. Using two structural metrics, we computed the probabilities of MLCK activation by different CaM variants, which were in good agreement with the experimental data. Distributions along these metrics revealed that different inhibitory CaM variants impair MLCK activation through unique mechanisms. We finally identified molecular contacts that contribute to the MLCK activation by CaM. Overall, we report a de novo molecular model of CaM-MLCK that provides insights into the molecular mechanism of MLCK activation by CaM. The mechanism requires effective removal of the AID while preserving an active configuration of the kinase domain. This mechanism may be shared by other MLCK isoforms and potentially other structurally similar kinases with CaM-mediated regulatory domains.


Calmodulin , Myosin-Light-Chain Kinase , Animals , Calcium/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/chemistry , Myosin-Light-Chain Kinase/metabolism , Phosphorylation , Protein Isoforms/metabolism , Protein Processing, Post-Translational
...