Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
Vet Med Sci ; 10(5): e70028, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258513

ABSTRACT

BACKGROUND: Phytogenic additives would be helpful to alleviate the adverse effect of Campylobacter jejuni on the performance and physiological responses of broiler chickens. OBJECTIVE: This experiment was carried out to investigate the effects of Echinacea purpurea (EP) and Thymbra spicata (TS) on the performance, nutrient digestibility, serum biochemistry, intestinal morphology, intestinal microbiota and immune responses of broilers challenged with C. jejuni from 0 to 42 days of age. METHODS: A total of 240 male broiler chickens were divided into 6 groups and fed various diets: a control diet; the control diet supplemented with EP at 0.25% (EP25) or 0.50% (EP50); the control diet supplemented with TS at 0.25% (TS25) and 0.50% (TS50); or the control diet containing erythromycin at 55 ppm. Chicks were orally challenged with C. jejuni on Days 21 and 23 of age. RESULTS: EP and TS25 diets enhanced European production efficiency factor, feed conversion ratio and digestibility of dry matter and organic matter. TS25 increased duodenal villous height (VH) and surface area on Day 42 of age. EP25 diet increased ileal VH compared to control and erythromycin diets. Diets containing certain EP25 and TS increased the Bifidobacterium population and decreased C. jejuni population on Day 39 of age. EP50 and TS50 diets increased antibody titration against Newcastle disease virus. CONCLUSIONS: In conclusion, EP and TS dietary supplementation improved performance, microflora, intestinal morphology and immune responses in C. jejuni-challenged broilers.


Subject(s)
Animal Feed , Campylobacter Infections , Campylobacter jejuni , Chickens , Diet , Dietary Supplements , Poultry Diseases , Animals , Chickens/physiology , Chickens/immunology , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter Infections/veterinary , Campylobacter Infections/prevention & control , Animal Feed/analysis , Male , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Diet/veterinary , Dietary Supplements/analysis , Echinacea/chemistry , Plants, Medicinal/chemistry , Random Allocation
2.
Acta Vet Scand ; 66(1): 38, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138525

ABSTRACT

BACKGROUND: Preventing pathogens from entering the broiler premises is the main biosecurity measure at farm level. In conventional broiler production, chickens are kept indoors during the entire production period. Pathogens can enter the broiler-producing unit from sources such as water, equipment, personnel, insects, and rodents. The possible routes must be controlled, and corrective measures applied when necessary. The objective of this study was to (1) develop a hygiene protocol and test the scheme on 30 farms, and (2) compare the results to their Campylobacter-colonised status. A Hygiene Performance Rating protocol at farm level (HPR-F) was developed to systematically review the production to identify risk areas to biosecurity. The HPR-F consists of 13 categories with related questions. For each question, a score was given from 1 to 3, where 1 meant "acceptable", 2 was "potential for improvements", and 3 was "not acceptable". Scores for each question were multiplied with weight factors for hygienic impact and economic consequences describing whether the necessary improvement depends on a significant investment or is a cheap quick-fix and calculated into a percentage where 100% is perfect hygiene. The 30 farms in the study were selected from one county in Norway. The Campylobacter-results for each of the 30 farms in 2019-2021 were given according to rules in the Norwegian Action Plan against Campylobacter faecal sampling on-farm 3-6 days prior to slaughter. RESULTS: The overall results from the HPR-F showed that the general hygiene level was high in all farms. The mean total hygiene score was 82% and varied from 70 to 92%. The category Handling dead chicken had the highest hygiene score (93%), and Ventilation had the lowest score (55%). The HPR-F results were compared to the Campylobacter-status for the 30 farms: Campylobacter-negative flocks had slightly higher total scores than Campylobacter-positive flocks (P = 0.19). Among others, the category Outdoor area (vegetation close to the premises' walls) was identified as the most stable factor in relation to be colonised with Campylobacter. CONCLUSIONS: The HPR-F tested in this research trial provides a tool for veterinarians, advisors, and poultry farmers to improve biosecurity at farm level and enhance the preventive animal health initiatives.


Subject(s)
Animal Husbandry , Campylobacter Infections , Campylobacter , Chickens , Farms , Hygiene , Poultry Diseases , Animals , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Campylobacter/isolation & purification , Campylobacter Infections/veterinary , Campylobacter Infections/prevention & control , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Animal Husbandry/methods , Hygiene/standards , Prevalence , Norway/epidemiology
3.
Vet Res Commun ; 48(5): 2877-2900, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38954256

ABSTRACT

Campylobacter is a major foodborne and zoonotic pathogen, causing severe human infections and imposing a substantial economic burden on global public health. The ongoing spread and emergence of multidrug-resistant (MDR) strains across various fields exacerbate therapeutic challenges, raising the incidence of diseases and fatalities. Medicinal plants, renowned for their abundance in secondary metabolites, exhibit proven efficacy in inhibiting various foodborne and zoonotic pathogens, presenting sustainable alternatives to ensure food safety. This review aims to synthesize recent insights from peer-reviewed journals on the epidemiology and antimicrobial resistance of Campylobacter species, elucidate the in vitro antibacterial activity of medicinal plant compounds against Campylobacter by delineating underlying mechanisms, and explore the application of these compounds in controlling Campylobacter in food. Additionally, we discuss recent advancements and future prospects of employing medicinal plant compounds in food products to mitigate foodborne pathogens, particularly Campylobacter. In conclusion, we argue that medicinal plant compounds can be used as effective and sustainable sources for developing new antimicrobial alternatives to counteract the dissemination of MDR Campylobacter strains.


Subject(s)
Anti-Bacterial Agents , Campylobacter , Plants, Medicinal , Plants, Medicinal/chemistry , Campylobacter/drug effects , Anti-Bacterial Agents/pharmacology , Animals , Humans , Food Microbiology , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Campylobacter Infections/drug therapy , Campylobacter Infections/microbiology
4.
Appl Environ Microbiol ; 90(8): e0084524, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39078127

ABSTRACT

Campylobacter jejuni (C. jejuni) is one of the most common causes of foodborne infections worldwide and a major contributor to diarrheal diseases. This study aimed to explore the ability of commensal gut bacteria to control C. jejuni infection. Bacterial strains from the intestinal mucosa of broilers were screened in vitro against C. jejuni ATCC BAA1153. The cell-free supernatant (CFS) of Ligilactobacillus salivarius UO.C249 showed potent dose-dependent antimicrobial activity against the pathogen, likely due to the presence of bacteriocin-like moieties, as confirmed by protease treatment. Genome and exoproteome analyses revealed the presence of known bacteriocins, including Abp118. The genome of Lg. salivarius UO.C249 harbors a 1.8-Mb chromosome and a 203-kb megaplasmid. The strain was susceptible to several antibiotics and had a high survival rate in the simulated chicken gastrointestinal tract (GIT). Post-protease treatment revealed residual inhibitory activity, suggesting alternative antimicrobial mechanisms. Short-chain fatty acid (SCFA) quantification confirmed non-inhibitory levels of acetic (24.4 ± 1.2 mM), isovaleric (34 ± 1.0 µM), and butyric (32 ± 2.5 µM) acids. Interestingly, extracellular vesicles (EVs) isolated from the CFS of Lg. salivarius UO.C249 were found to inhibit C. jejuni ATCC BAA-1153. Proteome profiling of these EVs revealed the presence of unique proteins distinct from bacteriocins identified in CFS. The majority of the identified proteins in EVs are located in the membrane and play roles in transmembrane transport and peptidoglycan degradation, peptidase, proteolysis, and hydrolysis. These findings suggest that although bacteriocins are a primary antimicrobial mechanism, EV production also contributes to the inhibitory activity of Lg. salivarius UO.C249 against C. jejuni. IMPORTANCE: Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and a global public health concern. The increasing antibiotic resistance and lack of effective alternatives in livestock production pose serious challenges for controlling C. jejuni infections. Therefore, alternative strategies are needed to control this pathogen, especially in the poultry industry where it is prevalent and can be transmitted to humans through contaminated food products. In this study, Ligilactobacillus salivarius UO.C249 isolated from broiler intestinal mucosa inhibited C. jejuni and exhibited important probiotic features. Beyond bacteriocins, Lg. salivarius UO.C249 secretes antimicrobial extracellular vesicles (EVs) with a unique protein set distinct from bacteriocins that are involved in transmembrane transport and peptidoglycan degradation. Our findings suggest that beyond bacteriocins, EV production is also a distinct inhibitory signaling mechanism used by Lg. salivarius UO.C249 to control C. jejuni. These findings hold promise for the application of probiotic EVs for pathogen control.


Subject(s)
Bacteriocins , Campylobacter jejuni , Chickens , Extracellular Vesicles , Ligilactobacillus salivarius , Probiotics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Bacteriocins/genetics , Probiotics/pharmacology , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Animals , Chickens/microbiology , Ligilactobacillus salivarius/physiology , Anti-Bacterial Agents/pharmacology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter Infections/prevention & control
5.
Poult Sci ; 103(8): 103897, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865770

ABSTRACT

Campylobacter jejuni continues to be a major public health issue worldwide. Poultry are recognized as the main reservoir for this foodborne pathogen. Implementing measures to decrease C. jejuni colonization on farms has been regarded as the most effective strategy to control the incidence of campylobacteriosis. The probiotics supplementation has been regarded as an attractive approach against C. jejuni in chickens. Here the inhibitory effects of one probiotic B. velezensis isolate CAU277 against C. jejuni was evaluated in vitro and in vivo. The in vitro antimicrobial activity showed that the supernatant of B. velezensis exhibited the most pronounced inhibitory effects on Campylobacter strains compared to other bacterial species. When co-cultured with B. velezensis, the growth of C. jejuni reduced significantly from 7.46 log10 CFU/mL (24 h) to 1.02 log10 CFU/mL (48 h). Further, the antimicrobial activity of B. velezensis against C. jejuni remained stable under a broad range of temperature, pH, and protease treatments. The in vivo experiments demonstrated that oral administration of B. velezensis significantly reduced the colonization of C. jejuni by 2.0 log10 CFU/g of feces in chicken cecum at 15 d postinoculation. In addition, the supplementary of B. velezensis significantly increased microbial species richness and diversity in chicken ileum, especially enhanced the bacterial population of Alistipes and Christensenellaceae, and decreased the existence of Lachnoclostridium. Our study presents that B. velezensis possesses antimicrobial activities against C. jejuni and promotes microbiota diversity in chicken intestines. These findings indicate a potential to develop an effective probiotic additive to control C. jejuni infection in chicken.


Subject(s)
Bacillus , Campylobacter Infections , Campylobacter jejuni , Chickens , Poultry Diseases , Probiotics , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Campylobacter jejuni/drug effects , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Campylobacter Infections/veterinary , Campylobacter Infections/prevention & control , Campylobacter Infections/microbiology , Bacillus/physiology , Animal Feed/analysis , Diet/veterinary , Gastrointestinal Microbiome/drug effects
6.
J Microbiol Biotechnol ; 34(5): 987-993, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38719774

ABSTRACT

Campylobacteriosis is a significant foodborne illness caused by Campylobacter bacteria. It is one of the most common bacterial causes of gastroenteritis worldwide, with poultry being a major reservoir and source of infection in humans. In poultry farms, Campylobacters colonize the intestinal tract of chickens and contaminate meat during processing. Vaccines under development against Campylobacters in poultry showed partial or no protection against their cecal colonization. Therefore, this review will elaborate on campylobacteriosis and emphasize the control strategies and recent vaccine trials against Campylobacters in poultry farms. The epidemiology, diagnosis, and treatment of Campylobacter infection, along with specific mention of poultry Campylobacter contamination events in Malaysia, will also be discussed.


Subject(s)
Campylobacter Infections , Campylobacter , Chickens , Farms , Poultry Diseases , Poultry , Animals , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Campylobacter/isolation & purification , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Chickens/microbiology , Poultry/microbiology , Humans , Bacterial Vaccines/immunology , Malaysia/epidemiology , Meat/microbiology
7.
BMC Vet Res ; 20(1): 144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641595

ABSTRACT

BACKGROUND: Bovine Genital Campylobacteriosis (BGC), a worldwide distributed venereal disease caused by Campylobacter fetus subsp. venerealis (Cfv), has a relevant negative economic impact in cattle herds. The control of BGC is hampered by the inexistence of globally available effective vaccines. The present in silico study aimed to develop a multi-epitope vaccine candidate against Cfv through reverse vaccinology. RESULTS: The analysis of Cfv strain NCTC 10354 proteome allowed the identification of 9 proteins suitable for vaccine development. From these, an outer membrane protein, OmpA, and a flagellar protein, FliK, were selected for prediction of B-cell and T-cell epitopes. The top-ranked epitopes conservancy was assessed in 31 Cfv strains. The selected epitopes were integrated to form a multi-epitope fragment of 241 amino acids, which included 2 epitopes from OmpA and 13 epitopes from FliK linked by GPGPG linkers and connected to the cholera toxin subunit B by an EAAAK linker. The vaccine candidate was predicted to be antigenic, non-toxic, non-allergenic, and soluble upon overexpression. The protein structure was predicted and optimized, and the sequence was successfully cloned in silico into a plasmid vector. Additionally, immunological simulations demonstrated the vaccine candidate's ability to stimulate an immune response. CONCLUSIONS: This study developed a novel vaccine candidate suitable for further in vitro and in vivo experimental validation, which may become a useful tool for the control of BGC.


Subject(s)
Campylobacter Infections , Cattle Diseases , Vaccines , Animals , Cattle , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Vaccinology , Epitopes, T-Lymphocyte/chemistry , Genitalia , Computational Biology , Cattle Diseases/prevention & control
8.
Sci Rep ; 14(1): 9218, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649444

ABSTRACT

For reducing Campylobacter (C.) in the food production chain and thus the risk to the consumer, the combined application of different measures as a multiple-hurdle approach is currently under discussion. This is the first study to investigate possible synergistic activities in vivo, aiming at reducing intestinal C. jejuni counts by administering (i) bacteriophages (phages) in combination with a competitive exclusion (CE) product and (ii) carvacrol combined with organic acids. The combined application of the two selected phages (Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1) and the CE product significantly reduced C. jejuni loads by 1.0 log10 in cecal and colonic contents as well as in cloacal swabs at the end of the trial (33 and 34 days post hatch). The proportion of bacterial isolates showing reduced phage susceptibility ranged from 10.9% (isolates from cecal content) to 47.8% (isolates from cloacal swabs 32 days post hatch) for the Fletchervirus phage, while all tested isolates remained susceptible to the Firehammervirus phage. The use of carvacrol combined with an organic acid blend (sorbic acid, benzoic acid, propionic acid, and acetic acid) significantly reduced Campylobacter counts by 1.0 log10 in cloacal swabs on day 30 only.


Subject(s)
Bacteriophages , Chickens , Cymenes , Cymenes/pharmacology , Animals , Bacteriophages/physiology , Chickens/microbiology , Campylobacter Infections/prevention & control , Campylobacter Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Campylobacter jejuni/virology , Campylobacter jejuni/drug effects , Campylobacter/drug effects , Campylobacter/virology
9.
Zoonoses Public Health ; 71(6): 663-672, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38544332

ABSTRACT

BACKGROUND: Campylobacter is the most common food-borne pathogen in the European Union. In 2018, the crude incidence rate in Ireland was 63.6 per 100,000 population. Chicken is considered an important source of infection for humans. In 2015, the Campylobacter Stakeholders' Group (CSG) was established to reduce Campylobacter contamination levels in Irish broiler flocks. AIMS: This work aimed to describe the Campylobacter monitoring programme that was established by the CSG, to analyse the results of this testing between 2019 and 2022, and to assess progress. METHODS AND RESULTS: This paper describes the monitoring programme that was established by the CSG, which harmonized Campylobacter enumeration testing across all Irish broiler processors and allowed comparability of results for trend analysis. An analysis of the 2019-2022 data is presented here and compared to previous studies of Campylobacter levels in Irish broilers. An analysis of the 2019-2022 data showed a significant reduction in levels in both caeca and neck skin when the results from 2022 were compared to those from 2019 to 2020. Campylobacter spp. were detected in 37% of caecal samples from first depopulation (pre-thin) broilers and 30% of neck skin samples in 2022, with just 4% of carcases (in neck skin samples) with ≥1000 colony-forming units per gram detected in 2022. Campylobacter levels detected in Irish broilers, in the present monitoring programme were less than those reported in previous studies in both caecal and carcase samples, although not directly comparable for statistical significance because of differences in study methods. CONCLUSIONS: The cooperation between stakeholders and regulators of the Irish broiler chicken industry over the past decade has facilitated a coordinated approach to monitoring of Campylobacter levels in broilers, and implementation of control measures. This has enabled a steady reduction in the levels of Campylobacter in Irish chicken.


Subject(s)
Campylobacter Infections , Campylobacter , Chickens , Poultry Diseases , Animals , Chickens/microbiology , Campylobacter/isolation & purification , Ireland/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Campylobacter Infections/veterinary , Campylobacter Infections/epidemiology , Campylobacter Infections/prevention & control , Campylobacter Infections/microbiology , Animal Husbandry/methods , Food Microbiology , Farms , Humans
10.
Trop Anim Health Prod ; 56(2): 96, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441747

ABSTRACT

Bovine genital campylobacteriosis, caused by the gram-negative bacteria Campylobacter fetus venerealis, and bovine trichomonosis, caused by the parasite protozoan Tritrichomonas foetus, are venereal diseases that occur with long intercalving periods and abortion. The control of both diseases relies on microbiological testing and culling infected bulls. Vaccination and antibiotic treatment may help in controlling campylobacteriosis but are not recommended for trichomonosis control. Several regions of the world have active control programs for trichomonosis, not campylobacteriosis. In Argentina, the state of La Pampa aims to eradicate trichomonosis and campylobacteriosis by imposing annual diagnostic testing of every bull and slaughtering positive animals. Prior studies indicated a declining trend in the prevalence of campylobacteriosis and trichomonosis in La Pampa. It was also proposed that the prevalence of one disease could be estimated from the prevalence of the other. The purpose of this retrospective analysis of data gathered from 2008 to 2021 was to determine the La Pampa program's efficacy. Descriptive statistics were employed to determine the reason behind the correlation between tricomonosis and campylobacteriosis diagnostic results. The outcomes refute the notion that this program of venereal eradication was a success. Furthermore, an excess of false positives in both diagnoses may have contributed to the correlation between the prevalences of campylobactriosis and trichomonosis. The practice of killing animals without verifying positive results hinders the determination of disease prevalence and results in the death of numerous healthy animals.


Subject(s)
Campylobacter Infections , Cattle Diseases , Tritrichomonas foetus , Female , Pregnancy , Cattle , Animals , Male , Campylobacter Infections/drug therapy , Campylobacter Infections/epidemiology , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Argentina/epidemiology , Retrospective Studies , Genitalia , Cattle Diseases/drug therapy , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control
11.
Sci Rep ; 14(1): 3182, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326411

ABSTRACT

Campylobacter mitigation along the food production chain is considered effective for minimizing the public health burden of human campylobacteriosis. This study is the first combining different measures in a multiple-hurdle approach, using drinking water additives and feed additives in single and combined application schemes in commercial broiler plants. Broiler chickens in the study groups were naturally contaminated with Campylobacter. Application of an organic acid blend via drinking water, consisting of sodium propionate, potassium sorbate, and sodium diacetate, resulted in significant reductions of up to 4.9 log10 CFU/mL in fecal samples and in cecal samples at slaughter. The application of a phage mixture, consisting of Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1, resulted in reductions of up to 1.1 log10 CFU/mL in fecal samples 1 day after dosing. The sole administration of curcumin via feed resulted in small and inconsistent reductions. In the group receiving a combination of all tested measures, reductions of up to 1.1 log10 CFU/mL were observed. Based on the results of our field trials, it was shown that both the sole application and the combined application of mitigation measures in primary production can reduce the Campylobacter load in broiler chickens, while no synergism could be observed.


Subject(s)
Bacteriophages , Campylobacter Infections , Campylobacter jejuni , Campylobacter , Drinking Water , Poultry Diseases , Humans , Animals , Chickens , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Poultry Diseases/prevention & control
12.
Biomolecules ; 14(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38397378

ABSTRACT

The incidence of human Campylobacter jejuni infections is increasing worldwide. It is highly desirable to prevent campylobacteriosis in individuals at risk for severe disease with antibiotics-independent non-toxic compounds. Activated charcoal (AC) has long been used as an anti-diarrheal remedy. Here, we tested the disease-mitigating effects of oral AC versus placebo in human gut microbiota-associated (hma) IL-10-/- mice starting a week prior to C. jejuni infection. On day 6 post-infection, the gastrointestinal C. jejuni loads were comparable in both infected cohorts, whereas campylobacteriosis symptoms such as wasting and bloody diarrhea were mitigated upon AC prophylaxis. Furthermore, AC application resulted in less pronounced C. jejuni-induced colonic epithelial cell apoptosis and in dampened innate and adaptive immune cell responses in the colon that were accompanied by basal concentrations of pro-inflammatory mediators including IL-6, TNF-α, IFN-γ, and nitric oxide measured in colonic explants from AC treated mice on day 6 post-infection. Furthermore, C. jejuni infection resulted in distinct fecal microbiota shift towards higher enterobacterial numbers and lower loads of obligate anaerobic species in hma mice that were AC-independent. In conclusion, our pre-clinical placebo-controlled intervention study provides evidence that prophylactic oral AC application mitigates acute murine campylobacteriosis.


Subject(s)
Campylobacter Infections , Charcoal , Gastrointestinal Microbiome , Animals , Humans , Mice , Campylobacter Infections/prevention & control , Campylobacter Infections/drug therapy , Charcoal/administration & dosage , Interleukin-10/genetics , Mice, Inbred C57BL , Administration, Oral , Disease Models, Animal
13.
J Sci Food Agric ; 104(9): 5474-5485, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38391155

ABSTRACT

BACKGROUND: Campylobacter jejuni (C. jejuni), a widely distributed global foodborne pathogen, primarily linked with contaminated chicken meat, poses a significant health risk. Reducing the abundance of this pathogen in poultry meat is challenging but essential. This study assessed the impact of Lactobacillus-fermented rapeseed meal (LFRM) on broilers exposed to C. jejuni-contaminated litter, evaluating growth performance, Campylobacter levels, and metagenomic profile. RESULTS: By day 35, the litter contamination successfully colonized broilers with Campylobacter spp., particularly C. jejuni. In the grower phase, LFRM improved (P < 0.05) body weight and daily weight gain, resulting in a 9.2% better feed conversion ratio during the pre-challenge period (the period before artificial infection; days 13-20). The LFRM also reduced the C. jejuni concentration in the ceca (P < 0.05), without altering alpha and beta diversity. However, metagenomic data analysis revealed LFRM targeted a reduction in the abundance of C. jejuni biosynthetic pathways of l-tryptophan and l-histidine and gene families associated with transcription and virulence factors while also possibly leading to selected stress-induced resistance mechanisms. CONCLUSION: The study demonstrated that LFRM inclusion improved growth and decreased cecal Campylobacter spp. concentration and the relative abundance of pivotal C. jejuni genes. Performance benefits likely resulted from LFRM metabolites. At the molecular level, LFRM may have reduced C. jejuni colonization, likely by decreasing the abundance of energy transduction and l-histidine and l-tryptophan biosynthesis genes otherwise required for bacterial survival and increased virulence. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Animal Feed , Campylobacter Infections , Campylobacter jejuni , Cecum , Chickens , Fermentation , Histidine , Lactobacillus , Tryptophan , Animals , Chickens/microbiology , Animal Feed/analysis , Campylobacter jejuni/metabolism , Cecum/microbiology , Cecum/metabolism , Tryptophan/metabolism , Lactobacillus/metabolism , Campylobacter Infections/microbiology , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Histidine/metabolism , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Biosynthetic Pathways , Dietary Supplements/analysis , Brassica rapa/microbiology , Brassica rapa/chemistry , Brassica napus/microbiology
14.
Poult Sci ; 102(12): 103075, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748236

ABSTRACT

Campylobacter is the main cause of human gastroenteritis worldwide, with 50 to 80% of the cases related to consumption of poultry products. Maternal antibodies (MAB) from commercial breeder flocks may protect their progeny against infection during the first few weeks of life. We here studied the prevalence of Campylobacter antibody titers in broiler breeder flocks and to which extent immunization of broiler breeders increases maternal anti-Campylobacter titers in their progeny and protects the offspring against Campylobacter colonization. Two vaccines were used: a bacterin mix of 13 Campylobacter strains and a subunit vaccine comprising 6 immunodominant Campylobacter antigens. All sampled on-farm breeder flocks were positive for anti-Campylobacter antibodies, yet in some breeder flocks only very low titers were detected. Vaccination of SPF broiler breeder flocks with both subunit and bacterin vaccines resulted in a prolonged presence of anti-Campylobacter antibodies in the serum and intestinal mucus of chicks. These bacterin- or subunit vaccine-induced MAB conferred protection against Campylobacter colonization in chicks until 7 and 21 d of age, respectively, but only at a low challenge dose (102.5 cfu). The concentration of MAB in the mucus is probably too low to sufficiently capture Campylobacter when higher challenge doses are used. In conclusion, vaccinating broiler breeders protects their offspring against Campylobacter colonization under low pathogen exposure conditions.


Subject(s)
Campylobacter Infections , Campylobacter , Poultry Diseases , Animals , Humans , Chickens , Bacterial Vaccines , Antibodies , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Vaccination/veterinary , Vaccination/methods , Vaccines, Subunit , Poultry Diseases/prevention & control , Poultry Diseases/epidemiology
15.
BMC Microbiol ; 23(1): 209, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543585

ABSTRACT

BACKGROUND: Effective strategies are urgently needed to control Campylobacteriosis, one of the most important foodborne gastrointestinal diseases worldwide. Administering bacteriophages (phages) is under evaluation as a possible intervention strategy in primary poultry production to reduce the public health risk of human infection. A major challenge is the translation of results from small-scale animal studies to large broiler flocks. In this study, the in vitro lytic activity of 18 Campylobacter-specific group II phages and 19 group III phages were examined singly, and in different combinations from the same group and from both groups using a planktonic killing assay. Based on these results, a combination of phage NCTC 12,673 (group III) and vB_CcM-LmqsCPL1/1 (group II) was selected for in vivo application in a seeder bird model to study its effectiveness under conditions as close as possible to field conditions. One hundred eighty Ross 308 broiler chickens were divided into a control and a treatment group. Ten days post hatch, seeder birds were orally inoculated with the C. jejuni target strain. Phages were administered via drinking water at a total concentration of 107 PFU/mL four, three, and two days before necropsy. RESULTS: Combining group II and group III phages resulted in significantly higher in vitro growth inhibition against the C. jejuni target strain BfR-CA-14,430 than single application or combinations of phages from the same group. The results of the animal trial showed that the application of the two phages significantly reduced Campylobacter counts in cloacal swabs. At necropsy, Campylobacter counts in colonic content of the treatment group were significantly reduced by 2 log10 units compared to the control group. CONCLUSIONS: We demonstrated that combining phages of groups II and III results in significantly increased lytic activities. The in vitro results were successfully translated into practical application in a study design close to field conditions, providing new data to apply phages in conventional broiler flocks in the future. Phage application reduced the fecal Campylobacter excretion and Campylobacter concentrations in the colon of broilers.


Subject(s)
Bacteriophages , Campylobacter Infections , Campylobacter jejuni , Campylobacter , Foodborne Diseases , Poultry Diseases , Animals , Humans , Bacteriophages/physiology , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Chickens , Poultry , Poultry Diseases/prevention & control
16.
Nat Commun ; 14(1): 3806, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365162

ABSTRACT

Campylobacter-associated enteric disease is estimated to be responsible for more than 160 million cases of gastroenteritis each year and is linked to growth stunting of infants living under conditions of poor sanitation and hygiene. Here, we examine naturally occurring Campylobacter-associated diarrhea among rhesus macaques as a model to determine if vaccination could reduce severe diarrheal disease and infant growth stunting. Compared to unvaccinated controls, there are no Campylobacter diarrhea-associated deaths observed among vaccinated infant macaques and all-cause diarrhea-associated infant mortality is decreased by 76% (P = 0.03). By 9 months of age, there is a 1.3 cm increase in dorsal length that equaled a significant 1.28 LAZ (Length-for-Age Z score) improvement in linear growth among vaccinated infants compared to their unvaccinated counterparts (P = 0.001). In this work, we show that Campylobacter vaccination not only reduces diarrheal disease but also potentially serves as an effective intervention that improves infant growth trajectories.


Subject(s)
Campylobacter Infections , Campylobacter , Animals , Macaca mulatta , Diarrhea/prevention & control , Growth Disorders/prevention & control , Campylobacter Infections/prevention & control
17.
Vaccine ; 41(29): 4295-4301, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37277252

ABSTRACT

Campylobacter jejuni is a leading global cause of bacterial gastroenteritis in humans, and poultry are a major reservoir. Glycoconjugate vaccines containing the conserved C. jejuni N-glycan have previously been reported to be effective at reducing caecal colonisation of chickens by C. jejuni. These include recombinant subunit vaccines, live E. coli strains expressing the N-glycan on the surface as well as outer membrane vesicles (OMVs) derived from these E. coli strains. In this study, we evaluated the efficacy of live E. coli expressing the C. jejuni N-glycan from a plasmid and glycosylated OMVs (G-OMVs) derived from them against colonisation by different C. jejuni strains. Despite the C. jejuni N-glycan being expressed on the surface of the live strain and the OMVs, no reduction in caecal colonisation by C. jejuni was observed and N-glycan-specific responses were not detected.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Poultry Diseases , Humans , Animals , Chickens , Escherichia coli/genetics , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Polysaccharides , Vaccines, Synthetic
18.
Compr Rev Food Sci Food Saf ; 22(3): 2346-2407, 2023 05.
Article in English | MEDLINE | ID: mdl-37038302

ABSTRACT

Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.


Subject(s)
Campylobacter Infections , Campylobacter , Animals , Chickens , Meat , Poultry , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary
19.
Poult Sci ; 102(5): 102592, 2023 May.
Article in English | MEDLINE | ID: mdl-36972674

ABSTRACT

Campylobacter jejuni (C. jejuni) is the most common food-borne pathogen that causes human gastroenteritis in the United States. Consumption of contaminated poultry products is considered as the major source of human Campylobacter infection. An effective vaccine would be a promising alternative to antibiotic supplements to curb C. jejuni colonization in poultry gastrointestinal (GI) tract. However, the genetic diversity among the C. jejuni isolates makes vaccine production more challenging. Despite many attempts, an effective Campylobacter vaccine is not yet available. This study aimed to identify suitable candidates to develop a subunit vaccine against C. jejuni, which could reduce colonization in the GI tract of the poultry. In the current study, 4 C. jejuni strains were isolated from retail chicken meat and poultry litter samples and their genomes were sequenced utilizing next-generation sequencing technology. The genomic sequences of C. jejuni strains were screened to identify potential antigens utilizing the reverse vaccinology approach. In silico genome analysis predicted 3 conserved potential vaccine candidates (phospholipase A [PldA], TonB dependent vitamin B12 transporter [BtuB], and cytolethal distending toxin subunit B [CdtB]) suitable for the development of a vaccine. Furthermore, the expression of predicted genes during host-pathogen interaction was analyzed by an infection study using an avian macrophage-like immortalized cell line (HD11). The HD11 was infected with C. jejuni strains, and the RT-qPCR assay was performed to determine the expression of the predicted genes. The expression difference was analyzed using ΔΔCt methods. The results indicate that all 3 predicted genes, PldA, BtuB, and CdtB, were upregulated in 4 tested C. jejuni strains irrespective of their sources of isolation. In conclusion, in silico prediction and gene expression analysis during host-pathogen interactions identified 3 potential vaccine candidates for C. jejuni.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Vaccines , Animals , Humans , Campylobacter jejuni/genetics , Genes, Bacterial , Chickens/genetics , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Campylobacter Infections/genetics , Poultry
20.
Poult Sci ; 102(4): 102510, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764139

ABSTRACT

Campylobacter infections traced mainly to poultry products are major bacterial foodborne zoonoses. Among the many control strategies evaluated at primary poultry level to reduce these infections, vaccination could be a solution, but no effective vaccines are available to date. A better understanding of the immune mechanisms involved in protection against Campylobacter would be helpful for designing novel vaccine strategies. The present study was designed to analyze in more depth the immune responses developed in broilers in order to potentially identify which immune parameters may be important for establishing protection against Campylobacter by comparing the immune responses obtained here with those obtained in a previous study performed on vaccinated specific-pathogen-free Leghorn chickens that presented a partial reduction of Campylobacter after experimental challenge. The protection against Campylobacter colonization was evaluated at different time points over 40 d of rearing, by measuring specific IgY levels in serum and IgA antibodies in bile reflecting the systemic and mucosal humoral responses respectively and the relative expressions of 9 cecal immune marker genes (cytokines and antimicrobial peptides), which reflect the innate and cellular immune responses. Despite no reduction of Campylobacter in the cecum, a systemic immune response over time characterized by the production of specific anti-flagellin IgY was observed, in addition to upregulation of the antimicrobial peptide avian ß-defensin (AvBD) 12 gene expression in the cecum of vaccinated broilers compared with the placebo group. However, the levels of specific anti-flagellin mucosal IgA antibodies in the bile as well as the relative expression of other cecal cytokines studied was underexpressed in the vaccinated group or similar in both groups.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Poultry Diseases , Animals , Bacterial Vaccines , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Campylobacter jejuni/genetics , Cecum/microbiology , Chickens , Flagellin , Immunity , Immunoglobulin A , Poultry Diseases/microbiology , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL