Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.499
Filter
1.
Sci Adv ; 10(27): eadl1197, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959305

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.


Subject(s)
Carcinoma, Pancreatic Ductal , Fibrosis , Pancreatic Neoplasms , Proteomics , Animals , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Proteomics/methods , Mice , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Disease Models, Animal , Cell Line, Tumor , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Cell Adhesion Molecules
2.
Signal Transduct Target Ther ; 9(1): 169, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956074

ABSTRACT

More than 90% of hepatocellular carcinoma (HCC) cases develop in the presence of fibrosis or cirrhosis, making the tumor microenvironment (TME) of HCC distinctive due to the intricate interplay between cancer-associated fibroblasts (CAFs) and cancer stem cells (CSCs), which collectively regulate HCC progression. However, the mechanisms through which CSCs orchestrate the dynamics of the tumor stroma during HCC development remain elusive. Our study unveils a significant upregulation of Sema3C in fibrotic liver, HCC tissues, peripheral blood of HCC patients, as well as sorafenib-resistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in HCC. We further identify NRP1 and ITGB1 as pivotal functional receptors of Sema3C, activating downstream AKT/Gli1/c-Myc signaling pathways to bolster HCC self-renewal and tumor initiation. Additionally, HCC cells-derived Sema3C facilitated extracellular matrix (ECM) contraction and collagen deposition in vivo, while also promoting the proliferation and activation of hepatic stellate cells (HSCs). Mechanistically, Sema3C interacted with NRP1 and ITGB1 in HSCs, activating downstream NF-kB signaling, thereby stimulating the release of IL-6 and upregulating HMGCR expression, consequently enhancing cholesterol synthesis in HSCs. Furthermore, CAF-secreted TGF-ß1 activates AP1 signaling to augment Sema3C expression in HCC cells, establishing a positive feedback loop that accelerates HCC progression. Notably, blockade of Sema3C effectively inhibits tumor growth and sensitizes HCC cells to sorafenib in vivo. In sum, our findings spotlight Sema3C as a novel biomarker facilitating the crosstalk between CSCs and stroma during hepatocarcinogenesis, thereby offering a promising avenue for enhancing treatment efficacy and overcoming drug resistance in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Semaphorins , Tumor Microenvironment , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Tumor Microenvironment/genetics , Semaphorins/genetics , Semaphorins/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Mice , Signal Transduction/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Neuropilin-1/genetics , Neuropilin-1/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Animals , Gene Expression Regulation, Neoplastic/genetics , Sorafenib/pharmacology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Disease Progression
3.
J Gastric Cancer ; 24(3): 300-315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38960889

ABSTRACT

PURPOSE: Gastric cancer (GC) is among the deadliest malignancies and the third leading cause of cancer-related deaths worldwide. Galectin-1 (Gal-1) is a primary protein secreted by cancer-associated fibroblasts (CAFs); however, its role and mechanisms of action of Gal-1 in GC remain unclear. In this study, we stimulated GC cells with exogenous human recombinant galectin-1 protein (rhGal-1) to investigate its effects on the proliferation, migration, and resistance to cisplatin. MATERIALS AND METHODS: We used simulated rhGal-1 protein as a paracrine factor produced by CAFs to induce GC cells and investigated its promotional effects and mechanisms in GC progression and cisplatin resistance. Immunohistochemical (IHC) assay confirmed that Gal-1 expression was associated with clinicopathological parameters and correlated with the expression of neuropilin-1 (NRP-1), c-JUN, and Wee1. RESULTS: Our study reveals Gal-1 expression was significantly associated with poor outcomes. Gal-1 boosts the proliferation and metastasis of GC cells by activating the NRP-1/C-JUN/Wee1 pathway. Gal-1 notably increases GC cell resistance to cisplatin The NRP-1 inhibitor, EG00229, effectively counteracts these effects. CONCLUSIONS: These findings revealed a potential mechanism by which Gal-1 promotes GC growth and contributes to chemoresistance, offering new therapeutic targets for the treatment of GC.


Subject(s)
Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Galectin 1 , Neuropilin-1 , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Galectin 1/genetics , Galectin 1/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Neuropilin-1/metabolism , Neuropilin-1/genetics , Cell Proliferation/drug effects , Male , Female , Disease Progression , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Middle Aged , Mice , Animals , Cell Movement/drug effects , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology
4.
J Transl Med ; 22(1): 597, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937754

ABSTRACT

BACKGROUND: Over the last two decades, tumor-derived RNA expression signatures have been developed for the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene signatures in breast and prostate cancers still remains to be disclosed. METHODS: RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then employed to improve the results obtained by the decision-tree algorithm. RESULTS: Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-seq cohorts. CONCLUSION: We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic indicators and valuable biomarkers for a better management of breast and prostate cancer patients.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Male , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Prognosis , Transcriptome/genetics , Gene Expression Profiling , Cluster Analysis , Treatment Outcome , Middle Aged , Kaplan-Meier Estimate
5.
Cancer Lett ; 596: 217022, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38849014

ABSTRACT

We previously reported that extracellular matrix protein 1 isoform a (ECM1a) promotes epithelial ovarian cancer (EOC) through autocrine signaling by binding to cell surface receptors αXß2. However, the role of ECM1a as a secretory molecule in the tumor microenvironment is rarely reported. In this study, we constructed murine Ecm1-knockout mice and human ECM1a-knockin mice and further generated orthotopic or peritoneal xenograft tumor models to mimic the different metastatic stages of EOC. We show that ECM1a induces oncogenic metastasis of orthotopic xenograft tumors, but inhibits early-metastasis of peritoneal xenograft tumors. ECM1a remodels extracellular matrices (ECM) and promotes remote metastases by recruiting and transforming bone marrow mesenchymal stem cells (BMSCs) into platelet-derived growth factor receptor beta (PDGFRß+) cancer-associated fibroblasts (CAFs) and facilitating the secretion of angiopoietin-like protein 2 (ANGPTL2). Competing with ECM1a, ANGPTL2 also binds to integrin αX through the P1/P2 peptides, resulting in negative effects on BMSC differentiation. Collectively, this study reveals the dual functions of ECM1a in remodeling of TME during tumor progression, emphasizing the complexity of EOC phenotypic heterogeneity and metastasis.


Subject(s)
Angiopoietin-Like Protein 2 , Cancer-Associated Fibroblasts , Extracellular Matrix Proteins , Mice, Knockout , Ovarian Neoplasms , Tumor Microenvironment , Animals , Female , Humans , Mice , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Neoplasm Metastasis , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism
6.
Front Immunol ; 15: 1412328, 2024.
Article in English | MEDLINE | ID: mdl-38903506

ABSTRACT

The occurrence of ovarian cancer (OC) is a major factor in women's mortality rates. Despite progress in medical treatments, like new drugs targeting homologous recombination deficiency, survival rates for OC patients are still not ideal. The tumor microenvironment (TME) includes cancer cells, fibroblasts linked to cancer (CAFs), immune-inflammatory cells, and the substances these cells secrete, along with non-cellular components in the extracellular matrix (ECM). First, the TME mainly plays a role in inhibiting tumor growth and protecting normal cell survival. As tumors progress, the TME gradually becomes a place to promote tumor cell progression. Immune cells in the TME have attracted much attention as targets for immunotherapy. Immune checkpoint inhibitor (ICI) therapy has the potential to regulate the TME, suppressing factors that facilitate tumor advancement, reactivating immune cells, managing tumor growth, and extending the survival of patients with advanced cancer. This review presents an outline of current studies on the distinct cellular elements within the OC TME, detailing their main functions and possible signaling pathways. Additionally, we examine immunotherapy rechallenge in OC, with a specific emphasis on the biological reasons behind resistance to ICIs.


Subject(s)
Ovarian Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Ovarian Neoplasms/pathology , Female , Animals , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Signal Transduction , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism
7.
Redox Biol ; 74: 103209, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861833

ABSTRACT

Alterations in the tumor microenvironment are closely associated with the metabolic phenotype of tumor cells. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor growth and metastasis. Existing studies have suggested that lactate produced by tumor cells can activate CAFs, yet the precise underlying mechanisms remain largely unexplored. In this study, we initially identified that lactate derived from lung cancer cells can promote nuclear translocation of NUSAP1, subsequently leading to the recruitment of the transcriptional complex JUNB-FRA1-FRA2 near the DESMIN promoter and facilitating DESMIN transcriptional activation, thereby promoting CAFs' activation. Moreover, DESMIN-positive CAFs, in turn, secrete IL-8, which recruits TAMs or promotes M2 polarization of macrophages, further contributing to the alterations in the tumor microenvironment and facilitating lung cancer progression. Furthermore, we observed that the use of IL-8 receptor antagonists, SB225002, or Navarixin, significantly reduced TAM infiltration and enhanced the therapeutic efficacy of anti-PD-1 or anti-PD-L1 treatment. This finding indicates that inhibiting IL-8R activity can attenuate the impact of CAFs on the tumor microenvironment, thus restraining the progression of lung cancer.


Subject(s)
Cancer-Associated Fibroblasts , Interleukin-8 , Lung Neoplasms , Macrophages , Tumor Microenvironment , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Interleukin-8/metabolism , Interleukin-8/genetics , Mice , Animals , Macrophages/metabolism , Macrophages/immunology , Lactic Acid/metabolism , Disease Progression , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology
8.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892065

ABSTRACT

Hormone receptor-positive and HER2-negative breast cancer (HR+/HER2-BC) is the most common type with a favorable prognosis under endocrine therapy. However, it still demonstrates unpredictable progression and recurrences influenced by high tumoral diversity and microenvironmental status. To address these heterogeneous molecular characteristics of HR+/HER2-BC, we aimed to simultaneously characterize its transcriptomic landscape and genetic architecture at the same resolution. Using advanced single-cell RNA and DNA sequencing techniques together, we defined four distinct tumor subtypes. Notably, the migratory tumor subtype was closely linked to genomic alterations of EGFR, related to the tumor-promoting behavior of IL6-positive inflammatory tumor-associated fibroblast, and contributing to poor prognosis. Our study comprehensively utilizes integrated analysis to uncover the complex dynamics of this breast cancer subtype, highlighting the pivotal role of the migratory tumor subtype in influencing surrounding cells. This sheds light on potential therapeutic targets by offering enhanced insights for HR+/HER2-BC treatment.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Cell Movement , Receptor, ErbB-2 , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Tumor Microenvironment , Cell Line, Tumor , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Prognosis , ErbB Receptors/metabolism , ErbB Receptors/genetics , Single-Cell Analysis
9.
J Exp Clin Cancer Res ; 43(1): 158, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825680

ABSTRACT

BACKGROUND: Studies have shown that oxidative stress and its resistance plays important roles in the process of tumor metastasis, and mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage is an important molecular event in oxidative stress. In lung cancer, the normal fibroblasts (NFs) are activated as cancer-associated fibroblasts (CAFs), and act in the realms of the tumor microenvironment (TME) with consequences for tumor growth and metastasis. However, its activation mechanism and whether it participates in tumor metastasis through antioxidative stress remain unclear. METHODS: The role and signaling pathways of tumor cell derived extracellular vesicles (EVs) activating NFs and the characteristic of induced CAFs (iCAFs) were measured by the transmission electron microscopy, nanoparticle tracking analysis, immunofluorescence, collagen contraction assay, quantitative PCR, immunoblotting, luciferase reporter assay and mitochondrial membrane potential detection. Mitochondrial genome and single nucleotide polymorphism sequencing were used to investigate the transport of mtDNA from iCAFs to ρ0 cells, which were tumor cells with mitochondrial dysfunction caused by depletion of mtDNA. Further, the effects of iCAFs on mitochondrial function, growth and metastasis of tumor cells were analysed in co-culture models both in vitro and in vivo, using succinate dehydrogenase, glutathione and oxygen consumption rate measurements, CCK-8 assay, transwell assay, xenotransplantation and metastasis experiments as well as in situ hybridization and immunohistochemistry. RESULTS: Our findings revealed that EVs derived from high-metastatic lung cancer cells packaged miR-1290 that directly targets MT1G, leading to activation of AKT signaling in NFs and inducing NFs conversion to CAFs. The iCAFs exhibit higher levels of autophagy and mitophagy and more mtDNA release, and reactive oxygen species (ROS) could further promote this process. After cocultured with the conditioned medium (CM) of iCAFs, the ρ0 cells may restore its mitochondrial function by acquisition of mtDNA from CAFs, and further promotes tumor metastasis. CONCLUSIONS: These results elucidate a novel mechanism that CAFs activated by tumor-derived EVs can promote metastasis by transferring mtDNA and restoring mitochondrial function of tumor cells which result in resistance of oxidative stress, and provide a new therapeutic target for lung cancer metastasis.


Subject(s)
Cancer-Associated Fibroblasts , DNA, Mitochondrial , Extracellular Vesicles , Lung Neoplasms , Mitophagy , Extracellular Vesicles/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Humans , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Mice , Animals , Neoplasm Metastasis , Cell Line, Tumor , Tumor Microenvironment
10.
Cell Rep Med ; 5(6): 101610, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897168

ABSTRACT

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Tumor Microenvironment , Humans , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Neuroendocrine Cells/pathology , Neuroendocrine Cells/metabolism , Female , Male , Prognosis
11.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892190

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive cancer with striking fibrosis, and its mortality rate is ranked second across human cancers. Cancer-associated fibroblasts (CAFs) play a critical role in PDAC progression, and we reviewed the molecular understanding of PDAC CAFs and novel therapeutic potential at present. CAFs-associated genes (CAFGs) were tentatively classified into three categories by stroma specificity representing stroma/epithelia expression ratios (SE ratios). The recent classification using single cell transcriptome technology clarified that CAFs were composed of myofibroblasts (myCAFs), inflammatory CAFs (iCAFs), and other minor ones (e.g., POSTN-CAFs and antigen presenting CAFs, apCAFs). LRRC15 is a myCAFs marker, and myCAFs depletion by diphtheria toxin induces the rapid accumulation of cytotoxic T lymphocytes (CTLs) and therefore augment PDL1 antibody treatments. This finding proposes that myCAFs may be a critical regulator of tumor immunity in terms of PDAC progression. myCAFs are located in CAFs adjacent to tumor cells, while iCAFs marked by PDPN and/or COL14A1 are distant from tumor cells, where hypoxic and acidic environments being located in iCAFs putatively due to poor blood supply is consistent with HIF1A and GPR68 expressions. iCAFs may be shared with SASP (secretion-associated phenotypes) in senescent CAFs. myCAFs are classically characterized by CAFGs induced by TGFB1, while chemoresistant CAFs with SASP may dependent on IL6 expression and accompanied by STAT3 activation. Recently, it was found that the unique metabolism of CAFs can be targeted to prevent PDAC progression, where PDAC cells utilize glucose, whereas CAFs in turn utilize lactate, which may be epigenetically regulated, mediated by its target genes including CXCR4. In summary, CAFs have unique molecular characteristics, which have been rigorously clarified as novel therapeutic targets of PDAC progression.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Animals
12.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891879

ABSTRACT

One aspect of ovarian tumorigenesis which is still poorly understood is the tumor-stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and response to therapy, making them attractive targets for anti-cancer treatment. Unraveling the mechanisms involved in CAFs activation and maintenance is therefore crucial for the improvement of therapy efficacy. Here, we report that CAFs phenoconversion relies on the glucose-dependent inhibition of autophagy. We show that ovarian cancer cell-conditioning medium induces a metabolic reprogramming towards the CAF-phenotype that requires the autophagy-dependent glycolytic shift. In fact, 2-deoxy-D-glucose (2DG) strongly hampers such phenoconversion and, most importantly, induces the phenoreversion of CAFs into quiescent fibroblasts. Moreover, pharmacological inhibition (by proline) or autophagy gene knockdown (by siBECN1 or siATG7) promotes, while autophagy induction (by either 2DG or rapamycin) counteracts, the metabolic rewiring induced by the ovarian cancer cell secretome. Notably, the nutraceutical resveratrol (RV), known to inhibit glucose metabolism and to induce autophagy, promotes the phenoreversion of CAFs into normal fibroblasts even in the presence of ovarian cancer cell-conditioning medium. Overall, our data support the view of testing autophagy inducers for targeting the tumor-promoting stroma as an adjuvant strategy to improve therapy success rates, especially for tumors with a highly desmoplastic stroma, like ovarian cancer.


Subject(s)
Autophagy , Cancer-Associated Fibroblasts , Glucose , Ovarian Neoplasms , Humans , Female , Autophagy/drug effects , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Glucose/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects , Resveratrol/pharmacology , Culture Media, Conditioned/pharmacology , Deoxyglucose/pharmacology , Glycolysis/drug effects
13.
Cytokine ; 180: 156676, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857560

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS: Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS: Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/ß-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS: We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/ß-Catenin signaling pathway.


Subject(s)
Adenocarcinoma of Lung , Cancer-Associated Fibroblasts , Chemokine CXCL12 , Disease Progression , Interleukin-17 , Lung Neoplasms , Mice, Inbred BALB C , Mice, Nude , Wnt Signaling Pathway , Interleukin-17/metabolism , Chemokine CXCL12/metabolism , Humans , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Mice , Male , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , beta Catenin/metabolism
14.
Cell Metab ; 36(6): 1172-1174, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838639

ABSTRACT

Some cancers prefer to metabolize lipids for their growth and metastasis. In a recent Cancer Cell study, Niu et al. revealed that SET domain containing 2, histone lysine methyltransferase (SETD2)-deficient pancreatic cancer cells induce the differentiation of lipid-laden cancer-associated fibroblasts (CAFs), which, in turn, transport lipids to promote tumor growth.


Subject(s)
Cancer-Associated Fibroblasts , Lipid Metabolism , Pancreatic Neoplasms , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Animals
15.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849852

ABSTRACT

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Subject(s)
Cancer-Associated Fibroblasts , Cell Communication , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Animals , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gap Junctions/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Spatio-Temporal Analysis , Tight Junctions/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Autoantigens/genetics , Autoantigens/metabolism
16.
World J Gastroenterol ; 30(20): 2689-2708, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855156

ABSTRACT

BACKGROUND: The regulatory effects of KIF26B on gastric cancer (GC) have been confirmed, but the specific mechanism still needs further exploration. Pan-cancer analysis shows that the KIF26B expression is highly related to immune infiltration of cancer-associated fibroblasts (CAFs), and CAFs promote macrophage M2 polarization and affect cancers' progression. AIM: To investigate the regulatory functions of KIF26B on immune and metastasis of GC. METHODS: We analyzed genes' mRNA levels by quantitative real-time polymerase chain reaction. Expression levels of target proteins were detected by immunohistochemistry, ELISA, and Western blotting. We injected AGS cells into nude mice for the establishment of a xenograft tumor model and observed the occurrence and metastasis of GC. The degree of inflammatory infiltration in pulmonary nodes was observed through hematoxylin-eosin staining. Transwell and wound healing assays were performed for the evaluation of cell invasion and migration ability. Tube formation assay was used for detecting angiogenesis. M2-polarized macrophages were estimated by immunofluorescence and flow cytometry. RESULTS: KIF26B was significantly overexpressed in cells and tissues of GC, and the higher expression of KIF26B was related to GC metastasis and prognosis. According to in vivo experiments, KIF26B promoted tumor formation and metastasis of GC. KIF26B expression was positively associated with CAFs' degree of infiltration. Moreover, CAFs could regulate M2-type polarization of macrophages, affecting GC cells' migration, angiogenesis, invasion, and epithelial-mesenchymal transition process. CONCLUSION: KIF26B regulated M2 polarization of macrophage through activating CAFs, regulating the occurrence and metastasis of GC.


Subject(s)
Cancer-Associated Fibroblasts , Gene Expression Regulation, Neoplastic , Kinesins , Mice, Nude , Stomach Neoplasms , Animals , Kinesins/metabolism , Kinesins/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Mice , Male , Macrophages/metabolism , Macrophages/immunology , Cell Movement , Female , Tumor Microenvironment , Neoplasm Metastasis , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Prognosis , Neoplasm Invasiveness , Mice, Inbred BALB C , Neovascularization, Pathologic , Epithelial-Mesenchymal Transition
17.
J Pathol Clin Res ; 10(4): e12386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38890810

ABSTRACT

Evidence for the tumour-supporting capacities of the tumour stroma has accumulated rapidly in colorectal cancer (CRC). Tumour stroma is composed of heterogeneous cells and components including cancer-associated fibroblasts (CAFs), small vessels, immune cells, and extracellular matrix proteins. The present study examined the characteristics of CAFs and collagen, major components of cancer stroma, by immunohistochemistry and Sirius red staining. The expression status of five independent CAF-related or stromal markers, decorin (DCN), fibroblast activation protein (FAP), podoplanin (PDPN), alpha-smooth muscle actin (ACTA2), and collagen, and their association with clinicopathological features and clinical outcomes were analysed. Patients with DCN-high tumours had a significantly worse 5-year survival rate (57.3% versus 79.0%; p = 0.044). Furthermore, hierarchical clustering analyses for these five markers identified three groups that showed specific characteristics: a solid group (cancer cell-rich, DCNLowPDPNLow); a PDPN-dominant group (DCNMidPDPNHigh); and a DCN-dominant group (DCNHighPDPNLow), with a significant association with patient survival (p = 0.0085). Cox proportional hazards model identified the PDPN-dominant group (hazard ratio = 0.50, 95% CI = 0.26-0.96, p = 0.037) as a potential favourable factor compared with the DCN-dominant group. Of note, DCN-dominant tumours showed the most advanced pT stage and contained the lowest number of CD8+ and FOXP3+ immune cells. This study has revealed that immunohistochemistry and special staining of five stromal factors with hierarchical clustering analyses could be used for the prognostication of patients with CRC. Cancer stroma-targeting therapies may be candidate treatments for patients with CRC.


Subject(s)
Biomarkers, Tumor , Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Male , Female , Biomarkers, Tumor/analysis , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Aged , Middle Aged , Cluster Analysis , Immunohistochemistry , Tumor Microenvironment , Prognosis , Membrane Glycoproteins/analysis , Membrane Glycoproteins/metabolism , Stromal Cells/pathology , Stromal Cells/metabolism , Decorin/analysis , Decorin/metabolism , Adult , Aged, 80 and over , Kaplan-Meier Estimate
18.
Front Immunol ; 15: 1372432, 2024.
Article in English | MEDLINE | ID: mdl-38903527

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods: We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results: Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions: Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Humans , Neoplasms/immunology , Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Transcriptome
19.
Sci Rep ; 14(1): 14343, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906929

ABSTRACT

Non-small cell lung cancer (NSCLC)-originating cancer-associated fibroblasts (CAFs) expressing CD248 regulate interaction with immune cells to accelerate cancer progression. Epithelial-mesenchymal transition (EMT) is a key feature of metastatic cells. In our pervious study, we found that CD248+CAFs activated M2-polarized macrophages, enhancing the progression of NSCLC. However, it is yet unclear how CD248+CAFs inducing M2-polarized macrophages induce EMT program in NSCLC cells. Herein, we examined CD248 expression from CAFs derived from NSCLC patient tumour tissues. Furthermore, we determined the influence of CD248 knock down CAFs on macrophages polarization. Next, we explored the influences of CD248-harboring CAFs-mediated M2 macrophage polarization to promote NSCLC cells EMT in vitro. We constructed fibroblasts specific CD248 gene knock out mice to examine the significance of CD248-harboring CAFs-induced M2-polarized macrophages to promote NSCLC cells EMT in vivo. Based on our analysis, CD248 is ubiquitously expressed within NSCLC-originating CAFs. CD248+CAFs mediated macrophages polarized to M2 type macrophages. CD248+CAFs induced M2 macrophage polarization to enhance NSCLC cells EMT both in vivo and in vitro. Our findings indicate that CD248-harboring CAFs promote NSCLC cells EMT by regulating M2-polarized macrophages.


Subject(s)
Antigens, CD , Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Epithelial-Mesenchymal Transition , Lung Neoplasms , Macrophages , Epithelial-Mesenchymal Transition/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Humans , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Macrophages/metabolism , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Mice, Knockout , Cell Line, Tumor , Antigens, Neoplasm
20.
J Nanobiotechnology ; 22(1): 360, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907233

ABSTRACT

Osteosarcoma (OS) derived small extracellular vesicles (OS-sEVs) have been shown to induce the formation of cancer-associated fibroblasts (CAFs), characterized by elevated pro-inflammatory factor expression and enhanced migratory and contractile abilities. These CAFs play a crucial role in priming lung metastasis by orchestrating the pre-metastatic niche (PMN) in the lung. Disrupting the communication between OS-sEVs and lung fibroblasts (LFs) emerges as a potent strategy to hinder OS pulmonary metastasis. Our previously established saponin-mediated cargo-elimination strategy effectively reduces the cancer-promoting ability of tumor-derived small extracellular vesicles (TsEVs) while preserving their inherent targeting capability. In this study, we observed that cargo-eliminated OS-sEVs (CE-sEVs) display minimal pro-tumoral and LFs activation potential, yet retain their ability to target LFs. The uptake of OS-sEVs by LFs can be concentration-dependently suppressed by CE-sEVs, preventing the conversion of LFs into CAFs and thus inhibiting PMN formation and pulmonary metastasis of OS. In summary, this study proposes a potential strategy to prevent LFs activation, PMN formation in the lung, and OS pulmonary metastasis through competitive inhibition of OS-sEVs' function by CE-sEVs.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/metabolism , Extracellular Vesicles/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Animals , Humans , Mice , Cell Line, Tumor , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Mice, Inbred BALB C , Saponins/pharmacology , Mice, Nude , Cell Movement/drug effects , Lung/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...