Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.122
1.
Biol Pharm Bull ; 47(5): 912-916, 2024.
Article En | MEDLINE | ID: mdl-38692868

The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.


Herpesviridae , Humans , Herpesviridae/physiology , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Animals , Genome, Viral , Capsid/metabolism , Virus Replication
2.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704431

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
3.
Methods Mol Biol ; 2807: 153-161, 2024.
Article En | MEDLINE | ID: mdl-38743227

Recent evidence has shown that uncoating and reverse transcription precede nuclear import. These recent breakthroughs have been made possible through the development of innovative biochemical and imaging techniques. This method outlines the biochemical assay used for detecting the presence of the HIV-1 core in the nuclear compartment. In this procedure, human cells are infected with HIV-1NL4-3, with or without the inclusion of PF74, a small molecule that inhibits core entry into the nuclear compartment. Subsequently, cells are separated into cytosolic and nuclear fractions. To assess whether the capsid protein has reached the nuclear compartment, cytosolic and nuclear fractions are subjected to Western blot analysis, utilizing antibodies specific to the HIV-1 capsid protein p24. To validate the true origin of these fractions, Western blot analysis employing antibodies against cytosolic and nuclear markers are also performed. In summary, this assay provides a reliable and efficient means to detect the presence of the HIV-1 capsid protein in the nucleus during infection under various conditions.


Capsid , Cell Nucleus , HIV Infections , HIV-1 , Humans , Cell Nucleus/metabolism , HIV Infections/virology , HIV Infections/metabolism , Capsid/metabolism , HIV Core Protein p24/metabolism , HIV Core Protein p24/analysis , Capsid Proteins/metabolism , Blotting, Western/methods , Phenylalanine/metabolism , Phenylalanine/analogs & derivatives , Cell Line
4.
Commun Biol ; 7(1): 557, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730276

The high abundance of most viruses in infected host cells benefits their structural characterization. However, endogenous viruses are present in low copy numbers and are therefore challenging to investigate. Here, we retrieve cell extracts enriched with an endogenous virus, the yeast L-A virus. The determined cryo-EM structure discloses capsid-stabilizing cation-π stacking, widespread across viruses and within the Totiviridae, and an interplay of non-covalent interactions from ten distinct capsomere interfaces. The capsid-embedded mRNA decapping active site trench is supported by a constricting movement of two flexible opposite-facing loops. tRNA-loaded polysomes and other biomacromolecules, presumably mRNA, are found in virus proximity within the cell extract. Mature viruses participate in larger viral communities resembling their rare in-cell equivalents in terms of size, composition, and inter-virus distances. Our results collectively describe a 3D-architecture of a viral milieu, opening the door to cell-extract-based high-resolution structural virology.


Cryoelectron Microscopy , Capsid/metabolism , Capsid/ultrastructure , Capsid/chemistry , Cell Extracts , Saccharomyces cerevisiae/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
5.
Proc Natl Acad Sci U S A ; 121(20): e2321260121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38722807

Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.


Capsid Proteins , Capsid , Cryoelectron Microscopy , Point Mutation , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Models, Molecular
6.
Viruses ; 16(5)2024 04 25.
Article En | MEDLINE | ID: mdl-38793552

The HIV-1 capsid (CA) protein forms the outer shell of the viral core that is released into the cytoplasm upon infection. CA binds various cellular proteins, including CPSF6, that direct HIV-1 integration into speckle-associated domains in host chromatin. Upon HIV-1 infection, CPSF6 forms puncta in the nucleus. Here, we characterised these CPSF6 puncta further in HeLa cells, T-cells and macrophages and confirmed that integration and reverse transcription are not required for puncta formation. Indeed, we found that puncta formed very rapidly after infection, correlating with the time that CA entered the nucleus. In aphidicolin-treated HeLa cells and macrophages, puncta were detected for the length of the experiment, suggesting that puncta are only lost upon cell division. CA still co-localised with CPSF6 puncta at the latest time points, considerably after the peak of reverse transcription and integration. Intriguingly, the number of puncta induced in macrophages did not correlate with the MOI or the total number of nuclear speckles present in each cell, suggesting that CA/CPSF6 is only directed to a few nuclear speckles. Furthermore, we found that CPSF6 already co-localised with nuclear speckles in uninfected T-cells, suggesting that HIV-1 promotes a natural behaviour of CPSF6.


HIV-1 , Macrophages , T-Lymphocytes , mRNA Cleavage and Polyadenylation Factors , HIV-1/physiology , Humans , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , T-Lymphocytes/virology , T-Lymphocytes/metabolism , HeLa Cells , Macrophages/virology , Macrophages/metabolism , Virus Integration , Cell Nucleus/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , HIV Infections/virology , HIV Infections/metabolism , Capsid/metabolism
7.
Retrovirology ; 21(1): 10, 2024 May 23.
Article En | MEDLINE | ID: mdl-38778414

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


HIV-1 , Immunity, Innate , Nucleotidyltransferases , gag Gene Products, Human Immunodeficiency Virus , HIV-1/immunology , HIV-1/genetics , HIV-1/physiology , Humans , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Antiviral Restriction Factors , Macrophages/immunology , Macrophages/virology , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , THP-1 Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/immunology , Immune Evasion , Capsid/metabolism , Capsid/immunology , Virus Replication , Virion/metabolism , Virion/genetics , Virion/immunology , Host-Pathogen Interactions/immunology , DNA, Viral/genetics , Cell Line
8.
J Biosci ; 492024.
Article En | MEDLINE | ID: mdl-38783793

A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-toorder transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein-protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.


Capsid Proteins , Flavivirus , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Flavivirus/pathogenicity , Flavivirus/genetics , Flavivirus/physiology , Flavivirus/metabolism , Phylogeny , Humans , Protein Binding , Capsid/metabolism , Capsid/chemistry , Flavivirus Infections/virology , Flavivirus Infections/metabolism , Molecular Docking Simulation , Amino Acid Sequence
9.
Cell Host Microbe ; 32(4): 441-442, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38604120

The size of the nuclear pore should, in principle, prevent HIV-1 entry. However, HIV-1 capsid is able to gain nuclear pore entry. In a recent issue of Nature, Fu et al. and Dickson et al. demonstrate that the HIV-1 capsid mimics the nuclear transport protein karyopherins to access host nuclei.


HIV Infections , Nuclear Pore , Humans , Capsid/metabolism , Capsid Proteins/metabolism , HIV Infections/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Nuclear Pore Complex Proteins/metabolism
10.
ACS Infect Dis ; 10(4): 1162-1173, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38564659

Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.


Capsid , Hepatitis B virus , Capsid/metabolism , Capsid Proteins , Virus Assembly , Nucleocapsid
11.
PLoS Pathog ; 20(4): e1011750, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574119

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.


Rotavirus , Rotavirus/genetics , Capsid Proteins/metabolism , Capsid/metabolism , Calcium/metabolism , Liposomes/analysis , Liposomes/metabolism
12.
J Biomed Sci ; 31(1): 34, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561844

BACKGROUND: It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities. METHODS: HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis. Infection assay was performed by using a HepG2-NTCP-AS2 cell line. RESULTS: Here, we show that a novel phosphatase activity responsible for HBc de-P can be mapped to the C-terminal domain of the polymerase overlapping with the RNase H domain. Surprisingly, while HBc de-P is crucial for viral infectivity, it is essential for neither viral DNA synthesis nor virion secretion. The potential origin, significance, and mechanism of this polymerase-associated phosphatase activity are discussed in the context of an electrostatic homeostasis model. The Phos-tag gel analysis revealed an intriguing pattern of "bipolar distribution" of phosphorylated HBc and a de-P HBc doublet. CONCLUSIONS: It remains unknown if such a polymerase-associated phosphatase activity can be found in other related biosystems. This polymerase-associated phosphatase activity could be a druggable target in clinical therapy for hepatitis B.


Capsid , Hepatitis B virus , Hepatitis B virus/genetics , Capsid/metabolism , Virus Assembly/genetics , DNA, Viral , RNA, Viral/metabolism , Capsid Proteins/metabolism , Virus Replication/genetics , Ribonuclease H/metabolism , Phosphoric Monoester Hydrolases/metabolism
13.
J Med Virol ; 96(4): e29594, 2024 Apr.
Article En | MEDLINE | ID: mdl-38576317

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Anti-HIV Agents , HIV Seropositivity , Humans , Capsid/metabolism , Phenylalanine/pharmacology , Phenylalanine/metabolism , Molecular Docking Simulation , Anti-HIV Agents/pharmacology , Capsid Proteins/metabolism , Anti-Retroviral Agents
14.
Nat Commun ; 15(1): 3576, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678040

Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.


Cryoelectron Microscopy , Maltose-Binding Proteins , Nucleocapsid , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Maltose-Binding Proteins/metabolism , Maltose-Binding Proteins/genetics , Virus Assembly , Capsid/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics
15.
Sci Adv ; 10(17): eadn7033, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38657061

HIV-1 cores, which contain the viral genome and replication machinery, must disassemble (uncoat) during viral replication. However, the viral and host factors that trigger uncoating remain unidentified. Recent studies show that infectious cores enter the nucleus and uncoat near the site of integration. Here, we show that efficient uncoating of nuclear cores requires synthesis of a double-stranded DNA (dsDNA) genome >3.5 kb and that the efficiency of uncoating correlates with genome size. Core disruption by capsid inhibitors releases viral DNA, some of which integrates. However, most of the viral DNA is degraded, indicating that the intact core safeguards viral DNA. Atomic force microscopy and core content estimation reveal that synthesis of full-length genomic dsDNA induces substantial internal strain on the core to promote uncoating. We conclude that HIV-1 cores protect viral DNA from degradation by host factors and that synthesis of long double-stranded reverse transcription products is required to trigger efficient HIV-1 uncoating.


DNA, Viral , HIV-1 , Reverse Transcription , Virus Uncoating , HIV-1/physiology , HIV-1/drug effects , HIV-1/genetics , Humans , DNA, Viral/genetics , DNA, Viral/metabolism , Virus Replication/drug effects , Genome, Viral , Microscopy, Atomic Force , Capsid/metabolism
16.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38614100

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Bluetongue virus , Capsid Proteins , Capsid , Cryoelectron Microscopy , RNA, Viral , Viral Genome Packaging , Bluetongue virus/genetics , Bluetongue virus/physiology , Bluetongue virus/metabolism , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , Animals , RNA, Viral/metabolism , RNA, Viral/genetics , Genome, Viral/genetics , Virus Assembly , Electron Microscope Tomography , Virion/metabolism , Virion/genetics , Virion/ultrastructure , Models, Molecular , Cell Line , Cricetinae
17.
PLoS Pathog ; 20(4): e1012140, 2024 Apr.
Article En | MEDLINE | ID: mdl-38598600

The Giardia lamblia virus (GLV) is a non-enveloped icosahedral dsRNA and endosymbiont virus that infects the zoonotic protozoan parasite Giardia duodenalis (syn. G. lamblia, G. intestinalis), which is a pathogen of mammals, including humans. Elucidating the transmission mechanism of GLV is crucial for gaining an in-depth understanding of the virulence of the virus in G. duodenalis. GLV belongs to the family Totiviridae, which infects yeast and protozoa intracellularly; however, it also transmits extracellularly, similar to the phylogenetically, distantly related toti-like viruses that infect multicellular hosts. The GLV capsid structure is extensively involved in the longstanding discussion concerning extracellular transmission in Totiviridae and toti-like viruses. Hence, this study constructed the first high-resolution comparative atomic models of two GLV strains, namely GLV-HP and GLV-CAT, which showed different intracellular localization and virulence phenotypes, using cryogenic electron microscopy single-particle analysis. The atomic models of the GLV capsids presented swapped C-terminal extensions, extra surface loops, and a lack of cap-snatching pockets, similar to those of toti-like viruses. However, their open pores and absence of the extra crown protein resemble those of other yeast and protozoan Totiviridae viruses, demonstrating the essential structures for extracellular cell-to-cell transmission. The structural comparison between GLV-HP and GLV-CAT indicates the first evidence of critical structural motifs for the transmission and virulence of GLV in G. duodenalis.


Giardia lamblia , Giardiavirus , Giardia lamblia/ultrastructure , Giardia lamblia/pathogenicity , Giardiavirus/genetics , Cryoelectron Microscopy , Animals , Capsid/ultrastructure , Capsid/metabolism , Humans , Phylogeny
18.
Eur J Med Chem ; 271: 116402, 2024 May 05.
Article En | MEDLINE | ID: mdl-38636128

Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, the hit compound CDI (IC50 = 2.46 ± 0.33 µM) was identified by screening of an in-house compound library. And then novel potent benzimidazole derivatives were designed and synthesized as core assembly modulators, and their antiviral effects were evaluated in vitro and in vivo biological experiments. The results indicated that compound 26f displayed the most optimized modulator of HBV capsid assembly (IC50 = 0.51 ± 0.20 µM, EC50 = 2.24 ± 0.43 µM, CC50 = 84.29 µM) and high selectivity index. Moreover, treatment with compound 26f for 14 days significantly decreased serum levels of HBV DNA levels in the Hydrodynamic-Injection (HDI) mouse model. Therefore, compound 26f could be considered as a promising candidate drug for further development of novel HBV CAMs with the desired potency and safety.


Antiviral Agents , Benzimidazoles , Hepatitis B virus , Hepatitis B , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Hepatitis B virus/drug effects , Animals , Mice , Humans , Hepatitis B/drug therapy , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Capsid/drug effects , Capsid/metabolism , Microbial Sensitivity Tests , Hep G2 Cells , Drug Development
19.
Biomacromolecules ; 25(5): 2890-2901, 2024 May 13.
Article En | MEDLINE | ID: mdl-38683736

While adeno-associated virus is a leading vector for gene therapy, significant gaps remain in understanding AAV degradation and stability. In this work, we study the degradation of an engineered AAV serotype at physiological pH and ionic strength. Viral particles of varying fractions of encapsulated DNA were incubated between 30 and 60 °C, with changes in molecular weight measured by changes in total light scattering intensity at 90° over time. Mostly full vectors demonstrated a rapid decrease in molecular weight corresponding to the release of capsid DNA, followed by slow aggregation. In contrast, empty vectors demonstrated immediate, rapid colloid-type aggregation. Mixtures of full and empty capsids showed a pronounced decrease in initial aggregation that cannot be explained by a linear superposition of empty and full degradation scattering signatures, indicating interactions between capsids and ejected DNA that influenced aggregation mechanisms. This demonstrates key interactions between AAV capsids and their cargo that influence capsid degradation, aggregation, and DNA release mechanisms in a physiological solution.


Capsid , DNA, Viral , Dependovirus , Dependovirus/genetics , Dependovirus/chemistry , Capsid/chemistry , Capsid/metabolism , Kinetics , DNA, Viral/chemistry , Humans , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Hydrogen-Ion Concentration
20.
Viruses ; 16(4)2024 04 10.
Article En | MEDLINE | ID: mdl-38675928

The higher-order structure (HOS) is a critical quality attribute of recombinant adeno-associated viruses (rAAVs). Evaluating the HOS of the entire rAAV capsid is challenging because of the flexibility and/or less folded nature of the VP1 unique (VP1u) and VP1/VP2 common regions, which are structural features essential for these regions to exert their functions following viral infection. In this study, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used for the structural analysis of full and empty rAAV8 capsids. We obtained 486 peptides representing 85% sequence coverage. Surprisingly, the VP1u region showed rapid deuterium uptake even though this region contains the phospholipase A2 domain composed primarily of α-helices. The comparison of deuterium uptake between full and empty capsids showed significant protection from hydrogen/deuterium exchange in the full capsid at the channel structure of the 5-fold symmetry axis. This corresponds to cryo-electron microscopy studies in which the extended densities were observed only in the full capsid. In addition, deuterium uptake was reduced in the VP1u region of the full capsid, suggesting the folding and/or interaction of this region with the encapsidated genome. This study demonstrated HDX-MS as a powerful method for probing the structure of the entire rAAV capsid.


Capsid Proteins , Capsid , Dependovirus , Dependovirus/chemistry , Dependovirus/genetics , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid/chemistry , Capsid/metabolism , Serogroup , Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Humans , Deuterium/chemistry , Mass Spectrometry , Cryoelectron Microscopy , Models, Molecular
...