Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.774
Filter
1.
Sci Rep ; 14(1): 15260, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38956136

ABSTRACT

KCNQ4 is a voltage-gated K+ channel was reported to distribute over the basolateral surface of type 1 vestibular hair cell and/or inner surface of calyx and heminode of the vestibular nerve connected to the type 1 vestibular hair cells of the inner ear. However, the precise localization of KCNQ4 is still controversial and little is known about the vestibular phenotypes caused by KCNQ4 dysfunction or the specific role of KCNQ4 in the vestibular organs. To investigate the role of KCNQ4 in the vestibular organ, 6-g hypergravity stimulation for 24 h, which represents excessive mechanical stimulation of the sensory epithelium, was applied to p.W277S Kcnq4 transgenic mice. KCNQ4 was detected on the inner surface of calyx of the vestibular afferent in transmission electron microscope images with immunogold labelling. Vestibular function decrease was more severe in the Kcnq4p.W277S/p.W277S mice than in the Kcnq4+/+ and Kcnq4+/p.W277S mice after the stimulation. The vestibular function loss was resulted from the loss of type 1 vestibular hair cells, which was possibly caused by increased depolarization duration. Retigabine, a KCNQ activator, prevented hypergravity-induced vestibular dysfunction and hair cell loss. Patients with KCNQ4 mutations also showed abnormal clinical vestibular function tests. These findings suggest that KCNQ4 plays an essential role in calyx and afferent of type 1 vestibular hair cell preserving vestibular function against excessive mechanical stimulation.


Subject(s)
Hair Cells, Vestibular , KCNQ Potassium Channels , Mice, Transgenic , Animals , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Hair Cells, Vestibular/metabolism , Hair Cells, Vestibular/pathology , Mice , Phenylenediamines/pharmacology , Carbamates/pharmacology , Vestibule, Labyrinth/metabolism , Vestibule, Labyrinth/pathology , Vestibule, Labyrinth/physiopathology
2.
Nat Commun ; 15(1): 5680, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971819

ABSTRACT

Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-ß1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-ß1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Cholesterol , Colorectal Neoplasms , Signal Transduction , Transforming Growth Factor beta1 , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Animals , Cholesterol/metabolism , Mice , Cell Line, Tumor , Transforming Growth Factor beta1/metabolism , Immunologic Memory , Vacuolar Proton-Translocating ATPases/metabolism , Tumor Microenvironment/immunology , Liver X Receptors/metabolism , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Pyrrolidines/pharmacology , Smad3 Protein/metabolism , Mice, Inbred C57BL , Carbamates/pharmacology
3.
J Chem Inf Model ; 64(13): 5140-5150, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973304

ABSTRACT

Beta-N-methylamino-l-alanine (BMAA) is a potential neurotoxic nonprotein amino acid, which can reach the human body through the food chain. When BMAA interacts with bicarbonate in the human body, carbamate adducts are produced, which share a high structural similarity with the neurotransmitter glutamate. It is believed that BMAA and its l-carbamate adducts bind in the glutamate binding site of ionotropic glutamate receptor 2 (GluR2). Chronic exposure to BMAA and its adducts could cause neurological illness such as neurodegenerative diseases. However, the mechanism of BMAA action and its carbamate adducts bound to GluR2 has not yet been elucidated. Here, we investigate the binding modes and the affinity of BMAA and its carbamate adducts to GluR2 in comparison to the natural agonist, glutamate, to understand whether these can act as GluR2 modulators. Initially, we perform molecular dynamics simulations of BMAA and its carbamate adducts bound to GluR2 to examine the stability of the ligands in the S1/S2 ligand-binding core of the receptor. In addition, we utilize alchemical free energy calculations to compute the difference in the free energy of binding of the beta-carbamate adduct of BMAA to GluR2 compared to that of glutamate. Our findings indicate that carbamate adducts of BMAA and glutamate remain stable in the binding site of the GluR2 compared to BMAA. Additionally, alchemical free energy results reveal that glutamate and the beta-carbamate adduct of BMAA have comparable binding affinity to the GluR2. These results provide a rationale that BMAA carbamate adducts may be, in fact, the modulators of GluR2 and not BMAA itself.


Subject(s)
Amino Acids, Diamino , Carbamates , Cyanobacteria Toxins , Receptors, AMPA , Receptors, AMPA/metabolism , Receptors, AMPA/chemistry , Amino Acids, Diamino/chemistry , Amino Acids, Diamino/metabolism , Carbamates/chemistry , Carbamates/metabolism , Molecular Dynamics Simulation , Humans , Binding Sites , Protein Binding , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Ligands
4.
Biosensors (Basel) ; 14(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38920608

ABSTRACT

Agricultural products are vitally important for sustaining life on earth and their production has notably grown over the years worldwide in general and in Brazil particularly. Elevating agricultural practices consequently leads to a proportionate increase in the usage of pesticides that are crucially important for enhanced crop yield and protection. These compounds have been employed excessively in alarming concentrations, causing the contamination of soil, water, and air. Additionally, they pose serious threats to human health. The current study introduces an innovative tool for producing appropriate materials coupled with an electrochemical sensor designed to measure carbendazim levels. The sensor is developed using a molecularly imprinted polymer (MIP) mounted on a glassy carbon electrode. This electrode is equipped with multi-walled carbon nanotubes (MWCNTs) for improved performance. The combined system demonstrates promising potential for accurately quantifying carbendazim. The morphological characteristics of the synthesized materials were investigated using field emission scanning electron microscopy (FESEM) and the Fourier-transform infrared (FTIR) technique. The analytical curve was drawn using the electrochemical method in the range of 2 to 20 ppm while for HPLC 2-12 ppm; the results are presented as the maximum adsorption capacity of the MIP (82.4%) when compared with NIP (41%) using the HPLC method. The analysis conducted using differential pulse voltammetry (DPV) yielded a limit of detection (LOD) of 1.0 ppm and a repeatability of 5.08% (n = 10). The results obtained from the analysis of selectivity demonstrated that the proposed electrochemical sensor is remarkably efficient for the quantitative assessment of carbendazim, even in the presence of another interferent. The sensor was successfully tested for river water samples for carbendazim detection, and recovery rates ranging from 94 to 101% were obtained for HPLC and 94 to 104% for the electrochemical method. The results obtained show that the proposed electrochemical technique is viable for the application and quantitative determination of carbendazim in any medium.


Subject(s)
Benzimidazoles , Carbamates , Electrochemical Techniques , Nanotubes, Carbon , Pesticides , Carbamates/analysis , Benzimidazoles/analysis , Pesticides/analysis , Nanotubes, Carbon/chemistry , Biosensing Techniques , Electrodes , Biomimetic Materials/chemistry , Limit of Detection
5.
Anal Methods ; 16(25): 4093-4103, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38855904

ABSTRACT

The performance of the QuEChERS method in this study, as indicated by a high percentage (>90%) of recovery observations falling within the range of 60-140% and a sample replicate deviation (% RSD) of <20%, for the routine analysis of isoprocarb and carbaryl pesticides, has been evaluated over a 14-month period for the export of Indonesian coffee. Following a seven-day observation of the stability of these pesticides in coffee extract, it was found that the added standard calibration solution remained stable and useable for seven days when stored at 4 °C and -20 °C. This validated method, with high sensitivity (a LOQ of 0.001 mg kg-1 for isoprocarb and carbaryl), has been employed to monitor residues in Indonesian coffee exports to comply with maximum residue limits (MRLs). The samples with higher contamination levels were predominantly from robusta coffee (57.76%), followed by arabica coffee (6.17%). The detection rates for residues decreased by more than 90% in the last two months of the method's application. In the observation of coffee processing, it was found that isoprocarb residues in contaminated samples could be transferred to the processed coffee (roasted and its infusion) to a limited extent, while residues from the carcinogenic carbaryl were not detected due to evaporation. Additionally, chronic dietary risk assessment showed that contaminated samples of robusta and arabica coffees should not be considered a significant public health concern (hazard index HI < 1). However, continuous monitoring of pesticide residues in Indonesian coffee is still recommended, not only to conform to the MRLs of importing countries but also to ensure food trade.


Subject(s)
Carbaryl , Coffee , Pesticide Residues , Tandem Mass Spectrometry , Coffee/chemistry , Pesticide Residues/analysis , Indonesia , Carbaryl/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Food Contamination/analysis , Limit of Detection , Carbamates/analysis
6.
CNS Oncol ; 13(1): 2347824, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38869444

ABSTRACT

This report describes a case of BRAF V600E-mutated colorectal cancer with CNS metastases in which treatment with encorafenib, binimetinib and cetuximab was effective. There is limited information on the ability of encorafenib, binimetinib and cetuximab to enter the CNS.The patient was a 53-year-old man was diagnosed with ascending colon cancer (cT3N3M1c stage IVc). BRAF V600E mutation was confirmed. FOLFOX was started, but CNS metastases soon appeared. Encorafenib, binimetinib and cetuximab were administered and had a favorable effect on the CNS lesions. The patient initially responded well, but his disease progressed 2 months later. Further research is needed to improve management strategies for BRAF V600E-mutated colorectal cancer with CNS metastases.


[Box: see text].


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Carbamates , Cetuximab , Colorectal Neoplasms , Mutation , Proto-Oncogene Proteins B-raf , Sulfonamides , Humans , Cetuximab/therapeutic use , Cetuximab/administration & dosage , Male , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Carbamates/therapeutic use , Sulfonamides/therapeutic use , Benzimidazoles/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/secondary , Central Nervous System Neoplasms/pathology
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124586, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833886

ABSTRACT

Pesticides, including fungicides, are one of the important groups of environmental toxins that affect human and animal health. Studies have shown that these compounds are considered chemical pollutants. Carbendazim is a systemic fungicide. Unfortunately, excessive use of carbendazim has caused environmental pollution all over the world. In this study, the effect of carbendazim on the enzyme elastase (secreted from the endocrine gland of the pancreas) has been investigated. In a study, the performance and reaction of carbendazim with elastase were investigated using spectroscopic techniques. The stability and structure of elastase enzymes were studied under the influence of carbendazim. The results of fluorescence emission and UV-visible absorption spectrum showed that in the presence of carbendazim, there is an increase in UV-Vis absorption and a decrease in the intensity of the intrinsic fluorescence emission in the protein spectrum. Additionally, a decrease in the thermal stability of elastase was observed in the presence of carbendazim. The stability and structure of elastase enzyme were investigated in the presence of carbendazim. The results revealed that the UV-Vis absorption increased due to the presence of carbendazim, as indicated by the hyperchromic spectrum at 220 and 280 nm peaks. Additionally, the intrinsic fluorescence emission in the protein spectrum decreased with increasing carbendazim concentration at three different temperatures (298, 303, and 313 K). Moreover, the study demonstrated that the TM decreased from 2.59 to 4.58 with the increase of carbendazim, suggesting a decrease in the stability of the elastase structure in response to the elevated carbendazim concentration. According to the results of the research, the interaction between elastase and carbendazim has occurred, and changes have been made in the enzyme under the influence of carbendazim. The formation of the complex between elastase and carbendazim was consistent with the results obtained from molecular simulation and confirmed the thermodynamic data.


Subject(s)
Benzimidazoles , Carbamates , Pancreatic Elastase , Spectrometry, Fluorescence , Carbamates/chemistry , Carbamates/metabolism , Benzimidazoles/chemistry , Pancreatic Elastase/metabolism , Molecular Docking Simulation , Spectrophotometry, Ultraviolet , Animals , Thermodynamics , Enzyme Stability/drug effects , Protein Binding , Computer Simulation , Humans , Fungicides, Industrial/chemistry
8.
Pak J Pharm Sci ; 37(2(Special)): 417-421, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822544

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with a rising global prevalence. The primary objective of this study was to explore the relationship between the GRK5 variant (rs10886471) and the therapeutic effect of repaglinide in patients of T2DM in Peshawar, Pakistan. A quasi-experimental study was designed. The study group consisted of patients with Type 2 Diabetes Mellitus (T2DM) categorized into responders and non-responders based on their HbA1c level reduction in response to repaglinide treatment. After ethical approval, and consent from the participants, sociodemographic and clinical data was collected from 60 T2DM patients. Blood samples were collected followed by DNA extraction and quantification with UV-Vis Spectroscopy. Genotyping for the GRK5 variant rs10886471 was done using the PCR-based method. Among socio-demographic factors family history and BMI showed significant association (P<0.05) with the therapeutic response to repaglinide. The Statistical analyses, including chi-square tests and logistic regression of GRK5 variant rs10886471 exhibited a significant association with the therapeutic response. Variant allele exhibited significant association (OR: 1.2, p=0.049) with the therapeutic response to repaglinide. The study demonstrated a significant relationship between the GRK5 variant (rs10886471) and the therapeutic response to repaglinide in patients of T2DM of Peshawar, Pakistan.


Subject(s)
Carbamates , Diabetes Mellitus, Type 2 , G-Protein-Coupled Receptor Kinase 5 , Hypoglycemic Agents , Piperidines , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Male , Female , Pakistan , Hypoglycemic Agents/therapeutic use , Middle Aged , G-Protein-Coupled Receptor Kinase 5/genetics , Carbamates/therapeutic use , Piperidines/therapeutic use , Adult , Glycated Hemoglobin/metabolism , Treatment Outcome , Aged
9.
Gan To Kagaku Ryoho ; 51(5): 557-559, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38881068

ABSTRACT

A Japanese woman in her early 70's presented to our hospital with abdominal pain and nausea. Abdominal computed tomography showed irregular wall thickening of the ileocecal region and small intestine dilatation. Colonoscopy revealed a tumor lesion at the ileocecal valve and adenocarcinoma was detected in the biopsy specimen. Accordingly, the diagnosis was cecal cancer and bowel obstruction. Right hemicolectomy was performed as palliative surgery, and laparotomy findings revealed peritoneal dissemination. The final staging was pT4a, pN2b, pM1c, pStage Ⅳc, harboring a BRAFV600E mutation. Rapid postoperative tumor progression occurred, leading to multiple liver metastases and ascites. Encorafenib, binimetinib, and cetuximab triple therapy was started as a second line regimen. The therapy was extremely effective. CA19-9 level decreased to within normal range, and the liver tumor size was visibly diminished. After receiving treatment for 2 months in outpatient care, she had to discontinue the treatment due to carcinomatous peritonitis. Unfortunately, she died 6 months after initial diagnosis. BRAF-mutated colon cancer is associated with poor prognosis. In Japan, encorafenib, binimetinib, and cetuximab triple therapy is a new BRAF targeting regimen approved in 2020. We report this clinical course in hopes of eventually achieving better outcomes for patients with this aggressive disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Carbamates , Cecal Neoplasms , Cetuximab , Mutation , Proto-Oncogene Proteins B-raf , Sulfonamides , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carbamates/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Cetuximab/administration & dosage , Female , Sulfonamides/administration & dosage , Benzimidazoles/administration & dosage , Aged , Cecal Neoplasms/drug therapy , Cecal Neoplasms/pathology , Cecal Neoplasms/genetics , Cecal Neoplasms/surgery , Fatal Outcome
10.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893461

ABSTRACT

Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.


Subject(s)
Carbamates , Imidazoles , Trichomonas vaginalis , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/genetics , Trichomonas vaginalis/growth & development , Imidazoles/pharmacology , Imidazoles/chemistry , Humans , Carbamates/pharmacology , Carbamates/chemistry , Metronidazole/pharmacology , Metronidazole/chemistry , Gene Expression Regulation/drug effects , Trophozoites/drug effects
11.
Nat Commun ; 15(1): 4844, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844466

ABSTRACT

Farmers from South Asian countries spray insecticides without protective gear, which leads to insecticide exposure through dermal and nasal routes. Acetylcholinesterase plays a crucial role in controlling neuromuscular function. Organophosphate and carbamate insecticides inhibit acetylcholinesterase, which leads to severe neuronal/cognitive dysfunction, breathing disorders, loss of endurance, and death. To address this issue, an Oxime-fabric is developed by covalently attaching silyl-pralidoxime to the cellulose of the fabric. The Oxime-fabric, when stitched as a bodysuit and facemask, efficiently deactivates insecticides (organophosphates and carbamates) upon contact, preventing exposure. The Oxime-fabric prevents insecticide-induced neuronal damage, neuro-muscular dysfunction, and loss of endurance. Furthermore, we observe a 100% survival rate in rats when repeatedly exposed to organophosphate-insecticide through the Oxime-fabric, while no survival is seen when organophosphate-insecticide applied directly or through normal fabric. The Oxime-fabric is washable and reusable for at least 50 cycles, providing an affordable solution to prevent insecticide-induced toxicity and lethality among farmers.


Subject(s)
Insecticides , Oximes , Animals , Insecticides/toxicity , Rats , Oximes/administration & dosage , Oximes/pharmacology , Male , Pralidoxime Compounds/pharmacology , Pralidoxime Compounds/administration & dosage , Textiles , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/toxicity , Acetylcholinesterase/metabolism , Occupational Exposure/prevention & control , Occupational Exposure/adverse effects , Carbamates/pharmacology , Carbamates/administration & dosage , Organophosphates/toxicity , Administration, Intranasal
12.
Sci Rep ; 14(1): 13064, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844596

ABSTRACT

This study aimed to investigate carbamate pesticide residues in different varieties of date palm fruits in the UAE, utilizing UHPLC-MS/MS. For sample preparation and clean-up, the efficiency and performance of different QuEChERS dispersive solid-phase extraction kits were compared. Precision and recovery were assessed at 10 µg kg-1 for the three kits, revealing that Kit 2 demonstrated the best performance. The selected QuEChERS method was validated to detect 14 carbamate residues in 55 date samples. The method exhibited strong linearity with R2 > 0.999 and low LOD (0.01-0.005 µg kg-1) and LOQ (0.003-0.04 µg kg-1). Excellent accuracy (recovery: 88-106%) and precision (RSD: 1-11%) were observed, with negligible matrix effect (- 4.98-13.26%). All samples contained at least one carbamate residue. While most detected residues were below their MRLs, carbosulfan was found in 21 samples, propoxur in 2 samples, and carbofuran in 1 sample above their MRLs. The hazard index (HI) was calculated for carbosulfan, phenmedipham, carbaryl, propoxur, carbofuran, and methomyl to assess potential health risks for date consumers. All HI values were below the safety limit of 1.0, indicating that the consumption of dates does not pose a non-carcinogenic health risk for adults and children.


Subject(s)
Carbamates , Fruit , Pesticide Residues , Phoeniceae , Tandem Mass Spectrometry , Phoeniceae/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Carbamates/analysis , Fruit/chemistry , Humans , Risk Assessment , Solid Phase Extraction/methods , Food Contamination/analysis
13.
J Nanobiotechnology ; 22(1): 349, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902761

ABSTRACT

Repeated and widespread use of single chemical pesticides raises concerns about efficiency and safety, developing multi-component synergistic pesticides provides a new route for efficient control of diseases. Most commercial compound formulations are open systems with non-adjustable released rates, resulting in a high frequency of applications. Meanwhile, although nano pesticide delivery systems constructed with different carrier materials have been extensively studied, realizing their actual scale-up production still has important practical significance due to the large-scale field application. In this study, a boscalid and pyraclostrobin dual-loaded nano pesticide system (BPDN) was constructed with industrial-grade carrier materials to facilitate the realization of large-scale production. The optimal industrial-scale preparation mechanism of BPDN was studied with surfactants as key factors. When agricultural emulsifier No.600 and polycarboxylate are used as the ratio of 1:2 in the preparation process, the BPDN has a spherical structure with an average size of 270 nm and exhibits superior physical stability. Compared with commercial formulation, BPDN maintains rate-stabilized release up to 5 times longer, exhibits better dispersion and spreading performance on foliar, has more than 20% higher deposition amounts, and reduces loss. A single application of BPDN could efficiently control tomato gray mold during the growing period of tomatoes due to extended duration and combinatory effectiveness, reducing two application times and labor costs. Toxicology tests on various objects systematically demonstrated that BPDN has improved safety for HepG2 cells, and nontarget organism earthworms. This research provides insight into creating safe, efficient, and environmentally friendly pesticide production to reduce manual operation times and labor costs. Accompanied by production strategies that can be easily scaled up industrially, this contributes to the efficient use of resources for sustainable agriculture.


Subject(s)
Pesticides , Strobilurins , Pesticides/chemistry , Humans , Drug Carriers/chemistry , Animals , Carbamates/chemistry , Surface-Active Agents/chemistry , Nanoparticles/chemistry , Particle Size , Solanum lycopersicum , Biphenyl Compounds , Niacinamide/analogs & derivatives
14.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38839106

ABSTRACT

Targeted therapies against mutant BRAF are effectively used in combination with MEK inhibitors (MEKi) to treat advanced melanoma. However, treatment success is affected by resistance and adverse events (AEs). Approved BRAF inhibitors (BRAFi) show high levels of target promiscuity, which can contribute to these effects. The blood vessel lining is in direct contact with high plasma concentrations of BRAFi, but effects of the inhibitors in this cell type are unknown. Hence, we aimed to characterize responses to approved BRAFi for melanoma in the vascular endothelium. We showed that clinically approved BRAFi induced a paradoxical activation of endothelial MAPK signaling. Moreover, phosphoproteomics revealed distinct sets of off-targets per inhibitor. Endothelial barrier function and junction integrity were impaired upon treatment with vemurafenib and the next-generation dimerization inhibitor PLX8394, but not with dabrafenib or encorafenib. Together, these findings provide insights into the surprisingly distinct side effects of BRAFi on endothelial signaling and functionality. Better understanding of off-target effects could help to identify molecular mechanisms behind AEs and guide the continued development of therapies for BRAF-mutant melanoma.


Subject(s)
Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Signal Transduction , Vemurafenib , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Melanoma/drug therapy , Melanoma/metabolism , Signal Transduction/drug effects , Vemurafenib/pharmacology , Oximes/pharmacology , Sulfonamides/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Imidazoles/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , MAP Kinase Signaling System/drug effects , Carbamates/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cell Line, Tumor , Mutation
15.
Anal Chem ; 96(24): 9885-9893, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38848670

ABSTRACT

Glutathione (GSH) redox control and arginine metabolism are critical in regulating the physiological response to injury and oxidative stress. Quantification assessment of the GSH/arginine redox metabolism supports monitoring metabolic pathway shifts during pathological processes and their linkages to redox regulation. However, assessing the redox status of organisms with complex matrices is challenging, and single redox molecule analysis may not be accurate for interrogating the redox status in cells and in vivo. Herein, guided by a paired derivatization strategy, we present a new ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based approach for the functional assessment of biological redox status. Two structurally analogous probes, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and newly synthesized 2-methyl-6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (MeAQC), were set for paired derivatization. The developed approach was successfully applied to LPS-stimulated RAW 264.7 cells and HDM-induced asthma mice to obtain quantitative information on GSH/arginine redox metabolism. The results suggest that the redox status was remarkably altered upon LPS and HDM stimulation. We expect that this approach will be of good use in a clinical biomarker assay and potential drug screening associated with redox metabolism, oxidative damage, and redox signaling.


Subject(s)
Arginine , Glutathione , Oxidation-Reduction , Tandem Mass Spectrometry , Animals , Arginine/metabolism , Arginine/analysis , Arginine/chemistry , Glutathione/metabolism , Glutathione/analysis , Mice , Tandem Mass Spectrometry/methods , RAW 264.7 Cells , Carbamates/metabolism , Carbamates/chemistry , Chromatography, High Pressure Liquid , Lipopolysaccharides/pharmacology , Aminoquinolines/chemistry
16.
Pestic Biochem Physiol ; 202: 105957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879339

ABSTRACT

Sitobion miscanthi is a destructive wheat pest responsible for significant wheat yield losses. Pirimicarb, one of the most important representatives of N, N-dimethylcarbamate insecticides, is widely used to control wheat aphids. In present work, heterozygous S431F mutation of acetylcholinesterase 1 (AChE1) was identified and verified in three pirimicarb-resistant S. miscanthi populations (two field populations (HA and HS, >955.8-fold) and one lab-selected population (PirR, 486.1-fold)), which has not been reported in S. miscanthi yet. The molecular docking results revealed that AChE1 containing the S431F mutation of S. miscanthi (SmAChE1S431F) showed higher free binding energy to three insecticides (pirimicarb, omethoate, and methomyl) than wild-type AChE1 of S. miscanthi (SmAChE1). Enzyme kinetic and inhibition experiments showed that the recombinant SmAChE1S431F was more insensitive to pirimicarb and omethoate than the recombinant SmAChE1. Furthermore, two overexpression P450 genes (CYP6K1 and CYP6A14) associated with pirimicarb resistance of S. miscanthi were verified by RNAi. These results suggested both target alteration and enhanced metabolism contributed to high pirimicarb resistance of S. miscanthi in the field and laboratory. These findings lay a foundation for further elucidating the mechanism of pirimicarb resistance in S. miscanthi, and have important implications for the resistance management of S. miscanthi control.


Subject(s)
Acetylcholinesterase , Aphids , Carbamates , Cytochrome P-450 Enzyme System , Insecticide Resistance , Insecticides , Mutation , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Animals , Insecticide Resistance/genetics , Aphids/genetics , Aphids/drug effects , Insecticides/pharmacology , Carbamates/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Pyrimidines/pharmacology , Molecular Docking Simulation , Triticum/genetics , Dimethoate/analogs & derivatives
17.
Lancet Microbe ; 5(7): 697-706, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889738

ABSTRACT

BACKGROUND: 10 million people are chronically infected with the hepatitis C virus (HCV) in sub-Saharan Africa. The assessment of viral genotypes and treatment response in this region is necessary to achieve the WHO target of worldwide elimination of viral hepatitis by 2030. We aimed to investigate the prevalence of HCV genotypes and outcomes of treatment with direct-acting antiviral agents in Benin, a country with a national HCV seroprevalence of 4%. METHODS: This prospective cohort study was conducted at two referral hospitals in Benin. Individuals were eligible for inclusion if they were seropositive for HCV and willing to consent to participation in the study; exclusion criteria were an inability to give consent or incarceration. Viraemia was confirmed by PCR. The primary outcomes were to identify HCV genotypes and measure sustained virological response rates 12 weeks after completion of treatment (SVR12) with a 12-week course of sofosbuvir-velpatasvir or sofosbuvir-ledipasvir, with or without ribavirin. We conducted phylogenetic and resistance analyses after the next-generation sequencing of samples with a cycle threshold (Ct) value of 30 or fewer cycles. The in-vitro efficacy of NS5A inhibitors was tested using a subgenomic replicon assay. FINDINGS: Between June 2, 2019, and Dec 30, 2020, 148 individuals were screened for eligibility, of whom 100 were recruited prospectively to the study. Plasma samples from 79 (79%) of the 100 participants were positive for HCV by PCR. At the time of the study, 52 (66%) of 79 patients had completed treatment, with an SVR12 rate of 94% (49 of 52). 57 (72%) of 79 samples had a Ct value of 30 or fewer cycles and were suitable for whole-genome sequencing, from which we characterised 29 (51%) samples as genotype 1 and 28 (49%) as genotype 2. Three new genotype 1 subtypes (1q, 1r, and 1s) and one new genotype 2 subtype (2xa) were identified. The most commonly detected subtype was 2d (12 [21%] of 57 samples), followed by 1s (eight [14%]), 1r (five [9%]), 1b (four [7%]), 1q (three [5%]), 2xa (three [5%]), and 2b (two [3%]). 20 samples (11 genotype 2 and nine genotype 1) were unassigned new singleton lineages. 53 (93%) of 57 sequenced samples had at least two resistance-associated substitutions within the NS5A gene. Subtype 2d was associated with a lower-than-expected SVR12 rate (eight [80%] of ten patients). For one patient, with subtype 2b, treatment was not successful. INTERPRETATION: This study revealed a high SVR rate in Benin among individuals treated for HCV with sofosbuvir-velpatasvir, including those with highly diverse viral genotypes. Further studies of treatment effectiveness in genotypes 2d and 2b are indicated. FUNDING: Medical Research Council, Wellcome, Global Challenges Research Fund, Academy of Medical Sciences, and PHARMBIOTRAC.


Subject(s)
Antiviral Agents , Genotype , Hepacivirus , Phylogeny , Sofosbuvir , Humans , Hepacivirus/genetics , Hepacivirus/drug effects , Benin/epidemiology , Prospective Studies , Antiviral Agents/therapeutic use , Male , Female , Middle Aged , Adult , Sofosbuvir/therapeutic use , Treatment Outcome , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Hepatitis C, Chronic/epidemiology , Sustained Virologic Response , Ribavirin/therapeutic use , Drug Resistance, Viral/genetics , Carbamates/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Fluorenes/therapeutic use , Prevalence , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Hepatitis C/virology , Benzimidazoles , Drug Combinations
18.
Biointerphases ; 19(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38934562

ABSTRACT

This study aims to explore the essential functional requirements associated with controlling the proliferation of microbes in the domain of textiles used in public health areas. Herein, three antimicrobial agents, specifically iodopropylbutylcarbamate (IPBC), 1-hydroxypyridine-2-thioketone zinc (ZPT), and 2-octyl-3-isothiazolinone (OIT), were chosen for fabric finishing based on their notable effectiveness, minimal toxicity, cost-efficiency, and chemical stability. Utilizing Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as representative bacterial strains, the Minimum Inhibitory Concentration (MIC50) of individual and combined antimicrobial agents was measured, and their antimicrobial effectiveness was rigorously evaluated. Concurrently, the antimicrobial effectiveness, whiteness, and mechanical durability of the fabric following antimicrobial treatment were thoroughly examined. The results demonstrate that some combinations of the three antimicrobial agents elicit additive effects on both S. aureus and E. coli. Notably, at an equivalent ratio of IPBC, ZPT, and OIT and a total concentration of 0.2 wt. %, the inhibition rates against both bacterial strains surpass 99%. Upon application to nylon fabric, the treated material demonstrates significant antimicrobial properties, with minimal reduction observed in the whiteness and tensile strength of the treated nylon. This study provides practicable strategies relevant to the production of textiles endowed with antimicrobial properties.


Subject(s)
Escherichia coli , Microbial Sensitivity Tests , Staphylococcus aureus , Textiles , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Carbamates/pharmacology , Thiazoles/pharmacology , Thiazoles/chemistry
19.
Recenti Prog Med ; 115(5): 13e-16e, 2024 May.
Article in Italian | MEDLINE | ID: mdl-38708541

ABSTRACT

Paraneoplastic leukemoid reaction (PLR) is an extremely rare condition in patients with melanoma and it is frequently associated with poor prognosis. BRAF gene mutational analysis represents the gold standard in patients with inoperable or metastatic melanoma as the possible presence of target mutations allows the use of the combination treatment with BRAF and MEK inhibitors. In this article, the case of a young woman with BRAF V600E mutated metastatic melanoma associated with PLR who received encorafenib and binimetinib is presented and discussed, with a focus on the relevant treatment response.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Carbamates , Melanoma , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Sulfonamides , Humans , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/administration & dosage , Carbamates/administration & dosage , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mutation , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Sulfonamides/administration & dosage , Treatment Outcome
20.
Epilepsy Behav ; 156: 109798, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788659

ABSTRACT

OBJECTIVE: KCNQ2 gene mutation usually manifests as neonatal seizures in the first week of life. Nonsense mutations cause a unique self-limited familial neonatal epilepsy (SLFNE), which is radically different from developmental epileptic encephalopathy (DEE). However, the exact underlying mechanisms remain unclear. METHODS: The proband, along with their mother and grandmother, carried the c.1342C > T (p.Arg448Ter) mutation in the KCNQ2 gene. The clinical phenotypes, electroencephalography (EEG) findings, and neurodevelopmental outcomes were comprehensively surveyed. The mutant variants were transfected into HEK293 cells to investigate functional changes. RESULTS: The proband exhibited behavior arrests, autonomic and non-motor neonatal seizures with changes in heart rate and respiration. EEG exhibited focal sharp waves. Seizures were remitted after three months of age. The neurodevelopmental outcomes at three years of age were unremarkable. A functional study demonstrated that the currents of p.Arg448Ter were non-functional in homomeric p.Arg448Ter compared with that of the KCNQ2 wild type. However, the current density and V1/2 exhibited significant improvement and close to that of the wild-type after transfection with heteromeric KCNQ2 + p.Arg448Ter and KCNQ2 + KCNQ3 + p.Arg448Ter respectively. Channel expression on the cell membrane was not visible after homomeric transfection, but not after heteromeric transfection. Retigabine did not affect homomeric p.Arg448Ter but improved heteromeric p. Arg448Ter + KCNQ2 and heteromeric KCNQ2 + Arg448Ter + KCNQ3. CONCLUSIONS: The newborn carrying the p. Arg448Ter mutation presented frequent behavioral arrests, autonomic, and non-motor neonatal seizures. This unique pattern differs from KCNQ2 seizures, which typically manifest as motor seizures. Although p.Arg448Ter is a non-sense decay, the functional study demonstrated an almost-full compensation mechanism after transfection of heteromeric KCNQ2 and KCNQ3.


Subject(s)
Electroencephalography , KCNQ2 Potassium Channel , Mutation , Humans , KCNQ2 Potassium Channel/genetics , HEK293 Cells , Female , Male , Seizures/genetics , Seizures/physiopathology , Infant, Newborn , Phenylenediamines/pharmacology , Carbamates/pharmacology , Epilepsy, Benign Neonatal/genetics , Epilepsy, Benign Neonatal/physiopathology , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...