Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 654
Filter
1.
Braz J Biol ; 84: e277750, 2024.
Article in English | MEDLINE | ID: mdl-38985067

ABSTRACT

The One Health concept recognizes that human health is clearly linked to the health of animals and the environment. Infections caused by bacteria resistant to carbapenem antibiotics have become a major challenge in hospitals due to limited therapeutic options and consequent increase in mortality. In this study, we investigated the presence of carbapenem-resistant Enterobacteriaceae in 84 effluent samples (42 from hospital and 42 from non-hospital) from Campo Grande, midwest Brazil. First, sewage samples were inoculated in a selective culture medium. Bacteria with reduced susceptibility to meropenem and ertapenem were then identified and their antimicrobial susceptibility was determined using the Vitek-2 system. The blaKPC genes were detected using PCR and further confirmed by sequencing. Carbapenem-resistant Enterobacteriaceae (CRE) were identified in both hospital (n=32) and non-hospital effluent (n=16), with the most common being Klebsiella pneumoniae and of the Enterobacter cloacae complex species. This is the first study to indicate the presence of the blaKPC-2 gene in carbapenem-resistant Enterobacteriaceae, classified as a critical priority by the WHO, in hospital sewage in this region. The dissemination of carbapenem antibiotic-resistant genes may be associated with clinical pathogens. Under favorable conditions and microbial loads, resistant bacteria and antimicrobial-resistance genes found in hospital sewage can disseminate into the environment, causing health problems. Therefore, sewage treatment regulations should be implemented to minimize the transfer of antimicrobial resistance from hospitals.


Subject(s)
Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Drug Resistance, Multiple, Bacterial , Hospitals , Microbial Sensitivity Tests , Sewage , Sewage/microbiology , Brazil , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Polymerase Chain Reaction , Bacterial Proteins/genetics , Humans
2.
Emerg Microbes Infect ; 13(1): 2366354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979571

ABSTRACT

In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Polymyxin B , RNA, Small Untranslated , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Small Untranslated/genetics , Microbial Sensitivity Tests , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , RNA, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1041-1047, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034789

ABSTRACT

To examine the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) and investigate the horizontal transmission of blaKPC and blaNDM genes for the prevention and treatment of CRKP. A total of 49 clinically isolated CRKP strains were retrospectively analyzed from January to December 2022 at The First Hospital of Hunan University of Chinese Medicine. Phenotypic screening was performed using modified carbapenem inactivation assay (mCIM) and EDTA-carbapenem inactivation assay (eCIM). Polymerase chain reaction (PCR) was utilized to identify carbapenem resistance genes, ß-lactamase resistance genes, and virulence genes, while multi-locus sequence analysis (MLST) was employed to assess the homology of CRKP strains. Conjugation experiments were conducted to infer the horizontal transmission mechanism of blaKPC and blaNDM genes. The results showed that the study included 49 CRKP strains, with 44 carrying blaKPC and 8 carrying blaNDM, Three strains were identified as blaKPC+blaNDM-CRKP. In this study, 28 out of 49 CRKP strains (57.2%) were found to carry virulence genes. Additionally, one CRKP strain tested positive in the string test and was found to carry both Aerobactin and rmpA virulence genes. MLST results revealed a total of 5 ST types, with ST11 being predominant (41/49, 83.7%). Successful conjugation was observed in all 3 blaKPC-CRKP strains, while only 1 out of 3 blaNDM-CRKP strains showed successful conjugation. The transconjugant exhibited significantly reduced susceptibility to imipenem and cephalosporin antibiotics. In conclusion, the resistance mechanism of CRKP in this study is primarily attributed to the production of KPC enzymes, along with the presence of multiple ß-lactamase resistance genes. Additionally, there is a local prevalence of hv-CRKP and blaKPC+blaNDM-CRKP. blaKPC and blaNDM can be horizontally transmitted through plasmids, with varying efficiency among different strains.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Molecular Epidemiology , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Carbapenems/pharmacology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , beta-Lactamases/genetics , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , China/epidemiology , Multilocus Sequence Typing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Hospitals
4.
Sci Rep ; 14(1): 16836, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039157

ABSTRACT

The surge in mobile colistin-resistant genes (mcr) has become an increasing public health concern, especially in carbapenem-resistant Enterobacterales (CRE). Prospective surveillance was conducted to explore the genomic characteristics of clinical CRE isolates harbouring mcr in 2015-2020. In this study, we aimed to examine the genomic characteristics and phonotypes of mcr-8 and mcr-9 harbouring carbapenem-resistant K. pneumoniae complex (CRKpnC). Polymerase chain reaction test and genome analysis identified CRKpnC strain AMR20201034 as K. pneumoniae (CRKP) ST147 and strain AMR20200784 as K. quasipneumoniae (CRKQ) ST476, harbouring mcr-8 and mcr-9, respectively. CRKQ exhibited substitutions in chromosomal-mediated colistin resistance genes (pmrB, pmrC, ramA, and lpxM), while CRKP showed two substitutions in crrB, pmrB, pmrC, lpxM and lapB. Both species showed resistance to colistin, with minimal inhibitory concentrations of 8 µg/ml for mcr-8-carrying CRKP isolate and 32 µg/ml for mcr-9-carrying CRKQ isolate. In addition, CRKP harbouring mcr-8 carried blaNDM, while CRKQ harbouring mcr-9 carried blaIMP, conferring carbapenem resistance. Analysis of plasmid replicon types carrying mcr-8 and mcr-9 showed FIA-FII (96,575 bp) and FIB-HI1B (287,118 bp), respectively. In contrast with the plasmid carrying the carbapenemase genes, the CRKQ carried blaIMP-14 on an IncC plasmid, while the CRKP harboured blaNDM-1 on an FIB plasmid. This finding provides a comprehensive insight into another mcr-carrying CRE from patients in Thailand. The other antimicrobial-resistant genes in the CRKP were blaCTX-M-15, blaSHV-11, blaOXA-1, aac(6')-Ib-cr, aph(3')-VI, ARR-3, qnrS1, oqxA, oqxB, sul1, catB3, fosA, and qacE, while those detected in CRKQ were blaOKP-B-15, qnrA1, oqxA, oqxB, sul1, fosA, and qacE. This observation highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harbouring CRE and the need for rational drug use in all sectors.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Colistin , Klebsiella pneumoniae , Microbial Sensitivity Tests , Colistin/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Thailand , Bacterial Proteins/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Male , Plasmids/genetics , Female , Genomics/methods , Drug Resistance, Bacterial/genetics , Middle Aged , Adult , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Aged , Genome, Bacterial , Klebsiella
5.
Front Cell Infect Microbiol ; 14: 1407246, 2024.
Article in English | MEDLINE | ID: mdl-38962322

ABSTRACT

Introduction: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Escherichia coli , Klebsiella pneumoniae , Whole Genome Sequencing , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Humans , Lebanon , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Gene Transfer, Horizontal , Genome, Bacterial , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tertiary Care Centers
6.
Sci Rep ; 14(1): 16333, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009596

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) have diminished treatment options causing serious morbidities and mortalities. This systematic review and meta-analysis assessed the prevalence and associated factors of Enterobacteriaceae infections in clinical, livestock and environmental settings globally. The population intervention comparison and outcome strategy was used to enroll studies using the preferred reporting system for systematic review and meta-analysis to include only cross-sectional studies. Search engines used to retrieve articles included journal author name estimator, PubMed, Google Scholar and African Journals Online (AJOL). The Newcastle-Ottawa scale was used to assess the quality of studies. Sixteen articles from 2013 to 2023 in Africa, Asia, Europe and South America were studied. The pooled prevalence of CRE was 43.06% (95% CI 21.57-66.03). Klebsiella pneumoniae (49.40%), Escherichia coli (26.42%), and Enterobacter cloacae (14.24%) were predominant. Klebsiella pneumoniae had the highest resistance with the blaKPC-2 in addition to blaNDM, blaOXA-48, blaIMP and blaVIM. The blaKPC-2 genes occurrence was associated with environmental (P-value < 0.0001) and South American studies (P-value < 0.0001), but there was no difference in the trends over time (P-value = 0.745). This study highlights the high rates of CRE infections, particularly within blaKPC production. Monitoring and surveillance programs, research and infection control measures should be strengthened. Additionally, further studies are needed to explore the mechanisms driving the predominance of specific bacterial species and the distribution of resistance genes within this bacterial family.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Livestock , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Animals , Livestock/microbiology , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Prevalence , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use
7.
J Infect ; 89(2): 106216, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964511

ABSTRACT

OBJECTIVES: We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS: We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS: Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION: FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.


Subject(s)
Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Humans , Male , Female , Middle Aged , Prospective Studies , Adult , Feces/microbiology , Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/therapy , Enterobacteriaceae Infections/microbiology , beta-Lactamases/genetics , Carrier State/microbiology , Carrier State/therapy , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Biodiversity
8.
J Clin Lab Anal ; 38(10): e25081, 2024 May.
Article in English | MEDLINE | ID: mdl-38884333

ABSTRACT

BACKGROUND: The global spread of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) poses a significant concern. Acquisition of antimicrobial resistance genes leads to resistance against several antibiotics, limiting treatment options. We aimed to study ESBL-producing and CRE transmission in clinical settings. METHODS: From clinical samples, 227 ESBL-producing and CRE isolates were obtained. The isolates were cultured on bacterial media and confirmed by VITEK 2. Antibiograms were tested against several antibiotics using VITEK 2. The acquired resistance genes were identified by PCR. RESULTS: Of the 227 clinical isolates, 145 (63.8%) were Klebsiella pneumoniae and 82 (36.1%) were Escherichia coli; 76 (33.4%) isolates were detected in urine, 57 (25.1%) in pus swabs, and 53 (23.3%) in blood samples. A total of 58 (70.7%) ESBL-producing E. coli were resistant to beta-lactams, except for carbapenems, and 17.2% were amikacin-resistant; 29.2% of E. coli isolates were resistant to carbapenems. A total of 106 (73.1%) ESBL-producing K. pneumoniae were resistant to all beta-lactams, except for carbapenems, and 66.9% to ciprofloxacin; 38 (26.2%) K. pneumoniae were resistant to carbapenems. Colistin emerged as the most effective antibiotic against both bacterial types. Twelve (20.6%) E. coli isolates were positive for blaCTX-M, 11 (18.9%) for blaTEM, and 8 (33.3%) for blaNDM. Forty-six (52.3%) K. pneumoniae isolates had blaCTX-M, 27 (18.6%) blaTEM, and 26 (68.4%) blaNDM. CONCLUSION: This study found a high prevalence of drug-resistant ESBL-producing and CRE, highlighting the need for targeted antibiotic use to combat resistance.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Humans , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/isolation & purification , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Female , Male , Middle Aged , Adult , Aged , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Adolescent , Young Adult , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Child , Child, Preschool , Drug Resistance, Bacterial/genetics
9.
BMC Microbiol ; 24(1): 230, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943054

ABSTRACT

BACKGROUND: Carbapenemase-producing Klebsiella pneumoniae (CRKP) presents a significant challenge to antimicrobial therapy, especially when compounded by resistance to colistin. The objective of this study was to explore molecular epidemiological insights into strains of clinical K. pneumoniae that produce carbapenemases and exhibit resistance to colistin. Eighty clinical isolates of CRKP were obtained from Milad Hospital in Tehran, Iran. Antimicrobial susceptibility and colistin broth disk elution were determined. PCR assays were conducted to examine the prevalence of resistance-associated genes, including blaKPC, blaIMP, blaVIM, blaOXA-48, blaNDM and mcr-1 to -10. Molecular typing (PFGE) was used to assess their spread. RESULTS: Colistin resistance was observed in 27 isolates (33.7%) using the Broth Disk Elution method. Among positive isolates for carbapenemase genes, the most frequent gene was blaOXA-48, identified in 36 strains (45%). The mcr-1 gene was detected in 3.7% of the obtained isolates, with none of the other of the other mcr genes detected in the studied isolates. CONCLUSION: To stop the spread of resistant K. pneumoniae and prevent the evolution of mcr genes, it is imperative to enhance surveillance, adhere rigorously to infection prevention protocols, and implement antibiotic stewardship practices.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Colistin , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tertiary Care Centers , beta-Lactamases , Colistin/pharmacology , Iran/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Tertiary Care Centers/statistics & numerical data , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Carbapenems/pharmacology , Drug Resistance, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Molecular Epidemiology
10.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38849309

ABSTRACT

AIMS: To investigate alternative resistance mechanisms among seven ceftazidime-avibactam (CZA)-resistant carbapenem-resistant Klebsiella pneumoniae (CRKP) strains lacking common antimicrobial resistance genes (ARGs) using whole genome sequencing. METHODS AND RESULTS: ARG and virulence factors (VFs) were screened using the ARG database CARD and the VF database, respectively, and identified using genomic annotation data with BLAST+. Six strains were ST11 sequence types (STs), and one was ST2123. ST11 strains harbored more ARGs than the ST2123 strains. All seven strains carried multiple ARGs with efflux-mediated antibiotic resistance, including oqxA, oqxB, tet (A), qacEdltal, CRP, H-NS, Kpn-E, F, G, H, acrA, LptD, acrB, acrD, cpxA, mdtB, and mdtC. These efflux-mediated ARGs were identified in most strains and even all strains. Whole genome sequencing revealed that the ST11 strain carried multiple potential prophages, genomic islands, and integrative and conjugative elements, while the ST2123 strain carried an independent potential prophages and a genomic island. CONCLUSIONS: Whole genome sequencing analysis revealed that these seven CZA-resistant CRKP strains lacking common ARGs exhibited efflux-mediated antibiotic resistance-associated ARGs. The main mechanism by which CRKP resists CZA is antibiotic inactivation. Except for tet (A), no ARGs and validation experiments related to efflux were found. This study's results provide a new possibility for the resistance mechanism of CRKP to CZA, and we will verify this conclusion through experiments in the future.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Klebsiella pneumoniae , Microbial Sensitivity Tests , Whole Genome Sequencing , Ceftazidime/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Klebsiella Infections/microbiology , Carbapenems/pharmacology , Virulence Factors/genetics
11.
Nat Commun ; 15(1): 5092, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877000

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) are of particular concern due to the spread of antibiotic resistance genes associated with mobile genetic elements. In this study, we collected 687 carbapenem-resistant strains recovered among clinical samples from 41 hospitals in nine Southern European countries (2016-2018). We identified 11 major clonal lineages, with most isolates belonging to the high-risk clones ST258/512, ST101, ST11, and ST307. blaKPC-like was the most prevalent carbapenemase-encoding gene (46%), with blaOXA-48 present in 39% of isolates. Through the combination and comparison of this EURECA collection with the previous EuSCAPE collection (2013-2014), we investigated the spread of high-risk clones circulating in Europe exhibiting regional differences. We particularly found blaKPC-like ST258/512 in Greece, Italy, and Spain, blaOXA-48 ST101 in Serbia and Romania, blaNDM ST11 in Greece, and blaOXA-48-like ST14 in Türkiye. Genomic surveillance across Europe thus provides crucial insights for local risk mapping and informs necessary adaptions for implementation of control strategies.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Europe/epidemiology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Carbapenems/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Microbial Sensitivity Tests , Multilocus Sequence Typing
12.
Med Sci Monit ; 30: e943596, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831571

ABSTRACT

BACKGROUND In China, the most prevalent type of CRKP is ST11, but the high-risk clone ST15 has grown in popularity in recent years, posing a serious public health risk. Therefore, we investigated the molecular prevalence characteristics of ST15 CRKP detected in a tertiary hospital in Ningbo to understand the current potential regional risk of ST15 CRKP outbreak. MATERIAL AND METHODS We collected and evaluated 18 non-duplicated CRKP strains of ST15 type for antibiotic resistance. Their integrons, virulence genes, and resistance genes were identified using polymerase chain reaction (PCR), and their homology was determined using MALDI-TOF MS. RESULTS The predominant serotype of 18 ST15 CRKP strains was K5. ST15 CRKP exhibited the lowest antimicrobial resistance to Cefoperazone/sulbactam (11.1%), followed by trimethoprim/sulfamethoxazole (22.2%). Resistance gene testing revealed that 14 out of 18 ST15 CRKP strains (77.8%) carried Klebsiella pneumoniae carbapenemase 2 (KPC-2), whereas all ST15 CRKP integrons were of the intI1 type. Furthermore, virulence gene testing revealed that all 18 ST15 CRKP strains carried ybtS, kfu, irp-1, and fyuA genes, followed by the irp-2 gene (17 strains) and entB (16 strains). The homology analysis report showed that 2 clusters had closer affinity, which was mainly concentrated in classes C and D. CONCLUSIONS The ST15 CRKP antibiotic resistance rates demonstrate clear geographical differences in Ningbo. Additionally, some strains carried highly virulent genes, indicating a possible evolution towards carbapenem-resistant highly virulent strains. To reduce the spread of ST15 CRKP, we must rationalize the clinical use of antibiotics and strengthen resistance monitoring to control nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tertiary Care Centers , China/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Prevalence , Integrons/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects
13.
Ann Clin Microbiol Antimicrob ; 23(1): 53, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886796

ABSTRACT

BACKGROUND: The global dissemination of critical-priority carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) via food sources represents a significant public health concern. Epidemiological data on CR-hvKp in oysters in Egypt is limited. This study aimed to investigate the potential role of oysters sold in Egypt as a source for carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKp), and CR-hvKp and assess associated zoonotic risks. METHODS: A sample of 330 fresh oysters was randomly purchased from various retail fish markets in Egypt and divided into 33 pools. Bacteriological examination and the identification of Klebsiella pneumoniae were performed. Carbapenem resistance in K. pneumoniae isolates was determined by phenotypic and molecular methods. Additionally, the presence of hypervirulent K. pneumoniae was identified based on virulence gene markers (peg-344, rmpA, rmpA2, iucA, and iroB), followed by a string test. The clustering of CR-hvKp strains was carried out using R with the pheatmap package. RESULTS: The overall prevalence of K. pneumoniae was 48.5% (16 out of 33), with 13 isolates displaying carbapenem resistance, one intermediate resistance, and two sensitive. Both carbapenem-resistant K. pneumoniae and carbapenem-intermediate-resistant K. pneumoniae strains exhibited carbapenemase production, predominantly linked to the blaVIM gene (68.8%). HvKp strains were identified at a rate of 62.5% (10/16); notably, peg-344 was the most prevalent gene. Significantly, 10 of the 13 CRKP isolates possessed hypervirulence genes, contributing to the emergence of CR-hvKp. Moreover, cluster analysis revealed the clustering of two CR-hvKp isolates from the same retail fish market. CONCLUSION: This study provides the first insight into the emergence of CR-hvKp among oysters in Egypt. It underscores the potential role of oysters as a source for disseminating CR-hvKp within aquatic ecosystems, presenting a possible threat to public health.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Ostreidae , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/isolation & purification , Animals , Egypt/epidemiology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Ostreidae/microbiology , Anti-Bacterial Agents/pharmacology , Humans , Virulence , Public Health , Virulence Factors/genetics , Prevalence , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/pathogenicity
14.
J Microorg Control ; 29(2): 81-89, 2024.
Article in English | MEDLINE | ID: mdl-38880620

ABSTRACT

Although recent propagation of carbapenemase-producing Enterobacterales (CPE) has become a problem worldwide, the picture of CPE infection in Japan has not fully been elucidated. In this study, we examined clinical and microbiological characteristics of invasive CPE infection occurring at 8 hospitals in Minami Ibaraki Area between July 2001 to June 2017. Of 7294 Enterobacterales strains isolated from independent cases of bacteremia and/or meningitis, 10 (0.14%) were CPE (8 Enterobacter cloacae-complex, 1 Escherichia coli, and 1 Edwardsiella tarda), all of which had the blaIMP-1 gene and susceptible to gentamicin and trimethoprim/sulfamethoxazole. These strains were isolated from 7 adult and 2 infant bacteremia (1 infant patient developed CPE bacteremia twice) after 2007. The most common portal of entry was intravenous catheters. All of the adult patients were recovered, while the infant patients eventually died. Genomic analyses showed that the 8 E. cloacae-complex strains were classified into 5 groups, each of which was exclusively detected in specific facilities at intervals of up to 3 years, suggesting persistent colonization in the facilities. This study showed that invasive CPE infection in the area was rare, caused by IMP-1-type CPE having susceptibility to various antibiotics, and nonfatal among adult patients.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Bacterial Proteins , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , Humans , Japan/epidemiology , Bacteremia/microbiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , beta-Lactamases/genetics , beta-Lactamases/metabolism , Male , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Infant , Middle Aged , Adult , Aged , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Gentamicins/pharmacology , Gentamicins/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Aged, 80 and over , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification
15.
Acta Microbiol Immunol Hung ; 71(2): 110-120, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38837219

ABSTRACT

Carbapenem-resistant Enterobacterales (CRE) have become a major public health problem worldwide. The aim of this study was to investigate efficacy of ceftazidime/avibactam and plazomicin on carbapenem-resistant Klebsiella pneumoniae and Escherichia coli isolates. Susceptibility of imipenem, meropenem, ertapenem, ceftazidime/avibactam and plazomicin was investigated by broth-microdilution method. Major carbapenemases NDM, VIM, IMP, KPC, OXA-48 as well as other ß-lactamases namely, TEM, SHV, OXA-1-like, CTX-M, ACC, FOX, MOX, DHA, CIT, EBC, VEB, GES, PER were investigated by PCR. A total of 120 carbapenem-resistant isolates (60 E. coli and 60 K. pneumoniae) were included in this study and blaOXA-48-like was found in 78.33%, blaNDM in 26.66%, blaKPC in 7.5%, blaIMP in 5.83%, and blaVIM in 5%. Among 94 isolates with the blaOXA-48-like gene, 22.3% were resistant to ceftazidime/avibactam and 51.1% were resistant to plazomicin. Of 32 isolates with blaNDM, 31 (96.9%) were resistant to ceftazidime/avibactam and 30 (93.75%) were resistant to plazomicin, and both antibiotics had limited effects against blaNDM carriers (P < 0.001). Of the 12 isolates with blaNDM+OXA-48 combination, 11 (91.7%) were resistant to ceftazidime/avibactam and plazomicin. The effect of both antibiotics was significantly lower in strains with blaNDM+OXA-48 combination (P < 0.005).The most common carbapenemase genes in this study were blaOXA-48-like and blaNDM. Ceftazidime/avibactam demonstrated a good efficacy among OXA-48 producing K. pneumoniae and E. coli, however, plazomicin had a significantly lower antibacterial effect in our study. Both antimicrobial agents should be considered as an option by evaluating combined susceptibility results and gene patterns obtained by regional and global molecular data in the treatment of CRE infections.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenem-Resistant Enterobacteriaceae , Ceftazidime , Drug Combinations , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Sisomicin , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Sisomicin/pharmacology , Sisomicin/analogs & derivatives , beta-Lactamases/genetics , Humans , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy
16.
Microbiol Spectr ; 12(7): e0038624, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38832776

ABSTRACT

Rapid detection of carbapenemase-producing Enterobacteriaceae (CPE) is urgently needed to prevent their spread in healthcare settings. Here, we have evaluated the performance of the phenotypic methods for detection of carbapenemase production directly from bacterial cultures. A total of 99 clinical and rectal Enterobacteriaceae isolates were included (81 carrying known carbapenemase-encoding genes and 18 without carbapenemase production). All isolates were subjected to the five phenotypic tests including in-house Carba NP (iCarba NP), modified-Carba NP, E-Test MBL, modified Hodge test (MHT), and commercial combination disk test. Test results were read at different time points for iCarba NP and modified-Carba (1 min, 5 min, 15 min, 1 h and 2 h). The sensitivity and specificity of the iCarba NP were 78.87% and 100%, respectively, whereas those of the modified-Carba NP test were 95.06% and 94.44%, respectively. False-negative results were detected in four OXA-48 isolates with the use of modified-Carba NP, whereas one non-carbapenemase isolate had false-positive results. The sensitivity/specificity was 91.30%/100% and 80.25%/83.33% for the E-Test MBL and MHT, respectively. The sensitivity and specificity of the aminophenylboronic acid synergy test were 100% and 97.94%, respectively, whereas those of the dipicolinic acid synergy test were 82.61% and 96.23%, respectively. Rapid, simple, and reliable methods are needed for laboratory detection of CPE isolates to improve the detection and surveillance of these clinically relevant pathogens in an epidemiological context. We conclude that the modified-Carba NP test can be one of the reliable tests for the prediction of carbapenemase-producing bacteria.IMPORTANCEThe emergence of carbapenem resistance among Gram-negative bacteria is a serious global health threat. Here, we investigate the performance of the five phenotypic assays against carbapenemase-producing and carbapenemase-non-producing Enterobacteriaceae. Accurate and rapid detection of CPE isolates is critically required for clinical management and treatment of infections caused by these organisms. Among the five evaluated phenotypic tests, the mCNP test presented the highest sensitivity (95.06%) and, therefore, can be considered the best test to be used as a screening phenotypic methodology.


Subject(s)
Bacterial Proteins , Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Sensitivity and Specificity , beta-Lactamases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/diagnosis , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/enzymology , Carbapenem-Resistant Enterobacteriaceae/genetics , Microbial Sensitivity Tests , Phenotype , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics
17.
An Acad Bras Cienc ; 96(2): e20231322, 2024.
Article in English | MEDLINE | ID: mdl-38922280

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is a major cause of healthcare-associated infections and plays a prominent role in the widespread antibiotic resistance crisis. Accurate identification of carbapenemases is essential to facilitate effective antibiotic treatment and reduce transmission of K. pneumoniae. This study aimed to detect carbapenemase production in carbapenem-resistant K. pneumoniae strains using phenotypic and genotypic methods. A total of 67 carbapenem-resistant K. pneumoniae strains obtained from various clinical samples were utilized for identification and antimicrobial susceptibility by the Vitek 2 Compact system (Biomerieux, France). Carbapenemase production was determined by using the Polymerase chain reaction, Blue-carba test (BCT) and Carbapenem inactivation method (CIM). Out of the isolates, 59 (88.1%) were positive bla OXA-48, 16 (23.9%) bla IMP, and five (7.5%) were positive bla NDM. No bla KPC genes were detected. The CIM identified 62 (92.5%), BCT identified 63 (94%) of PCR-positive isolates. The sensitivity and specificity of the BCT and the CIM were determined to be 96.7%, 40%, and 96.7%, 25% respectively. The bla OXA-48 gene was found to be the most prevalent in K. pneumoniae isolates. Early identification of carbapenem resistance plays a vital role in designing effective infection control strategies and mitigating the emergence and transmission of carbapenem resistance, thus reducing healthcare-associated infections.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Genotype , Klebsiella pneumoniae , Microbial Sensitivity Tests , Phenotype , Polymerase Chain Reaction , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Klebsiella Infections/microbiology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification
18.
Commun Biol ; 7(1): 695, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844513

ABSTRACT

Infection caused by KPC and NDM carbapenemases co-producing Klebsiella pneumoniae (KPC_NDM_CRKP) poses serious public health concerns. Here, we elucidate the prevalence of a hypertransmissible lncM1 plasmid, pKPC_NDM, co-carrying blaKPC-2 and blaNDM-1 genes in sequence type 1049 K_locus 5 (ST1049-KL5) KPC_NDM_CRKP isolates. Genetic and clonal relatedness analyses using pulsed-field gel electrophoresis, single nucleotide polymorphism analysis and core genome multilocus sequence typing suggested clonal dissemination of ST1049-KL5 KPC_NDM_CRKP strains in our hospital. Whole genome sequencing identified an identical 76,517 bp- blaKPC-2 and blaNDM-1 genes co-carrying IncM1 plasmid pKPC_NDM and a pLVPK-like hypervirulent plasmid in all ST1049-KL5 KPC_NDM_CRKP isolates. pKPC_NDM shared 100% identity with a previously sequenced plasmid CRKP35_unnamed4, demonstrating high transferability in conjugation assay, with conjugation frequencies reaching 10-4 and 10-5 in Escherichia coli and K. pneumoniae recipients, respectively. It also maintained favorable stability and flexible compatibility, with retention rates exceeding 80% after 10 days of continuous passage, and could be compatible with pre-existing blaKPC- or blaNDM-carrying plasmids in recipient strains. This study summarizes the characteristics of KPC_NDM_CRKP outbreaks and highlights the importance of ongoing surveillance and infection control strategies to address the challenges posed by ST1049 K. pneumoniae strains.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Plasmids , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , beta-Lactamases/genetics , beta-Lactamases/metabolism , Plasmids/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Humans , Prevalence , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Sensitivity Tests
19.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
20.
J Hosp Infect ; 149: 126-134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723905

ABSTRACT

BACKGROUND: Understanding the transmission dynamics of carbapenem-resistant Enterobacterales (CRE) is critical to addressing the escalating global threat of antimicrobial resistance (AMR). Although hospital transmission of CRE has been extensively studied, information on community transmission is lacking. AIM: To identify genomic clusters of CRE from two nearby institutions that may be indicative of community or inter-facility transmission. METHODS: CRE isolates between January 1st, 2019 and December 31st, 2020 from two tertiary hospitals, detected in the respective routine microbiology laboratories, were collected and characterized by short-read whole-genome sequencing. FINDINGS: A total of 272 CRE were collected, with Enterobacter cloacae complex (71/192, 37%) predominant in Heidelberg and Escherichia coli (19/80, 24%) in Mannheim. The most common carbapenem resistance gene, blaOXA-48, was detected in 38% of CRE from both centres. Several putative transmission clusters were found, including six clusters of E. cloacae complex, five clusters of Klebsiella pneumoniae, four clusters of Citrobacter freundii, and two clusters each of Escherichia coli and K. aerogenes. No clusters involved isolates from both study centres, except for an ST22 C. freundii cluster. Globally circulating clones were identified between the two centres for ST131 E. coli, ST66 E. hormaechei, and ST22 C. freundii. CONCLUSION: This study found no widespread transmission clusters among isolates from both centres, suggesting a hospital-specific clonal structure. This suggests that CRE clusters involving both institutions may indicate emerging or circulating clones in the community, highlighting the need for intersectoral surveillance and data sharing.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Tertiary Care Centers , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/classification , Germany/epidemiology , Whole Genome Sequencing , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Aged , Middle Aged , Female , Cross Infection/microbiology , Cross Infection/epidemiology , Cross Infection/transmission , Adult , Epidemiological Monitoring , Male , Aged, 80 and over , Molecular Epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL