Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Proc Natl Acad Sci U S A ; 121(35): e2401916121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172788

ABSTRACT

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.


Subject(s)
Carbon , Soil Microbiology , Soil , Carbon/metabolism , Carbon/analysis , Soil/chemistry , Uncertainty , Climate Change , Ecosystem , Bacteria/metabolism , Carbon Sequestration , Machine Learning , Carbon Cycle
2.
Nat Commun ; 15(1): 7084, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154003

ABSTRACT

Tropical forests account for over 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. We show that warming and drying of tropical forest soils may increase soil carbon vulnerability, by increasing degradation of older carbon. In situ whole-profile heating by 4 °C and 50% throughfall exclusion each increased the average radiocarbon age of soil CO2 efflux by ~2-3 years, but the mechanisms underlying this shift differed. Warming accelerated decomposition of older carbon as increased CO2 emissions depleted newer carbon. Drying suppressed decomposition of newer carbon inputs and decreased soil CO2 emissions, thereby increasing contributions of older carbon to CO2 efflux. These findings imply that both warming and drying, by accelerating the loss of older soil carbon or reducing the incorporation of fresh carbon inputs, will exacerbate soil carbon losses and negatively impact carbon storage in tropical forests under climate change.


Subject(s)
Carbon Dioxide , Carbon , Climate Change , Forests , Soil , Tropical Climate , Soil/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Carbon/metabolism , Carbon Cycle , Carbon Sequestration , Ecosystem
3.
Glob Chang Biol ; 30(8): e17463, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39120552

ABSTRACT

To bridge the knowledge gap between (a) our (instantaneous-to-seasonal-scale) process understanding of plants and water and (b) our projections of long-term coupled feedbacks between the terrestrial water and carbon cycles, we must uncover what the dominant dynamics are linking fluxes of water and carbon. This study uses the simplest empirical dynamical systems models-two-dimensional linear models-and observation-based data from satellites, eddy covariance towers, weather stations, and machine-learning-derived products to determine the dominant sub-annual timescales coupling carbon uptake and (normalized) evaporation fluxes. We find two dominant modes across the Contiguous United States: (1) a negative correlation timescale on the order of a few days during which landscapes dry after precipitation and plants increase their carbon uptake through photosynthetic upregulation. (2) A slow, seasonal-scale positive covariation through which landscape drying leads to decreased growth and carbon uptake. The slow (positively correlated) process dominates the joint distribution of local water and carbon variables, leading to similar behaviors across space, biomes, and climate regions. We propose that vegetation cover/leaf area variables link this behavior across space, leading to strong emergent spatial patterns of water/carbon coupling in the mean. The spatial pattern of local temporal dynamics-positively sloped tangent lines to a convex long-term mean-state curve-is surprisingly strong, and can serve as a benchmark for coupled Earth System Models. We show that many such models do not represent this emergent mean-state pattern, and hypothesize that this may be due to lack of water-carbon feedbacks at daily scales.


Subject(s)
Carbon Cycle , Seasons , United States , Water/metabolism , Models, Theoretical , Ecosystem , Photosynthesis , Water Cycle , Plants/metabolism , Carbon/analysis , Carbon/metabolism
4.
Sci Adv ; 10(33): eadl0534, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39151014

ABSTRACT

Carbon fixation is a key metabolic function shaping marine life, but the underlying taxonomic and functional diversity involved is only partially understood. Using metagenomic resources targeted at marine piconanoplankton, we provide a reproducible machine learning framework to derive the potential biogeography of genomic functions through the multi-output regression of gene read counts on environmental climatologies. Leveraging the Marine Atlas of Tara Oceans Unigenes, we investigate the genomic potential of primary production in the global ocean. The latter is performed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) and is often associated with carbon concentration mechanisms in piconanoplankton, major marine unicellular photosynthetic organisms. We show that the genomic potential supporting C4 enzymes and RUBISCO exhibits strong functional redundancy and important affinity toward tropical oligotrophic waters. This redundancy is taxonomically structured by the dominance of Mamiellophyceae and Prymnesiophyceae in mid and high latitudes. These findings enhance our understanding of the relationship between functional and taxonomic diversity of microorganisms and environmental drivers of key biogeochemical cycles.


Subject(s)
Photosynthesis , Ribulose-Bisphosphate Carboxylase , Photosynthesis/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Plankton/genetics , Plankton/metabolism , Genomics/methods , Phylogeny , Carbon Cycle , Metagenomics/methods , Metagenome , Seawater
5.
Sci Total Environ ; 949: 175261, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39098421

ABSTRACT

Subsoil stores the majority of soil organic carbon (SOC), and plays a vital role in the global carbon cycle in terrestrial ecosystems and in regulating climate change. Response of SOC decomposition to temperature warming (TR) is a crucial parameter to predict SOC dynamics under global warming. However, it remains unknown how TR varies across the whole soil profile and responds to exogenous C and N inputs. To assess this, we designed a novel incubation system to measure SOC-derived CO2 efflux across the whole soil column (i.e., 60 cm length), allowing manual addition of 13C-labeled glucose and ammonium nitrate, and incubated it under ambient or warmed temperatures (+4 °C). We found that C addition significantly increased TR in 0-20 cm, 20-40 cm and 40-60 cm by 64.3 %, 68.1 % and 57.2 %, respectively. However, the combined addition of C and N decreased TR by 11.1 % - 15.3 % compared to without anything addition (CK) in the whole soil profile. The effect of N on TR ranged from -22.8 % to -40.4 % in the whole soil profile, and was significantly lower in topsoil than in subsoil. Furthermore, sole N addition significantly promoted TR compared to CK by 79.0 % and 94.7 % in 20-40 cm and 40-60 cm subsoil, only 9.8 % in 0-20 cm topsoil. These results together suggested that TR is sensitive to increasing C availability in the whole soil profile and increasing N availability in 20-60 cm subsoil. Random forest model indicated that soil enzyme activities (explained 21.3 % of the variance) and DOC (explained 11.1 % of the variance) dominantly governed TR in topsoil, but N availability displayed a predominant control of TR in subsoil. Overall, our results suggested that increased C and N availability under climate warming scenarios could further increase the risk of carbon loss especially in subsoil with substrate deficiency, but labile C (e.g., root exudation) input under climate warming and N enrichment could reduce SOC decomposition and benefit for C sequestration by decreasing TR.


Subject(s)
Carbon , Nitrogen , Soil , Soil/chemistry , Carbon/analysis , Nitrogen/analysis , Global Warming , Climate Change , Carbon Cycle , Ecosystem
6.
Proc Natl Acad Sci U S A ; 121(33): e2310157121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102539

ABSTRACT

The Amazon forest contains globally important carbon stocks, but in recent years, atmospheric measurements suggest that it has been releasing more carbon than it has absorbed because of deforestation and forest degradation. Accurately attributing the sources of carbon loss to forest degradation and natural disturbances remains a challenge because of the difficulty of classifying disturbances and simultaneously estimating carbon changes. We used a unique, randomized, repeated, very high-resolution airborne laser scanning survey to provide a direct, detailed, and high-resolution partitioning of aboveground carbon gains and losses in the Brazilian Arc of Deforestation. Our analysis revealed that disturbances directly attributed to human activity impacted 4.2% of the survey area while windthrows and other disturbances affected 2.7% and 14.7%, respectively. Extrapolating the lidar-based statistics to the study area (544,300 km2), we found that 24.1, 24.2, and 14.5 Tg C y-1 were lost through clearing, fires, and logging, respectively. The losses due to large windthrows (21.5 Tg C y-1) and other disturbances (50.3 Tg C y-1) were partially counterbalanced by forest growth (44.1 Tg C y-1). Our high-resolution estimates demonstrated a greater loss of carbon through forest degradation than through deforestation and a net loss of carbon of 90.5 ± 16.6 Tg C y-1 for the study region attributable to both anthropogenic and natural processes. This study highlights the role of forest degradation in the carbon balance for this critical region in the Earth system.


Subject(s)
Carbon , Conservation of Natural Resources , Forests , Brazil/epidemiology , Carbon/metabolism , Humans , Trees/growth & development , Carbon Cycle
7.
Glob Chang Biol ; 30(8): e17465, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39162612

ABSTRACT

Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.


Subject(s)
Carbon Cycle , Carbon , Microbiota , Soil Microbiology , Soil , Chile , Carbon/metabolism , Carbon/analysis , Soil/chemistry , Fungi/physiology , Bacteria/metabolism , Bacteria/classification , Bacteria/growth & development , Biomass , Grassland
8.
Glob Chang Biol ; 30(8): e17432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092542

ABSTRACT

How terrestrial ecosystems will accumulate carbon as the climate continues to change is a major source of uncertainty in projections of future climate. Under growth-stimulating environmental change, time lags inherent in population and community dynamic processes have been posed to dampen, or alternatively amplify, short-term carbon gain in terrestrial vegetation, but these outcomes can be difficult to predict. To theoretically frame this problem, we developed a simple model of vegetation dynamics that identifies the stage-structured demographic and competitive processes that could govern the timescales of carbon storage and loss. We show that demographic lags associated with growth-stimulating environmental change can allow a rapid increase in population-level carbon storage that is lost back to the atmosphere in later years. However, this transient carbon storage only emerges when environmental change increases the transition of adult individuals into a larger size class that suffers markedly higher mortality. Otherwise, demographic lags simply slow carbon accumulation. Counterintuitively, an analogous tradeoff between maximum adult size and survivorship in two-species models, coupled with environmental change-driven replacement, does not generate the transient carbon gain seen in the single-species models. Instead lags in competitive replacement slow the approach to the eventual carbon trajectory. Together, our results suggest that time lags inherent in demographic and compositional turnover tend to slow carbon accumulation in systems responding to growth-stimulating environmental change. Only under specific conditions will lagged demographic processes in such systems drive transient carbon accumulation, conditions that investigators can examine in nature to help project future carbon trajectories.


Subject(s)
Climate Change , Ecosystem , Carbon/metabolism , Carbon/analysis , Plants/metabolism , Carbon Sequestration , Models, Biological , Population Dynamics , Models, Theoretical , Carbon Cycle
9.
Environ Monit Assess ; 196(9): 798, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115708

ABSTRACT

Watershed ecosystems play a pivotal role in maintaining the global carbon cycle and reducing global warming by serving as vital carbon reservoirs for sustainable ecosystem management. In this study, we based on the "quantity-mechanism-scenario" frameworks, integrate the MCE-CA-Markov and InVEST models to evaluate the spatiotemporal variations of carbon stocks in mid- to high-latitude alpine watersheds in China under historical and future climate scenarios. Additionally, the study employs the Geographic Detector model to explore the driving mechanisms influencing the carbon storage capacity of watershed ecosystems. The results showed that the carbon stock of the watershed increased by about 15.9 Tg from 1980 to 2020. Fractional Vegetation Cover (FVC), Digital Elevation Model (DEM), and Mean Annual Temperature (MAT) had the strongest explanatory power for carbon stocks. Under different climate scenarios, it was found that the SSP2-4.5 scenario had a significant rise in carbon stock from 2020 to 2050, roughly 24.1 Tg. This increase was primarily observed in the southeastern region of the watersheds, with forest and grassland effectively protected. Conversely, according to the SSP5-8.5 scenario, the carbon stock would decrease by about 50.53 Tg with the expansion of cultivated and construction land in the watershed's southwest part. Therefore, given the vulnerability of mid- to high-latitude mountain watersheds, global warming trends continue to pose a greater threat to carbon sequestration in watersheds. Our findings carry important implications for tackling potential ecological threats in mid- to high-latitude watersheds in the Northern Hemisphere and assisting policymakers in creating carbon sequestration plans, as well as for reducing climate change.


Subject(s)
Carbon , Climate Change , Ecosystem , Environmental Monitoring , China , Carbon/analysis , Carbon Sequestration , Carbon Cycle , Conservation of Natural Resources , Models, Theoretical
10.
Nat Commun ; 15(1): 6169, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103349

ABSTRACT

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.


Subject(s)
Carbon Sequestration , Carbon , Climate Change , Forests , Seasons , Tracheophyta , Wood , Carbon/metabolism , Wood/metabolism , Wood/chemistry , Tracheophyta/metabolism , Biomass , Ecosystem , Carbon Cycle , Trees/metabolism
11.
World J Microbiol Biotechnol ; 40(10): 301, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136809

ABSTRACT

The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems. This paper explored the possibility of the sulfur-driven autotrophic denitrification (SDAD) pathway in different types of CWs, shallow and deep and passive and aerated systems, by analyzing the metagenomic bacterial communities present within these CWs. The results indicate a higher abundance of SDAD bacteria (Paracoccus and Arcobacter) in deep passive systems compared to shallow systems and presence of a large number of SDAD genera (Paracoccus, Thiobacillus, Beggiatoa, Sulfurimonas, Arcobacter, and Sulfuricurvum) in aerated CWs. The bacteria belonging to the functional category of dark oxidation of sulfur compounds were found to be enriched in deep and aerated CWs hinting at the possible role of the SDAD pathway in total nitrogen removal in these systems. As a case study, the percentage nitrogen removal through SDAD pathway was calculated to be 15-20% in aerated wetlands. The presence of autotrophic pathways for nitrogen removal can prove highly beneficial in terms of reducing sludge generation and hence reducing clogging, making aerated CWs a sustainable wastewater treatment solution.


Subject(s)
Bacteria , Denitrification , Nitrogen , Sulfur , Wetlands , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Nitrogen/metabolism , Sulfur/metabolism , Carbon/metabolism , Autotrophic Processes , Carbon Cycle , Wastewater/microbiology , Wastewater/chemistry , Metagenomics
12.
Nat Commun ; 15(1): 6881, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128916

ABSTRACT

Despite the growing catalogue of studies detailing the taxonomic and functional composition of soil bacterial communities, the life history traits of those communities remain largely unknown. This study analyzes a global dataset of soil metagenomes to explore environmental drivers of growth potential, a fundamental aspect of bacterial life history. We find that growth potential, estimated from codon usage statistics, was highest in forested biomes and lowest in arid latitudes. This indicates that bacterial productivity generally reflects ecosystem productivity globally. Accordingly, the strongest environmental predictors of growth potential were productivity indicators, such as distance to the equator, and soil properties that vary along productivity gradients, such as pH and carbon to nitrogen ratios. We also observe that growth potential was negatively correlated with the relative abundances of genes involved in carbohydrate metabolism, demonstrating tradeoffs between growth and resource acquisition in soil bacteria. Overall, we identify macroecological patterns in bacterial growth potential and link growth rates to soil carbon cycling.


Subject(s)
Bacteria , Carbon , Ecosystem , Soil Microbiology , Soil , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Soil/chemistry , Carbon/metabolism , Nitrogen/metabolism , Metagenome , Forests , Carbon Cycle , Microbiota , Codon Usage
13.
Physiol Plant ; 176(4): e14463, 2024.
Article in English | MEDLINE | ID: mdl-39113602

ABSTRACT

The behavior of many plant enzymes depends on the metals and other ligands to which they are bound. A previous study demonstrated that tobacco Rubisco binds almost equally to magnesium and manganese and rapidly exchanges one metal for the other. The present study characterizes the kinetics of Rubisco and the plastidial malic enzyme when bound to either metal. When Rubisco purified from five C3 species was bound to magnesium rather than manganese, the specificity for CO2 over O2, (Sc/o) increased by 25% and the ratio of the maximum velocities of carboxylation / oxygenation (Vcmax/Vomax) increased by 39%. For the recombinant plastidial malic enzyme, the forward reaction (malate decarboxylation) was 30% slower and the reverse reaction (pyruvate carboxylation) was three times faster when bound to manganese rather than magnesium. Adding 6-phosphoglycerate and NADP+ inhibited carboxylation and oxygenation when Rubisco was bound to magnesium and stimulated oxygenation when it was bound to manganese. Conditions that favored RuBP oxygenation stimulated Rubisco to convert as much as 15% of the total RuBP consumed into pyruvate. These results are consistent with a stromal biochemical pathway in which (1) Rubisco when associated with manganese converts a substantial amount of RuBP into pyruvate, (2) malic enzyme when associated with manganese carboxylates a substantial portion of this pyruvate into malate, and (3) chloroplasts export additional malate into the cytoplasm where it generates NADH for assimilating nitrate into amino acids. Thus, plants may regulate the activities of magnesium and manganese in leaves to balance organic carbon and organic nitrogen as atmospheric CO2 fluctuates.


Subject(s)
Chloroplasts , Ribulose-Bisphosphate Carboxylase , Chloroplasts/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Ligands , Carbon Dioxide/metabolism , Manganese/metabolism , Carbon Cycle , Oxygen/metabolism , Photosynthesis/physiology , Magnesium/metabolism , Metals/metabolism , Kinetics , Carbon/metabolism , Malates/metabolism , Malate Dehydrogenase/metabolism
14.
PLoS One ; 19(8): e0306128, 2024.
Article in English | MEDLINE | ID: mdl-39088465

ABSTRACT

Current strategies to hold surface warming below a certain level, e. g., 1.5 or 2°C, advocate limiting total anthropogenic cumulative carbon emissions to ∼0.9 or ∼1.25 Eg C (1018 grams carbon), respectively. These allowable emission budgets are based on a near-linear relationship between cumulative emissions and warming identified in various modeling efforts. The IPCC assesses this near-linear relationship with high confidence in its Summary for Policymakers (§D1.1 and Figure SPM.10). Here we test this proportionality in specially designed simulations with a latest-generation Earth system model (ESM) that includes an interactive carbon cycle with updated terrestrial ecosystem processes, and a suite of CMIP simulations (ZecMIP, ScenarioMIP). We find that atmospheric CO2 concentrations can differ by ∼100 ppmv and surface warming by ∼0.31°C (0.46°C over land) for the same cumulated emissions (≈1.2 Eg C, approximate carbon budget for 2°C target). CO2 concentration and warming per 1 Eg of emitted carbon (Transient Climate Response to Cumulative Carbon Emissions; TCRE) depend not just on total emissions, but also on the timing of emissions, which heretofore have been mainly overlooked. A decomposition of TCRE reveals that oceanic heat uptake is compensating for some, but not all, of the pathway dependence induced by the carbon cycle response. The time dependency clearly arises due to lagged carbon sequestration processes in the oceans and specifically on land, viz., ecological succession, land-cover, and demographic changes, etc., which are still poorly represented in most ESMs. This implies a temporally evolving state of the carbon system, but one which surprisingly apportions carbon into land and ocean sinks in a manner that is independent of the emission pathway. Therefore, even though TCRE differs for different pathways with the same total emissions, it is roughly constant when related to the state of the carbon system, i. e., the amount of carbon stored in surface sinks. While this study does not fundamentally invalidate the established TCRE concept, it does uncover additional uncertainties tied to the carbon system state. Thus, efforts to better understand this state dependency with observations and refined models are needed to accurately project the impact of future emissions.


Subject(s)
Carbon Cycle , Carbon Dioxide , Carbon Dioxide/analysis , Ecosystem , Carbon/analysis , Global Warming , Atmosphere/chemistry , Climate Models
15.
Environ Microbiol ; 26(8): e16665, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39101434

ABSTRACT

Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts in silico and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of Candidatus Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.


Subject(s)
Metagenome , Permafrost , Soil Microbiology , Viruses , Permafrost/microbiology , Permafrost/virology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Ecosystem , Carbon Cycle , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
16.
Water Environ Res ; 96(8): e11078, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39087861

ABSTRACT

Petroleum hydrocarbons (PHCs) can be biodegraded into CO2, and PHC-contaminated aquifers are always deemed as carbon sources. Fortunately, some carbon fixation microorganisms have been found in PHC-contaminated sites. However, most of the studies are related to volatile short-chain PHC, and few studies focus on long-chain PHC-contaminated sites. To reveal the carbon fixation microorganisms in these sites, in the study, a long-chain PHC polluted site in North China was selected. Through hydrochemical and metagenomics analysis, the structure and capacity of carbon fixing microorganisms in the site were revealed. Results showed that there were many kinds of carbon fixed microorganisms that were identified such as Flavobacterium, Pseudomonas. HP/4HB, rTCA, and DC/4HB cycles were dominated carbon fixation pathways. The long-chain PHC were weakly correlated with carbon fixation microorganisms, but it may stimulate the growth of some carbon fixation microorganisms, such as microorganisms involved in rTCA cycle. PRACTITIONER POINTS: The microorganisms with carbon fixation gene exist in the aquifer contaminated by long-chain petroleum hydrocarbon. Microorganisms that have the ability to degrade petroleum also have the ability to carbon fixation. Long-chain petroleum hydrocarbon may promote the growth of carbon fixation microorganisms.


Subject(s)
Carbon Cycle , Groundwater , Hydrocarbons , Petroleum , Water Pollutants, Chemical , Petroleum/metabolism , Hydrocarbons/metabolism , Groundwater/microbiology , Groundwater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , China
17.
Glob Chang Biol ; 30(7): e17405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973563

ABSTRACT

Anthropogenic activities have raised nitrogen (N) input worldwide with profound implications for soil carbon (C) cycling in ecosystems. The specific impacts of N input on soil organic matter (SOM) pools differing in microbial availability remain debatable. For the first time, we used a much-improved approach by effectively combining the 13C natural abundance in SOM with 21 years of C3-C4 vegetation conversion and long-term incubation. This allows to distinguish the impact of N input on SOM pools with various turnover times. We found that N input reduced the mineralization of all SOM pools, with labile pools having greater sensitivity to N than stable ones. The suppression in SOM mineralization was notably higher in the very labile pool (18%-52%) than the labile and stable (11%-47%) and the very stable pool (3%-21%) compared to that in the unfertilized control soil. The very labile C pool made a strong contribution (up to 60%) to total CO2 release and also contributed to 74%-96% of suppressed CO2 with N input. This suppression of SOM mineralization by N was initially attributed to the decreased microbial biomass and soil functions. Over the long-term, the shift in bacterial community toward Proteobacteria and reduction in functional genes for labile C degradation were the primary drivers. In conclusion, the higher the availability of the SOM pools, the stronger the suppression of their mineralization by N input. Labile SOM pools are highly sensitive to N availability and may hold a greater potential for C sequestration under N input at global scale.


Subject(s)
Carbon , Nitrogen , Soil Microbiology , Soil , Soil/chemistry , Nitrogen/metabolism , Nitrogen/analysis , Carbon/metabolism , Carbon/analysis , Carbon Cycle , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Biomass
18.
Sci Total Environ ; 946: 174423, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38969114

ABSTRACT

Exploring the influences of nitrogen deposition on soil carbon (C) flux is necessary for predicting C cycling processes; however, few studies have investigated the effects of nitrogen deposition on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) across urban-rural forests. In this study, a 4-year simulated nitrogen deposition experiment was conducted by treating the experimental plots with 0, 50, or 100 kg·ha-1·year-1 of nitrogen to check out the mechanisms of nitrogen deposition on Rs, Ra, and Rh in urban-rural forests. Our finding indicated a positive association between soil temperature and Rs. Soil temperature sensitivity was significantly suppressed in the experimental plots treated with 100 kg·ha-1·year-1 of nitrogen only in terms of the urban forest Rs and Ra and the rural forest Ra. Nitrogen treatment did not significantly increase Rs and had different influencing mechanisms. In urban forests, nitrogen addition contributed to Rh by increasing soil microbial biomass nitrogen and inhibited Ra by increasing soil ammonium­nitrogen concentration. In suburban forests, the lack of response of Rh under nitrogen addition was due to the combined effects of soil ammonium­nitrogen and microbial biomass nitrogen; the indirect effects from nitrate­nitrogen also contributed to a divergent effect on Ra. In rural forests, the soil pH, dissolved organic C, fine root biomass, and microbial biomass C concentration were the main factors mediating Rs and its components. In summary, the current rate of nitrogen deposition is unlikely to result in significant increases in soil C release in urban-rural forests, high nitrogen deposition is beneficial for reducing the temperature sensitivity of Rs in urban forests. The findings grant a groundwork for predicting responses of forest soil C cycling to global change in the context of urban expansion.


Subject(s)
Forests , Nitrogen , Soil , Nitrogen/analysis , Soil/chemistry , Soil Microbiology , Environmental Monitoring , Carbon/analysis , Carbon Cycle , China
19.
Sci Adv ; 10(27): eadl5822, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959317

ABSTRACT

The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.


Subject(s)
Carbon Cycle , Carbon Dioxide , Eucalyptus , Forests , Phosphorus , Eucalyptus/metabolism , Carbon Dioxide/metabolism , Phosphorus/metabolism , Photosynthesis , Climate Change , Ecosystem , Carbon/metabolism , Models, Theoretical , Carbon Sequestration
20.
Geobiology ; 22(4): e12609, 2024 07.
Article in English | MEDLINE | ID: mdl-38958391

ABSTRACT

Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post-depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturation in situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47 values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth-based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite-each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (µm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.


Subject(s)
Carbon Isotopes , Carbonates , Geologic Sediments , Lakes , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Lakes/microbiology , Lakes/chemistry , Carbon Isotopes/analysis , Carbonates/chemistry , Carbonates/analysis , New York , Microbiota , Carbon Cycle , Bacteria/metabolism , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL