Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.524
2.
J Am Coll Cardiol ; 83(19): 1841-1851, 2024 May 14.
Article En | MEDLINE | ID: mdl-38719365

BACKGROUND: Nondilated left ventricular cardiomyopathy (NDLVC) has been recently differentiated from dilated cardiomyopathy (DCM). A comprehensive characterization of these 2 entities using cardiac magnetic resonance (CMR) and genetic testing has never been performed. OBJECTIVES: This study sought to provide a thorough characterization and assess clinical outcomes in a large multicenter cohort of patients with DCM and NDLVC. METHODS: A total of 462 patients with DCM (227) or NDLVC (235) with CMR data from 4 different referral centers were retrospectively analyzed. The study endpoint was a composite of sudden cardiac death or major ventricular arrhythmias. RESULTS: In comparison to DCM, NDLVC had a higher prevalence of pathogenic or likely pathogenic variants of arrhythmogenic genes (40% vs 23%; P < 0.001), higher left ventricular (LV) systolic function (LV ejection fraction: 51% ± 12% vs 36% ± 15%; P < 0.001) and higher prevalence of free-wall late gadolinium enhancement (LGE) (27% vs 14%; P < 0.001). Conversely, DCM showed higher prevalence of pathogenic or likely pathogenic variants of nonarrhythmogenic genes (23% vs 12%; P = 0.002) and septal LGE (45% vs 32%; P = 0.004). Over a median follow-up of 81 months (Q1-Q3: 40-132 months), the study outcome occurred in 98 (21%) patients. LGE with septal location (HR: 1.929; 95% CI: 1.033-3.601; P = 0.039) was independently associated with the risk of sudden cardiac death or major ventricular arrhythmias together with LV dilatation, older age, advanced NYHA functional class, frequent ventricular ectopic activity, and nonsustained ventricular tachycardia. CONCLUSIONS: In a multicenter cohort of patients with DCM and NDLVC, septal LGE together with LV dilatation, age, advanced disease, and frequent and repetitive ventricular arrhythmias were powerful predictors of major arrhythmic events.


Cardiomyopathy, Dilated , Magnetic Resonance Imaging, Cine , Humans , Male , Female , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/physiopathology , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Adult , Aged , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Follow-Up Studies
3.
Korean J Radiol ; 25(6): 540-549, 2024 Jun.
Article En | MEDLINE | ID: mdl-38807335

OBJECTIVE: This study investigated the feasibility and prognostic relevance of threshold-based quantification of myocardial delayed enhancement (MDE) on CT in patients with nonischemic dilated cardiomyopathy (NIDCM). MATERIALS AND METHODS: Forty-three patients with NIDCM (59.3 ± 17.1 years; 21 male) were included in the study and underwent cardiac CT and MRI. MDE was quantified manually and with a threshold-based quantification method using cutoffs of 2, 3, and 4 standard deviations (SDs) on three sets of CT images (100 kVp, 120 kVp, and 70 keV). Interobserver agreement in MDE quantification was assessed using the intraclass correlation coefficient (ICC). Agreement between CT and MRI was evaluated using the Bland-Altman method and the concordance correlation coefficient (CCC). Patients were followed up for the subsequent occurrence of the primary composite outcome, including cardiac death, heart transplantation, heart failure hospitalization, or appropriate use of an implantable cardioverter-defibrillator. The Kaplan-Meier method was used to estimate event-free survival according to MDE levels. RESULTS: Late gadolinium enhancement (LGE) was observed in 29 patients (67%, 29/43), and the mean LGE found with the 5-SD threshold was 4.1% ± 3.6%. The 4-SD threshold on 70-keV CT showed excellent interobserver agreement (ICC = 0.810) and the highest concordance with MRI (CCC = 0.803). This method also yielded the smallest bias with the narrowest range of 95% limits of agreement compared to MRI (bias, -0.119%; 95% limits of agreement, -4.216% to 3.978%). During a median follow-up of 1625 days (interquartile range, 712-1430 days), 10 patients (23%, 10/43) experienced the primary composite outcome. Event-free survival significantly differed between risk subgroups divided by the optimal MDE cutoff of 4.3% (log-rank P = 0.005). CONCLUSION: The 4-SD threshold on 70-keV monochromatic CT yielded results comparable to those of MRI for quantifying MDE as a marker of myocardial fibrosis, which showed prognostic value in patients with NIDCM.


Cardiomyopathy, Dilated , Contrast Media , Feasibility Studies , Fibrosis , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Male , Cardiomyopathy, Dilated/diagnostic imaging , Female , Middle Aged , Prognosis , Tomography, X-Ray Computed/methods , Fibrosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Myocardium/pathology , Adult , Aged
4.
Biomolecules ; 14(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38785931

Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.


Cardiomyopathy, Dilated , MicroRNAs , RNA, Messenger , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , Male , Gene Expression Profiling , Gene Expression Regulation , Middle Aged , Female
5.
Cells ; 13(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38727290

Dilated cardiomyopathy (DCM) is the most common cause of heart failure, with a complex aetiology involving multiple cell types. We aimed to detect cell-specific transcriptomic alterations in DCM through analysis that leveraged recent advancements in single-cell analytical tools. Single-cell RNA sequencing (scRNA-seq) data from human DCM cardiac tissue were subjected to an updated bioinformatic workflow in which unsupervised clustering was paired with reference label transfer to more comprehensively annotate the dataset. Differential gene expression was detected primarily in the cardiac fibroblast population. Bulk RNA sequencing was performed on an independent cohort of human cardiac tissue and compared with scRNA-seq gene alterations to generate a stratified list of higher-confidence, fibroblast-specific expression candidates for further validation. Concordant gene dysregulation was confirmed in TGFß-induced fibroblasts. Functional assessment of gene candidates showed that AEBP1 may play a significant role in fibroblast activation. This unbiased approach enabled improved resolution of cardiac cell-type-specific transcriptomic alterations in DCM.


Cardiomyopathy, Dilated , Fibroblasts , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Fibroblasts/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Sequence Analysis, RNA/methods , Myocardium/metabolism , Myocardium/pathology , Gene Expression Profiling
6.
Medicine (Baltimore) ; 103(19): e37889, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728483

RATIONALE: Anesthesia management of patients with dilated cardiomyopathy (DCM) has always been a challenge for anesthesiologists. Eighty percent of patients with DCM have heart failure as the first symptom, which may be accompanied by arrhythmias, thromboembolism, etc. Thrombosis is a significant contributing factor to adverse cardiovascular and cerebrovascular events, and its risk is severely underestimated in the anesthetic management of DCM. PATIENT CONCERNS: We present a case of a 54-year-old hypersensitive female patient with dilated cardiomyopathy and purpura who underwent an interventional thrombectomy under general anesthesia following a lower limb thromboembolism. DIAGNOSIS: Patient underwent an interventional thrombectomy under general anesthesia, with in situ thrombosis occurring during the surgery. INTERVENTIONS: After maintaining stable hemodynamics, proceed with the intervention to retrieve the embolus. OUTCOME: Patients in the advanced DCM developed acute thrombosis twice during embolization. LESSONS: This case discusses the causes of intraoperative thrombosis and summarizes and reflects on the anesthesia management of this case, which has always been one of the difficult points for anesthesiologists to master. In the anesthesia management of DCM patients, it is also necessary to maintain hemodynamic stability, enhance perioperative coagulation management, use anticoagulants rationally, and avoid the occurrence of thrombotic events.


Anesthesia, General , Cardiomyopathy, Dilated , Femoral Artery , Thrombectomy , Humans , Female , Middle Aged , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/surgery , Thrombectomy/methods , Femoral Artery/surgery , Anesthesia, General/methods , Thromboembolism/etiology
7.
J Gen Physiol ; 156(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38727632

JGP study (Duno-Miranda et al. https://doi.org/10.1085/jgp.202313522) shows that a mutation linked to dilated cardiomyopathy stabilizes ß-cardiac myosin in its autoinhibited, super-relaxed state.


Mutation , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Animals
8.
J Gen Physiol ; 156(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38709176

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.


Cardiomyopathy, Dilated , Ventricular Myosins , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Ventricular Myosins/genetics , Ventricular Myosins/metabolism , Mutation , Actins/metabolism , Actins/genetics , Myocardial Contraction/physiology , Animals
9.
Front Immunol ; 15: 1327372, 2024.
Article En | MEDLINE | ID: mdl-38736889

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with arrhythmogenic right ventricular cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. Cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interactions; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.


Arrhythmogenic Right Ventricular Dysplasia , B-Lymphocytes , Cardiomyopathy, Dilated , Myocardium , Humans , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Myocardium/metabolism , Myocardium/immunology , Myocardium/pathology , Male , Female , Cell Communication/immunology , Gene Expression Profiling , Middle Aged , Adult , Transcriptome , Gene Expression Regulation
10.
Genome Biol ; 25(1): 135, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783323

BACKGROUND: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Multiple identified mutations in nexilin (NEXN) have been suggested to be linked with severe DCM. However, the exact association between multiple mutations of Nexn and DCM remains unclear. Moreover, it is critical for the development of precise and effective therapeutics in treatments of DCM. RESULTS: In our study, Nexn global knockout mice and mice carrying human equivalent G645del mutation are studied using functional gene rescue assays. AAV-mediated gene delivery is conducted through systemic intravenous injections at the neonatal stage. Heart tissues are analyzed by immunoblots, and functions are assessed by echocardiography. Here, we identify functional components of Nexilin and demonstrate that exogenous introduction could rescue the cardiac function and extend the lifespan of Nexn knockout mouse models. Similar therapeutic effects are also obtained in G645del mice, providing a promising intervention for future clinical therapeutics. CONCLUSIONS: In summary, we demonstrated that a single injection of AAV-Nexn was capable to restore the functions of cardiomyocytes and extended the lifespan of Nexn knockout and G645del mice. Our study represented a long-term gene replacement therapy for DCM that potentially covers all forms of loss-of-function mutations in NEXN.


Cardiomyopathy, Dilated , Genetic Therapy , Mice, Knockout , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Mice , Humans , Dependovirus/genetics , Myocytes, Cardiac/metabolism , Disease Models, Animal , Mutation , Genetic Vectors/administration & dosage , Gene Transfer Techniques
11.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791328

Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.


Cardiomyopathy, Dilated , Heart Transplantation , Muscular Dystrophies , Humans , Cardiomyopathy, Dilated/surgery , Heart Transplantation/methods , Muscular Dystrophies/complications
12.
Sci Rep ; 14(1): 11980, 2024 05 25.
Article En | MEDLINE | ID: mdl-38796549

Pathogenic BAG5 variants recently linked to dilated cardiomyopathy (DCM) prompt further investigation into phenotypic, mutational, and pathomechanistic aspects. We explored the clinical and molecular characteristics of DCM associated with BAG5 variants, uncovering the consistently severe manifestations of the disease and its impact on the endoplasmic reticulum (ER) stress response. The analysis involved three siblings affected by DCM and arrhythmia, along with their four unaffected siblings, their unaffected father, and their mother who exhibited arrhythmia. The parents were consanguineous. Exome and Sanger sequencing identified a novel BAG5 variant, c.444_445delGA (p.Lys149AsnfsTer6), homozygous in affected siblings and heterozygous in parents and unaffected siblings. We generated heterozygous and homozygous Bag5 point mutant knock-in (KI) mice and evaluated cardiac pathophysiology under stress conditions, including tunicamycin (TN) administration. Bag5-/- mice displayed no abnormalities up to 12 months old and showed no anomalies during an exercise stress test. However, following TN injection, Bag5-/- mice exhibited significantly reduced left ventricular fractional shortening (LVFS) and ejection fraction (LVEF). Their cardiac tissues exhibited a notable increase in apoptotic cells, despite non-distinctive changes in CHOP and GRP78 levels. Interestingly, only Bag5 KI male mice demonstrated arrhythmia, which was more pronounced in Bag5-/- than in Bag5+/-males. Here, our study reveals a novel BAG5 mutation causing DCM by impairing the ER stress response, with observed sex-specific arrhythmia differences.


Arrhythmias, Cardiac , Cardiomyopathy, Dilated , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Animals , Cardiomyopathy, Dilated/genetics , Endoplasmic Reticulum Stress/genetics , Humans , Arrhythmias, Cardiac/genetics , Male , Female , Mice , Pedigree , Mice, Knockout , Adult , Apoptosis/genetics , Mutation
13.
PLoS Genet ; 20(5): e1011279, 2024 May.
Article En | MEDLINE | ID: mdl-38748723

The leiomodin (Lmod) family of actin-binding proteins play a critical role in muscle function, highlighted by the fact that mutations in all three family members (LMOD1-3) result in human myopathies. Mutations in the cardiac predominant isoform, LMOD2 lead to severe neonatal dilated cardiomyopathy. Most of the disease-causing mutations in the LMOD gene family are nonsense, or frameshift, mutations predicted to result in expression of truncated proteins. However, in nearly all cases of disease, little to no LMOD protein is expressed. We show here that nonsense-mediated mRNA decay, a cellular mechanism which eliminates mRNAs with premature termination codons, underlies loss of mutant protein from two independent LMOD2 disease-causing mutations. Furthermore, we generated steric-blocking oligonucleotides that obstruct deposition of the exon junction complex, preventing nonsense-mediated mRNA decay of mutant LMOD2 transcripts, thereby restoring mutant protein expression. Our investigation lays the initial groundwork for potential therapeutic intervention in LMOD-linked myopathies.


Codon, Nonsense , Nonsense Mediated mRNA Decay , Humans , Nonsense Mediated mRNA Decay/genetics , Codon, Nonsense/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mutation , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism
14.
Channels (Austin) ; 18(1): 2355121, 2024 Dec.
Article En | MEDLINE | ID: mdl-38762910

L-type calcium channels (LTCCs), the major portal for Ca2+ entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca2+ current (ICa,L) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in ICa,L density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a ICa,L potentiator to a ICa,L suppressor, thus illustrating the wide dynamic range of LRRC10-mediated ICa,L regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.


Calcium Channels, L-Type , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Humans , Myocytes, Cardiac/metabolism , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics
15.
J Am Coll Cardiol ; 83(17): 1640-1651, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38658103

BACKGROUND: Disease penetrance in genotype-positive (G+) relatives of families with dilated cardiomyopathy (DCM) and the characteristics associated with DCM onset in these individuals are unknown. OBJECTIVES: This study sought to determine the penetrance of new DCM diagnosis in G+ relatives and to identify factors associated with DCM development. METHODS: The authors evaluated 779 G+ patients (age 35.8 ± 17.3 years; 459 [59%] females; 367 [47%] with variants in TTN) without DCM followed at 25 Spanish centers. RESULTS: After a median follow-up of 37.1 months (Q1-Q3: 16.3-63.8 months), 85 individuals (10.9%) developed DCM (incidence rate of 2.9 per 100 person-years; 95% CI: 2.3-3.5 per 100 person-years). DCM penetrance and age at DCM onset was different according to underlying gene group (log-rank P = 0.015 and P <0.01, respectively). In a multivariable model excluding CMR parameters, independent predictors of DCM development were: older age (HR per 1-year increase: 1.02; 95% CI: 1.0-1.04), an abnormal electrocardiogram (HR: 2.13; 95% CI: 1.38-3.29); presence of variants in motor sarcomeric genes (HR: 1.92; 95% CI: 1.05-3.50); lower left ventricular ejection fraction (HR per 1% increase: 0.86; 95% CI: 0.82-0.90) and larger left ventricular end-diastolic diameter (HR per 1-mm increase: 1.10; 95% CI: 1.06-1.13). Multivariable analysis in individuals with cardiac magnetic resonance and late gadolinium enhancement assessment (n = 360, 45%) identified late gadolinium enhancement as an additional independent predictor of DCM development (HR: 2.52; 95% CI: 1.43-4.45). CONCLUSIONS: Following a first negative screening, approximately 11% of G+ relatives developed DCM during a median follow-up of 3 years. Older age, an abnormal electrocardiogram, lower left ventricular ejection fraction, increased left ventricular end-diastolic diameter, motor sarcomeric genetic variants, and late gadolinium enhancement are associated with a higher risk of developing DCM.


Cardiomyopathy, Dilated , Genotype , Penetrance , Adult , Female , Humans , Male , Middle Aged , Young Adult , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Connectin/genetics , Electrocardiography , Follow-Up Studies , Spain/epidemiology , Retrospective Studies
16.
Radiography (Lond) ; 30(3): 926-931, 2024 May.
Article En | MEDLINE | ID: mdl-38657385

INTRODUCTION: Early diagnosis of patients with dilated cardiomyopathy (DCM) remains challenging. Cardiac MR can correlate myocardial changes with their pathological basis. There have been some previous studies on the effect of T1 mapping in DCM, but there is limited data on the incremental value of T2 mapping for DCM in routine clinical practice. This study will examine whether the combination of MRI T1 and T2 mapping offers greater advantages in the diagnosis of DCM. METHODS: The study included 28 patients with DCM and 21 healthy controls. CMR evaluation included late gadolinium enhancement (LGE), T1 mapping, extracellular volume (ECV) fraction and T2 mapping. The DCM group was divided into LGE (+) and LGE (-) subgroups. The main modes of LGE are subendocardial, midwall, subepicardial, or transmural. T1 values, T2 values, and ECV in the 16 segments myocardial levels were measured by post-processing software. Student's t-tests or Mann-Whitney U test was used to compare between two groups, and one-way ANOVA or Kruskal-Wallis H test was used to compare between multiple groups, with p values corrected by Bonferroni. The difference was considered statistically significant at P < 0.05. ROC curve analysis was used to compare the area under the curve (AUC) of each index and its combined value, and the cut-off value, sensitivity and specificity were determined by Jordan's index. RESULTS: Mean native myocardial T1, ECV and T2 were significantly higher in the DCM group compared to controls (p ≤ 0.001, respectively). The best cut-off values for T1, T2 and ECV to discriminate DCM from controls were 1184 ms, 40.9 ms and 29.2%, respectively. The AUC of T1, ECV and T2 were 0.87, 0.89, and 0.83, respectively. The combined AUC of the three values was 0.96. CONCLUSION: Native T1 value and ECV overcome some of the limitations of LGE, and the T2 helps to understand the extent of myocardial damage. The combination of T1 and T2 mapping techniques can reveal fibrotic and oedematous changes in the early stages of DCM, providing a more comprehensive assessment of DCM and better guidance for individualised clinical management of patients. IMPLICATIONS FOR PRACTICE: We suggest that the addition of T2 mapping to the routine CMR examination of patients with suspected DCM, and the combined assessment of T1mapping and T2 mapping can provide complementary information about the disease and improve the early diagnosis of DCM.


Cardiomyopathy, Dilated , Contrast Media , Humans , Cardiomyopathy, Dilated/diagnostic imaging , Female , Male , Middle Aged , Adult , Case-Control Studies , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/methods , Sensitivity and Specificity
17.
J Med Case Rep ; 18(1): 204, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38600559

BACKGROUND: Hypocalcaemia is a rare, but reversible, cause of dilated cardiomyopathy causing heart failure. Several case reports have been reported on reversible cardiomyopathy secondary to hypocalcaemia. CASE PRESENTATION: We report a case of 54-year-old female Sri Lankan patient who presented with shortness of breath and was diagnosed with heart failure with reduced ejection fraction due to dilated cardiomyopathy. The etiology for dilated cardiomyopathy was identified as hypocalcemic cardiomyopathy, secondary to primary hypoparathyroidism, which was successfully treated with calcium and vitamin D replacement therapy. CONCLUSION: This adds to literature of this rare cause of reversible cardiomyopathy secondary to hypocalcemia reported from the South Asian region of the world. This case highlights the impact of proper treatment improving the heart failure in patients with hypocalcemic cardiomyopathy.


Cardiomyopathies , Cardiomyopathy, Dilated , Heart Failure , Hypocalcemia , Female , Humans , Middle Aged , Hypocalcemia/complications , Hypocalcemia/drug therapy , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/diagnosis , Calcium/therapeutic use , Cardiomyopathies/complications , Heart Failure/complications
18.
PeerJ ; 12: e17201, 2024.
Article En | MEDLINE | ID: mdl-38680895

Background: Accurate prediction and assessment of myocardial fibrosis (MF) and adverse cardiovascular events (MACEs) are crucial in patients with dilated cardiomyopathy (DCM). Several studies indicate that galectin-3 (gal-3) as a promising prognostic predictor in patients with DCM. Methods: A comprehensive search was conducted in PubMed, EMBASE, the Cochrane Library, and Web of Science for relevant studies up to August 2023. The hazard ratios (HRs) of gal-3 for MACEs in DCM patients, and for MACEs in LGE(+) versus LGE(-) groups, were evaluated. Statistical analysis was performed using STATA SE 14.0 software. Results: Seven studies, encompassing 945 patients, met the eligibility criteria. In DCM patients, abnormally elevated gal-3 levels were indicative of an increased MACEs risk (HR = 1.10, 95% CI [1.00-1.21], I2 = 65.7%, p = 0.008). Compared with the LGE(-) group, the level of gal-3 in LGE(+) group was higher (HR = 1.12, 95% CI [1.05-1.19], I2 = 31.4%, p = 0.233), and the combination of gal-3 and LGE significantly improved the prediction of MACEs. Sensitivity analysis confirmed the robustness of all results. Conclusions: This study's findings suggest that elevated gal-3 levels significantly correlate with increased MACE risk in DCM, highlighting its potential as a biomarker. However, significant heterogeneity among studies necessitates further research to ascertain gal-3's predictive and diagnostic value in DCM prognosis, particularly in conjunction with LGE. PROSPERO ID: CRD42023471199.


Biomarkers , Cardiomyopathy, Dilated , Galectin 3 , Galectins , Humans , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/blood , Cardiomyopathy, Dilated/mortality , Prognosis , Galectin 3/blood , Biomarkers/blood , Galectins/blood , Blood Proteins/analysis , Fibrosis , Myocardium/pathology , Myocardium/metabolism
20.
Sci Rep ; 14(1): 9810, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684702

Heart failure (HF) studies typically focus on ischemic and idiopathic heart diseases. Chronic chagasic cardiomyopathy (CCC) is a progressive degenerative inflammatory condition highly prevalent in Latin America that leads to a disturbance of cardiac conduction system. Despite its clinical and epidemiological importance, CCC molecular pathogenesis is poorly understood. Here we characterize and discriminate the plasma metabolomic profile of 15 patients with advanced HF referred for heart transplantation - 8 patients with CCC and 7 with idiopathic dilated cardiomyopathy (IDC) - using gas chromatography/quadrupole time-of-flight mass spectrometry. Compared to the 12 heart donor individuals, also included to represent the control (CTRL) scenario, patients with advanced HF exhibited a metabolic imbalance with 21 discriminating metabolites, mostly indicative of accumulation of fatty acids, amino acids and important components of the tricarboxylic acid (TCA) cycle. CCC vs. IDC analyses revealed a metabolic disparity between conditions, with 12 CCC distinctive metabolites vs. 11 IDC representative metabolites. Disturbances were mainly related to amino acid metabolism profile. Although mitochondrial dysfunction and loss of metabolic flexibility may be a central mechanistic event in advanced HF, metabolic imbalance differs between CCC and IDC populations, possibly explaining the dissimilar clinical course of Chagas' patients.


Cardiomyopathy, Dilated , Chagas Cardiomyopathy , Heart Transplantation , Metabolomics , Humans , Male , Female , Middle Aged , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/blood , Metabolomics/methods , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/surgery , Cardiomyopathy, Dilated/blood , Adult , Metabolome , Heart Failure/metabolism , Heart Failure/etiology , Aged , Chronic Disease , Gas Chromatography-Mass Spectrometry
...