Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.702
Filter
1.
Nat Commun ; 15(1): 7000, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143095

ABSTRACT

Mutations in the nuclear envelope (NE) protein lamin A/C (encoded by LMNA), cause a severe form of dilated cardiomyopathy (DCM) with early-onset life-threatening arrhythmias. However, molecular mechanisms underlying increased arrhythmogenesis in LMNA-related DCM (LMNA-DCM) remain largely unknown. Here we show that a frameshift mutation in LMNA causes abnormal Ca2+ handling, arrhythmias and disformed NE in LMNA-DCM patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Mechanistically, lamin A interacts with sirtuin 1 (SIRT1) where mutant lamin A/C accelerates degradation of SIRT1, leading to mitochondrial dysfunction and oxidative stress. Elevated reactive oxygen species (ROS) then activates the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-ryanodine receptor 2 (RYR2) pathway and aggravates the accumulation of SUN1 in mutant iPSC-CMs, contributing to arrhythmias and NE deformation, respectively. Taken together, the lamin A/C deficiency-mediated ROS disorder is revealed as central to LMNA-DCM development. Manipulation of impaired SIRT1 activity and excessive oxidative stress is a potential future therapeutic strategy for LMNA-DCM.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Lamin Type A , Myocytes, Cardiac , Oxidative Stress , Reactive Oxygen Species , Sirtuin 1 , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Lamin Type A/metabolism , Lamin Type A/genetics , Induced Pluripotent Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Humans , Sirtuin 1/metabolism , Sirtuin 1/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Frameshift Mutation , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Nuclear Envelope/metabolism , Mitochondria/metabolism , Male , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics
2.
Theranostics ; 14(11): 4462-4480, 2024.
Article in English | MEDLINE | ID: mdl-39113806

ABSTRACT

Rationale: Cardiomyocytes (CMs) undergo dramatic structural and functional changes in postnatal maturation; however, the regulatory mechanisms remain greatly unclear. Cypher/Z-band alternatively spliced PDZ-motif protein (ZASP) is an essential sarcomere component maintaining Z-disc stability. Deletion of mouse Cypher and mutation in human ZASP result in dilated cardiomyopathy (DCM). Whether Cypher/ZASP participates in CM maturation and thereby affects cardiac function has not been answered. Methods: Immunofluorescence, transmission electron microscopy, real-time quantitative PCR, and Western blot were utilized to identify the role of Cypher in CM maturation. Subsequently, RNA sequencing and bioinformatics analysis predicted serum response factor (SRF) as the key regulator. Rescue experiments were conducted using adenovirus or adeno-associated viruses encoding SRF, both in vitro and in vivo. The molecular mechanisms were elucidated through G-actin/F-actin fractionation, nuclear-cytoplasmic extraction, actin disassembly assays, and co-sedimentation assays. Results: Cypher deletion led to impaired sarcomere isoform switch and morphological abnormalities in mitochondria, transverse-tubules, and intercalated discs. RNA-sequencing analysis revealed significant dysregulation of crucial genes related to sarcomere assembly, mitochondrial metabolism, and electrophysiology in the absence of Cypher. Furthermore, SRF was predicted as key transcription factor mediating the transcriptional differences. Subsequent rescue experiments showed that SRF re-expression during the critical postnatal period effectively rectified CM maturation defects and notably improved cardiac function in Cypher-depleted mice. Mechanistically, Cypher deficiency resulted in the destabilization of F-actin and a notable increase in G-actin levels, thereby impeding the nuclear localisation of myocardin-related transcription factor A (MRTFA) and subsequently initiating SRF transcription. Conclusion: Cypher/ZASP plays a crucial role in CM maturation through actin-mediated MRTFA-SRF signalling. The linkage between CM maturation abnormalities and the late-onset of DCM is suggested, providing further insights into the pathogenesis of DCM and potential treatment strategies.


Subject(s)
Actins , Cardiomyopathy, Dilated , Myocytes, Cardiac , Serum Response Factor , Signal Transduction , Trans-Activators , Animals , Myocytes, Cardiac/metabolism , Serum Response Factor/metabolism , Serum Response Factor/genetics , Mice , Actins/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Sarcomeres/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Humans , Mice, Knockout
3.
Comput Biol Med ; 179: 108901, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029429

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is a common cause of heart failure. However, the role of cellular senescence in DCM has not been fully elucidated. Here, we aimed to investigate senescence in DCM, identify senescence related characteristic genes, and explore the potential small molecule compounds for DCM treatment. METHODS: DCM-associated datasets and senescence-related genes were respectively obtained from Gene Expression Omnibus (GEO) database and CellAge database. The characteristic genes were identified through methods including weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and random forest. The expression of characteristic genes was verified in the mouse DCM model. Moreover, the CIBERSORT algorithm was applied to analyze immune characteristics of DCM. Finally, several therapeutic compounds were predicted by CMap analysis, and the potential mechanism of chlorogenic acid (CGA) was investigated by molecular docking and molecular dynamics simulation. RESULTS: Three DCM- and senescence-related characteristic genes (MME, GNMT and PLA2G2A) were ultimately identified through comprehensive transcriptome analysis, and were experimentally verified in the doxorubicin induced mouse DCM. Meanwhile, the established diagnostic model, derived from dataset analysis, showed ideal diagnostic performance for DCM. Immune cell infiltration analysis suggested dysregulation of inflammation in DCM, and the characteristic genes were significantly associated with invasive immune cells. Finally, based on the specific gene expression profile of DCM, several potential therapeutic compounds were predicted through CMap analysis. In addition, molecular docking and molecular dynamics simulations suggested that CGA could bind to the active pocket of MME protein. CONCLUSION: Our study presents three characteristic genes (MME, PLA2G2A, and GNMT) and a novel senescence-based diagnostic nomogram, and discusses potential therapeutic compounds, providing new insights into the diagnosis and treatment of DCM.


Subject(s)
Cardiomyopathy, Dilated , Gene Expression Profiling , Transcriptome , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/drug therapy , Cardiomyopathy, Dilated/metabolism , Mice , Animals , Transcriptome/drug effects , Cellular Senescence/drug effects , Cellular Senescence/genetics , Humans , Chlorogenic Acid/pharmacology , Molecular Docking Simulation , Male
4.
Clin Sci (Lond) ; 138(15): 941-962, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39018488

ABSTRACT

Atrial fibrillation (AF) remains challenging to prevent and treat. A key feature of AF is atrial enlargement. However, not all atrial enlargement progresses to AF. Atrial enlargement in response to physiological stimuli such as exercise is typically benign and reversible. Understanding the differences in atrial function and molecular profile underpinning pathological and physiological atrial remodelling will be critical for identifying new strategies for AF. The discovery of molecular mechanisms responsible for pathological and physiological ventricular hypertrophy has uncovered new drug targets for heart failure. Studies in the atria have been limited in comparison. Here, we characterised mouse atria from (1) a pathological model (cardiomyocyte-specific transgenic (Tg) that develops dilated cardiomyopathy [DCM] and AF due to reduced protective signalling [PI3K]; DCM-dnPI3K), and (2) a physiological model (cardiomyocyte-specific Tg with an enlarged heart due to increased insulin-like growth factor 1 receptor; IGF1R). Both models presented with an increase in atrial mass, but displayed distinct functional, cellular, histological and molecular phenotypes. Atrial enlargement in the DCM-dnPI3K Tg, but not IGF1R Tg, was associated with atrial dysfunction, fibrosis and a heart failure gene expression pattern. Atrial proteomics identified protein networks related to cardiac contractility, sarcomere assembly, metabolism, mitochondria, and extracellular matrix which were differentially regulated in the models; many co-identified in atrial proteomics data sets from human AF. In summary, physiological and pathological atrial enlargement are associated with distinct features, and the proteomic dataset provides a resource to study potential new regulators of atrial biology and function, drug targets and biomarkers for AF.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Heart Atria , Mice, Transgenic , Myocytes, Cardiac , Atrial Fibrillation/physiopathology , Atrial Fibrillation/metabolism , Atrial Fibrillation/genetics , Animals , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Atria/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Disease Models, Animal , Fibrosis , Mice , Humans , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Heart Failure/physiopathology , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology
5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062885

ABSTRACT

BACKGROUND: Mitochondria play a crucial role in adapting to fluctuating energy demands, particularly in various heart diseases. This study investigates mitochondrial morphology near intercalated discs in left ventricular (LV) heart tissues, comparing samples from patients with sinus rhythm (SR), atrial fibrillation (AF), dilated cardiomyopathy (DCM), and ischemic cardiomyopathy (ICM). METHODS: Transmission electron microscopy was used to analyze mitochondria within 0-3.5 µm and 3.5-7 µm of intercalated discs in 9 SR, 10 AF, 9 DCM, and 8 ICM patient samples. Parameters included mean size in µm2 and elongation, count, percental mitochondrial area in the measuring frame, and a conglomeration score. RESULTS: AF patients exhibited higher counts of small mitochondria in the LV myocardium, resembling SR. DCM and ICM groups had fewer, larger, and often hydropic mitochondria. Accumulation rates and percental mitochondrial area were similar across groups. Significant positive correlations existed between other defects/size and hydropic mitochondria and between count/area and conglomeration score, while negative correlations between count and size/other defects and between hydropic mitochondria and count could be seen as well. CONCLUSION: Mitochondrial parameters in the LV myocardium of AF patients were similar to those of SR patients, while DCM and ICM displayed distinct changes, including a decrease in number, an increase in size, and compromised mitochondrial morphology. Further research is needed to fully elucidate the pathophysiological role of mitochondrial morphology in different heart diseases, providing deeper insights into potential therapeutic targets and interventions.


Subject(s)
Mitochondria, Heart , Humans , Male , Female , Pilot Projects , Middle Aged , Aged , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Heart Diseases/metabolism , Heart Diseases/pathology , Microscopy, Electron, Transmission , Adult , Heart Ventricles/pathology , Heart Ventricles/metabolism , Heart Ventricles/ultrastructure , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure
6.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999939

ABSTRACT

Dilated cardiomyopathy (DCM) is characterized by reduced left ventricular ejection fraction (LVEF) and left or biventricular dilatation. We evaluated sex-specific associations of circulating proteins and metabolites with structural and functional heart parameters in DCM. Plasma samples (297 men, 71 women) were analyzed for proteins using Olink assays (targeted analysis) or LC-MS/MS (untargeted analysis), and for metabolites using LC MS/MS (Biocrates AbsoluteIDQ p180 Kit). Associations of proteins (n = 571) or metabolites (n = 163) with LVEF, measured left ventricular end diastolic diameter (LVEDDmeasured), and the dilation percentage of LVEDD from the norm (LVEDDacc. to HENRY) were examined in combined and sex-specific regression models. To disclose protein-metabolite relations, correlation analyses were performed. Associations between proteins, metabolites and LVEF were restricted to men, while associations with LVEDD were absent in both sexes. Significant metabolites were validated in a second independent DCM cohort (93 men). Integrative analyses demonstrated close relations between altered proteins and metabolites involved in lipid metabolism, inflammation, and endothelial dysfunction with declining LVEF, with kynurenine as the most prominent finding. In DCM, the loss of cardiac function was reflected by circulating proteins and metabolites with sex-specific differences. Our integrative approach demonstrated that concurrently assessing specific proteins and metabolites might help us to gain insights into the alterations associated with DCM.


Subject(s)
Cardiomyopathy, Dilated , Humans , Male , Female , Cardiomyopathy, Dilated/blood , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Middle Aged , Sex Characteristics , Aged , Ventricular Function, Left , Tandem Mass Spectrometry/methods , Blood Proteins/metabolism , Adult , Stroke Volume , Biomarkers/blood , Sex Factors , Metabolome
7.
J Clin Invest ; 134(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38950288

ABSTRACT

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.


Subject(s)
Cardiomyopathy, Dilated , Frameshift Mutation , Mice, Knockout , Myocytes, Cardiac , Organoids , Adult , Animals , Female , Humans , Male , Mice , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Disease Models, Animal , Myocardial Contraction/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Organoids/metabolism , Organoids/pathology
8.
Circ Res ; 135(3): 434-449, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38864216

ABSTRACT

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.


Subject(s)
Cardiomegaly , Mice, Knockout , RNA, Long Noncoding , Animals , Humans , Male , Mice , Cardiomegaly/metabolism , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Cardiomegaly/pathology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/prevention & control , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ventricular Remodeling
9.
Circ Res ; 135(2): 301-313, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38860363

ABSTRACT

BACKGROUND: The tumor suppressor and proapoptotic transcription factor P53 is induced (and activated) in several forms of heart failure, including cardiotoxicity and dilated cardiomyopathy; however, the precise mechanism that coordinates its induction with accessibility to its transcriptional promoter sites remains unresolved, especially in the setting of mature terminally differentiated (nonreplicative) cardiomyocytes. METHODS: Male and female control or TRIM35 (tripartite motif containing 35) overexpression adolescent (aged 1-3 months) and adult (aged 4-6 months) transgenic mice were used for all in vivo experiments. Primary adolescent or adult mouse cardiomyocytes were isolated from control or TRIM35 overexpression transgenic mice for all in vitro experiments. Adenovirus or small-interfering RNA was used for all molecular experiments to overexpress or knockdown, respectively, target genes in primary mouse cardiomyocytes. Patient dilated cardiomyopathy or nonfailing left ventricle samples were used for translational and mechanistic insight. Chromatin immunoprecipitation and DNA sequencing or quantitative real-time polymerase chain reaction (qPCR) was used to assess P53 binding to its transcriptional promoter targets, and RNA sequencing was used to identify disease-specific signaling pathways. RESULTS: Here, we show that E3-ubiquitin ligase TRIM35 can directly monoubiquitinate lysine-120 (K120) on histone 2B in postnatal mature cardiomyocytes. This epigenetic modification was sufficient to promote chromatin remodeling, accessibility of P53 to its transcriptional promoter targets, and elongation of its transcribed mRNA. We found that increased P53 transcriptional activity (in cardiomyocyte-specific Trim35 overexpression transgenic mice) was sufficient to initiate heart failure and these molecular findings were recapitulated in nonischemic human LV dilated cardiomyopathy samples. CONCLUSIONS: These findings suggest that TRIM35 and the K120Ub-histone 2B epigenetic modification are molecular features of cardiomyocytes that can collectively predict dilated cardiomyopathy pathogenesis.


Subject(s)
Heart Failure , Histones , Mice, Transgenic , Myocytes, Cardiac , Tumor Suppressor Protein p53 , Ubiquitination , Animals , Female , Humans , Male , Mice , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cells, Cultured , Heart Failure/metabolism , Heart Failure/genetics , Heart Failure/pathology , Histones/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Promoter Regions, Genetic , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
10.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928463

ABSTRACT

The prevalence of dilated cardiomyopathy (DCM) is increasing globally, highlighting the need for innovative therapeutic approaches to prevent its onset. In this study, we examined the energetic and epigenetic distinctions between dilated and non-dilated human myocardium-derived mesenchymal stem/stromal cells (hmMSCs) and assessed the effects of class I and II HDAC inhibitors (HDACi) on these cells and their cardiomyogenic differentiation. Cells were isolated from myocardium biopsies using explant outgrowth methods. Mitochondrial and histone deacetylase activities, ATP levels, cardiac transcription factors, and structural proteins were assessed using flow cytometry, PCR, chemiluminescence, Western blotting, and immunohistochemistry. The data suggest that the tested HDAC inhibitors improved acetylation and enhanced the energetic status of both types of cells, with significant effects observed in dilated myocardium-derived hmMSCs. Additionally, the HDAC inhibitors activated the cardiac transcription factors Nkx2-5, HOPX, GATA4, and Mef2C, and upregulated structural proteins such as cardiac troponin T and alpha cardiac actin at both the protein and gene levels. In conclusion, our findings suggest that HDACi may serve as potential modulators of the energetic status and cardiomyogenic differentiation of human heart hmMSCs. This avenue of exploration could broaden the search for novel therapeutic interventions for dilated cardiomyopathy, ultimately leading to improvements in heart function.


Subject(s)
Cardiomyopathy, Dilated , Cell Differentiation , Histone Deacetylase Inhibitors , Mesenchymal Stem Cells , Humans , Histone Deacetylase Inhibitors/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cell Differentiation/drug effects , Myocardium/cytology , Myocardium/metabolism , Myocardium/pathology , Histone Deacetylases/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , MEF2 Transcription Factors/metabolism , MEF2 Transcription Factors/genetics , Homeobox Protein Nkx-2.5/metabolism , Homeobox Protein Nkx-2.5/genetics , Acetylation/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Cells, Cultured
11.
Cells ; 13(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891055

ABSTRACT

Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.


Subject(s)
Endosomes , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Induced Pluripotent Stem Cells/metabolism , Endosomes/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Endocytosis , Mutation/genetics , Computer Simulation , rhoA GTP-Binding Protein/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Imaging, Three-Dimensional , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Models, Biological , Tropomyosin/metabolism , Tropomyosin/genetics
12.
Circ Heart Fail ; 17(6): e011057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847093

ABSTRACT

BACKGROUND: The immune systems and chronic inflammation are implicated in the pathogenesis of dilated cardiomyopathy (DCM) and heart failure. However, the significance of neutrophil extracellular traps (NETs) in heart failure remains to be elucidated. METHODS: We enrolled consecutive 62 patients with heart failure with idiopathic DCM who underwent endomyocardial biopsy. Biopsy specimens were subjected to fluorescent immunostaining to detect NETs, and clinical and outcome data were collected. Ex vivo and in vivo experiments were conducted. RESULTS: The numbers of NETs per myocardial tissue area and the proportion of NETs per neutrophil were significantly higher in patients with DCM compared with non-DCM control subjects without heart failure, and the numbers of NETs were negatively correlated with left ventricular ejection fraction. Patients with DCM with NETs (n=32) showed lower left ventricular ejection fraction and higher BNP (B-type natriuretic peptide) than those without NETs (n=30). In a multivariable Cox proportional hazard model, the presence of NETs was independently associated with an increased risk of adverse cardiac events in patients with DCM. To understand specific underlying mechanisms, extracellular flux analysis in ex vivo revealed that NETs-containing conditioned medium from wild-type neutrophils or purified NET components led to impaired mitochondrial oxygen consumption of cardiomyocytes, while these effects were abolished when PAD4 (peptidyl arginine deiminase 4) in neutrophils was genetically ablated. In a murine model of pressure overload, NETs in myocardial tissue were predominantly detected in the acute phase and persisted throughout the ongoing stress. Four weeks after transverse aortic constriction, left ventricular ejection fraction was reduced in wild-type mice, whereas PAD4-deficient mice displayed preserved left ventricular ejection fraction without inducing NET formation. CONCLUSIONS: NETs in myocardial tissue contribute to cardiac dysfunction and adverse outcomes in patients with heart failure with DCM, potentially through mitochondrial dysfunction of cardiomyocytes.


Subject(s)
Cardiomyopathy, Dilated , Extracellular Traps , Heart Failure , Myocardium , Neutrophils , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/metabolism , Humans , Extracellular Traps/metabolism , Heart Failure/physiopathology , Male , Female , Middle Aged , Animals , Myocardium/pathology , Myocardium/metabolism , Neutrophils/metabolism , Stroke Volume/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ventricular Function, Left/physiology , Mice , Aged , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mice, Inbred C57BL , Biopsy
13.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727290

ABSTRACT

Dilated cardiomyopathy (DCM) is the most common cause of heart failure, with a complex aetiology involving multiple cell types. We aimed to detect cell-specific transcriptomic alterations in DCM through analysis that leveraged recent advancements in single-cell analytical tools. Single-cell RNA sequencing (scRNA-seq) data from human DCM cardiac tissue were subjected to an updated bioinformatic workflow in which unsupervised clustering was paired with reference label transfer to more comprehensively annotate the dataset. Differential gene expression was detected primarily in the cardiac fibroblast population. Bulk RNA sequencing was performed on an independent cohort of human cardiac tissue and compared with scRNA-seq gene alterations to generate a stratified list of higher-confidence, fibroblast-specific expression candidates for further validation. Concordant gene dysregulation was confirmed in TGFß-induced fibroblasts. Functional assessment of gene candidates showed that AEBP1 may play a significant role in fibroblast activation. This unbiased approach enabled improved resolution of cardiac cell-type-specific transcriptomic alterations in DCM.


Subject(s)
Cardiomyopathy, Dilated , Fibroblasts , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Fibroblasts/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Sequence Analysis, RNA/methods , Myocardium/metabolism , Myocardium/pathology , Gene Expression Profiling
14.
Sci China Life Sci ; 67(6): 1155-1169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811441

ABSTRACT

CFIRL is a long noncoding RNA (lncRNA), we previously identified as the most significantly upregulated lncRNA in the failing hearts of patients with dilated cardiomyopathy (DCM). In this study, we determined the function of CFIRL and its role in DCM. Real-time polymerase chain reaction and in situ hybridization assays revealed that CFIRL was primarily localized in the nucleus of cardiac fibroblasts and robustly increased in failing hearts. Global knockdown or fibroblast-specific knockout of CFIRL attenuated transverse aortic constriction (TAC)-induced cardiac dysfunction and fibrosis in vivo. Overexpression of CFIRL in vitro promoted fibroblast proliferation and aggravated angiotensin II-induced differentiation to myofibroblasts. CFIRL knockdown attenuated these effects. Mechanistically, RNA pull-down assay and gene expression profiling revealed that CFIRL recruited ENO1, a newly identified noncanonical transcriptional factor, to activate IL-6 transcription. IL-6 exerted a paracrine effect on cardiomyocytes to promote cardiac hypertrophy, which can be prevented by CFIRL knockdown. These findings uncover the critical role of CFIRL, a fibroblast-associated lncRNA, in heart failure by facilitating crosstalk between fibroblasts and cardiomyocytes. CFIRL knockdown might be a potent strategy to prevent cardiac remodeling in heart failure, particularly in DCM.


Subject(s)
Cardiomyopathy, Dilated , Fibroblasts , Fibrosis , Myocytes, Cardiac , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Animals , Fibroblasts/metabolism , Male , Humans , Myocytes, Cardiac/metabolism , Mice , Cell Proliferation , Interleukin-6/metabolism , Interleukin-6/genetics , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Myofibroblasts/metabolism , Heart Failure/genetics , Heart Failure/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cell Differentiation , Gene Knockdown Techniques
15.
Biochem Biophys Res Commun ; 723: 150175, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38820625

ABSTRACT

BACKGROUND: Variants of the SCN5A gene, which encodes the NaV1.5 cardiac sodium channel, have been linked to arrhythmic disorders associated with dilated cardiomyopathy (DCM). However, the precise pathological mechanisms remain elusive. The present study aimed to elucidate the pathophysiological consequences of the DCM-linked Nav1.5/R219H variant, which is known to generate a gating pore current, using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in monolayers. METHODS: Ventricular- and atrial-like hiPSC-CM monolayers were generated from DCM patients carrying the R219H SCN5A variant as well as from healthy control individuals. CRISPR-corrected hiPSC-CMs served as isogenic controls. Simultaneous optical mapping of action potentials (APs) and calcium transients (CaTs) was employed to measure conduction velocities (CVs) and AP durations (APDs) and served as markers of electrical excitability. Calcium handling was evaluated by assessing CaT uptake (half-time to peak), recapture (tau of decay), and durations (TD50 and TD80). A multi-electrode array (MEA) analysis was conducted on hiPSC-CM monolayers to measure field potential (FP) parameters, including corrected Fridericia FP durations (FPDc). RESULTS: Our results revealed that CVs were significantly reduced by more than 50 % in both ventricular- and atrial-like hiPSC-CM monolayers carrying the R219H variant compared to the control group. APDs were also prolonged in the R219H group compared to the control and CRISPR-corrected groups. CaT uptake, reuptake, and duration were also markedly delayed in the R219H group compared to the control and CRISPR-corrected groups in both the ventricular- and the atrial-like hiPSC-CM monolayers. Lastly, the MEA data revealed a notably prolonged FPDc in the ventricular- and atrial-like hiPSC-CMs carrying the R219H variant compared to the control and isogenic control groups. CONCLUSIONS: These findings highlight the impact of the gating pore current on AP propagation and calcium homeostasis within a functional syncytium environment and offer valuable insights into the potential mechanisms underlying DCM pathophysiology.


Subject(s)
Action Potentials , Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Myocytes, Cardiac/cytology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/pathology , Calcium/metabolism , Ion Channel Gating , Cells, Cultured , Electrophysiological Phenomena
16.
J Clin Invest ; 134(13)2024 May 14.
Article in English | MEDLINE | ID: mdl-38743494

ABSTRACT

Cardiomyocyte sarcomeres contain localized ribosomes, but the factors responsible for their localization and the significance of localized translation are unknown. Using proximity labeling, we identified ribosomal protein SA (RPSA) as a Z-line protein. In cultured cardiomyocytes, the loss of RPSA led to impaired local protein translation and reduced sarcomere integrity. By employing CAS9-expressing mice, along with adeno-associated viruses expressing CRE recombinase and single-guide RNAs targeting Rpsa, we knocked out Rpsa in vivo and observed mislocalization of ribosomes and diminished local translation. These genetic mosaic mice with Rpsa knockout in a subset of cardiomyocytes developed dilated cardiomyopathy, featuring atrophy of RPSA-deficient cardiomyocytes, compensatory hypertrophy of unaffected cardiomyocytes, left ventricular dilation, and impaired contractile function. We demonstrated that RPSA C-terminal domain is sufficient for localization to the Z-lines and that if the microtubule network is disrupted RPSA loses its sarcomeric localization. These findings highlight RPSA as a ribosomal factor essential for ribosome localization to the Z-line, facilitating local translation and sarcomere maintenance.


Subject(s)
Mice, Knockout , Myocytes, Cardiac , Protein Biosynthesis , Ribosomal Proteins , Sarcomeres , Animals , Sarcomeres/metabolism , Sarcomeres/pathology , Sarcomeres/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ribosomes/metabolism , Ribosomes/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology
17.
Cardiovasc Res ; 120(9): 1037-1050, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38722811

ABSTRACT

AIMS: Doxorubicin (DOX) is a widely used anthracycline anticancer agent; however, its irreversible effects on the heart can result in DOX-induced cardiotoxicity (DICT) after cancer treatment. Unfortunately, the pathophysiology of DICT has not yet been fully elucidated, and there are no effective strategies for its prevention or treatment. In this investigation, the novel role of transducin beta-like protein 1 (TBL1) in developing and regulating DICT was explored. METHODS AND RESULTS: We observed a reduction in TBL1 protein expression levels as well as cleavage events in the transplanted cardiac tissues of patients diagnosed with Dilated Cardiomyopathy and DICT. It was revealed that DOX selectively induces TBL1 cleavage at caspase-3 preferred sites-D125, D136, and D215. Interestingly, overexpression of the uncleaved TBL1 mutant (TBL1uclv) variant reduced apoptosis, effectively preventing DOX-induced cell death. We confirmed that cleaved TBL1 cannot form a complex with ß-catenin. As a result, Wnt reporter activity and Wnt target gene expression collectively indicate a decrease in Wnt/ß-catenin signalling, leading to DICT progression. Furthermore, the cleaved TBL1 triggered DOX-induced abnormal electrophysiological features and disrupted calcium homeostasis. However, these effects were improved in TBL1uclv-overexpressing human-induced pluripotent stem cell-derived cardiomyocytes. Finally, in a DICT mouse model, TBL1uclv overexpression inhibited the DICT-induced reduction of cardiac contractility and collagen accumulation, ultimately protecting cardiomyocytes from cell death. CONCLUSION: Our findings reveal that the inhibition of TBL1 cleavage not only mitigates apoptosis but also enhances cardiomyocyte function, even in the context of DOX administration. Consequently, this study's results suggest that inhibiting TBL1 cleavage may be a novel strategy to ameliorate DICT.


Subject(s)
Apoptosis , Cardiotoxicity , Doxorubicin , Myocytes, Cardiac , Wnt Signaling Pathway , beta Catenin , Doxorubicin/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/enzymology , Wnt Signaling Pathway/drug effects , Humans , Animals , Apoptosis/drug effects , beta Catenin/metabolism , beta Catenin/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/chemically induced , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/physiopathology , Male , Transducin/metabolism , Transducin/genetics , Disease Models, Animal , Mice, Inbred C57BL , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/pathology , Female , Case-Control Studies , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/toxicity
18.
Cell Rep ; 43(6): 114284, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38814785

ABSTRACT

Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.


Subject(s)
Extracellular Matrix , Membrane Proteins , Myocytes, Cardiac , Nuclear Envelope , Nucleotidyltransferases , Signal Transduction , Animals , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Nuclear Envelope/metabolism , Extracellular Matrix/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Lamin Type A/metabolism , Lamin Type A/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Disease Models, Animal , Mice, Inbred C57BL , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , DNA Damage
19.
Biomolecules ; 14(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785931

ABSTRACT

Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.


Subject(s)
Cardiomyopathy, Dilated , MicroRNAs , RNA, Messenger , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , Male , Gene Expression Profiling , Gene Expression Regulation , Middle Aged , Female
20.
J Gen Physiol ; 156(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38727632

ABSTRACT

JGP study (Duno-Miranda et al. https://doi.org/10.1085/jgp.202313522) shows that a mutation linked to dilated cardiomyopathy stabilizes ß-cardiac myosin in its autoinhibited, super-relaxed state.


Subject(s)
Mutation , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL