Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47.311
1.
BMC Pediatr ; 24(1): 309, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711130

Schinzel-Giedion syndrome (SGS) is a severe multisystem disorder characterized by distinctive facial features, profound intellectual disability, refractory epilepsy, cortical visual impairment, hearing loss, and various congenital anomalies. SGS is attributed to gain-of-function (GoF) variants in the SETBP1 gene, with reported variants causing canonical SGS located within a 12 bp hotspot region encoding SETBP1 residues aa868-871 (degron). Here, we describe a case of typical SGS caused by a novel heterozygous missense variant, D874V, adjacent to the degron. The female patient was diagnosed in the neonatal period and presented with characteristic facial phenotype (midface retraction, prominent forehead, and low-set ears), bilateral symmetrical talipes equinovarus, overlapping toes, and severe bilateral hydronephrosis accompanied by congenital heart disease, consistent with canonical SGS. This is the first report of a typical SGS caused by a, SETBP1 non-degron missense variant. This case expands the genetic spectrum of SGS and provides new insights into genotype-phenotype correlations.


Abnormalities, Multiple , Carrier Proteins , Hand Deformities, Congenital , Mutation, Missense , Nails, Malformed , Humans , Female , Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Infant, Newborn , Nuclear Proteins/genetics , Intellectual Disability/genetics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/complications , Clubfoot/genetics , Phenotype , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Degrons
2.
J Genet ; 1032024.
Article En | MEDLINE | ID: mdl-38736250

In acute lymphoblastic leukaemia (ALL), elevated foetal haemoglobin (HbF) levels have been associated with the prognosis of patients. Genetic variants in HbF regulatory genes: BAF chromatin remodelling complex subunit (BCL11A), HBS1L-MYB transcriptional GTPase intergenic region (HBS1L-MYB), Krüppel-like factor 1 (KLF1), haemoglobin gamma subunit 2 (HBG2), haemoglobin gamma subunit 1 (HBG1), and haemoglobin subunit beta pseudogene 1 (HBBP1) are often associatedwith elevatedHbF concentration. This study investigated the association of genetic variants in HbF regulatory genes with HbF concentration, unfavourable prognosis, and outcome in children with ALL.We quantified HbF concentration and genotyped 17 genetic variants in 48 patients with ALL and 64 children without ALL as a reference group. HbF concentrationwas higher in patients than in the reference group (4.4%vs 1.4%), and 75%(n = 36) of thepatientshadHbF>2.5%.Unfavourable prognosis ALL was established in 68.8% (n = 33) of the patients. Variant HBG2 rs7482144 was associated with high HbF concentration (P = 0.015); while HBS1L-MYB rs9399137 (P = 0.001), HBG2 rs7482144 (P = 0.001) and the ß-globin genes HBG2, HBG1, and HBPP1 haplotypeTGC(P = 0.017) with unfavourable prognosisALL.Additionally, variantBCL11A rs4671393 showed a protective role (P = 0.0001). In conclusion, variants HBG2 rs7482144, HBS1L-MYB rs9399137 and BCL11A rs4671393 may play a significant role in ALL.


Fetal Hemoglobin , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Repressor Proteins , Humans , Fetal Hemoglobin/genetics , Female , Male , Child , Prognosis , Repressor Proteins/genetics , Child, Preschool , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Infant , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Carrier Proteins/genetics , Adolescent , Genotype , gamma-Globins/genetics , GTP-Binding Proteins
3.
Elife ; 122024 May 10.
Article En | MEDLINE | ID: mdl-38727583

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Carrier Proteins , Disease Models, Animal , Retinal Cone Photoreceptor Cells , Retinitis Pigmentosa , Animals , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Mutation, Missense , Cell Survival , Alleles , Gene Deletion , Thioredoxins/genetics , Thioredoxins/metabolism , Retinal Pigment Epithelium/metabolism
4.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38748453

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Actin Cytoskeleton , Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actins/metabolism , Pseudopodia/metabolism , Humans , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 749-752, 2024 Jun 10.
Article Zh | MEDLINE | ID: mdl-38818563

OBJECTIVE: To analyze the clinical characteristics and genetic basis of a male patient with primary infertility caused by Acephalic spermatozoa syndrome. METHODS: A patient who had presented at the Henan Provincial People's Hospital on October 1, 2022 was selected as the study subject. Clinical data and results of laboratory exams and sperm electron microscopy were collected. The patient was subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing and pathogenicity analysis. RESULTS: WES revealed that the patient has harbored compound heterozygous variants of the PMFBP1 gene, namely c.853del (p.Ala285Leufs*24) and c.1276A>T (p.Lys426X), which were both unreported previously. Sanger sequencing suggested that the c.853del (p.Ala285Leufs*24) variant has derived from his deceased mother, whilst the c.1276A>T (p.Lys426X) variant has derived from his father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as pathogenic (PVS1+PM2_Supporting+PP4). CONCLUSION: The compound heterozygous variants of the PMFBP1 gene probably underlay the Acephalic spermatozoa syndrome in this patient. The discovery of the novel variants has also enriched the mutational spectrum of Acephalic spermatozoa syndrome.


Spermatozoa , Humans , Male , Adult , Mutation , Exome Sequencing , Infertility, Male/genetics , Carrier Proteins/genetics , Genetic Testing , Teratozoospermia/genetics , Microfilament Proteins
6.
Mol Cancer ; 23(1): 94, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720298

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Carrier Proteins , Fatty Acids , Membrane Proteins , Neoplasm Proteins , Ovarian Neoplasms , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Tumor Microenvironment , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Animals , Thyroid Hormones/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Warburg Effect, Oncologic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays , Cell Proliferation , Proteoglycans
7.
Nat Commun ; 15(1): 4430, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789420

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


BRCA1 Protein , BRCA2 Protein , DNA Replication , Drug Resistance, Neoplasm , Histones , Poly(ADP-ribose) Polymerase Inhibitors , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , Histones/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Replication/drug effects , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Cell Line, Tumor , Female , Drug Resistance, Neoplasm/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Breaks, Double-Stranded , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Mice , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , DNA Repair , Carrier Proteins/metabolism , Carrier Proteins/genetics , DNA Damage , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics
8.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789868

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Apoptosis , Carrier Proteins , Rutin , Rutin/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Humans , Animals , Apoptosis/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/genetics , Male
9.
Retrovirology ; 21(1): 10, 2024 May 23.
Article En | MEDLINE | ID: mdl-38778414

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


HIV-1 , Immunity, Innate , Nucleotidyltransferases , gag Gene Products, Human Immunodeficiency Virus , HIV-1/immunology , HIV-1/genetics , HIV-1/physiology , Humans , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Antiviral Restriction Factors , Macrophages/immunology , Macrophages/virology , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , THP-1 Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/immunology , Immune Evasion , Capsid/metabolism , Capsid/immunology , Virus Replication , Virion/metabolism , Virion/genetics , Virion/immunology , Host-Pathogen Interactions/immunology , DNA, Viral/genetics , Cell Line
10.
BMC Pulm Med ; 24(1): 223, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714933

BACKGROUND: Pulmonary fibromatosis (PF) is a specific variant of fibromatosis, which is rarely reported occurring in the lung. PF with HIPK2-YAP1 fusion was a novel entity. CASE PRESENTATION: In this report, a 66-year-old male with PF had been smoking over 40 years. Multiple cords and small nodules in both lungs had been detected in a health examination two years earlier at our hospital. But approximately twofold enlarged in the lingual segment of the upper lobe in the left lung were disclosed in this year. Immunohistochemical analysis demonstrated that the vimentin and ß-Catenin were positive in the largest nodule. After underwent a DNA/RNA panel next-generation sequencing (NGS), missense mutations and HIPK2-YAP1 fusion were found in this sample. Ultimately, the case diagnosis as PF with HIPK2-YAP1 fusion after multidisciplinary treatment. Currently, the patient is doing well and recurrence-free at 14 months post-surgery. CONCLUSIONS: It's difficult for patients with complex morphology to make accurate diagnosis solely based on morphology and immunohistochemistry. But molecular detection is an effective method for further determining pathological subtypes.


Adaptor Proteins, Signal Transducing , Carrier Proteins , Lung Neoplasms , Protein Serine-Threonine Kinases , Transcription Factors , YAP-Signaling Proteins , Humans , Male , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Mutation, Missense
11.
Immunohorizons ; 8(5): 363-370, 2024 May 01.
Article En | MEDLINE | ID: mdl-38775688

Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1ß protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1ß mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1ß.


Choroidal Neovascularization , Indenes , Inflammasomes , Interleukin-1beta , Microglia , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Microglia/metabolism , Monocytes/metabolism , Mice, Knockout , Sulfones/pharmacology , Mice, Inbred C57BL , Furans/pharmacology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/metabolism , Macrophages/immunology , Sulfonamides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Choroid/metabolism , Choroid/pathology , Disease Models, Animal , Lasers/adverse effects , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/genetics
12.
J Transl Med ; 22(1): 514, 2024 May 29.
Article En | MEDLINE | ID: mdl-38812032

The aging process of the kidneys is accompanied with several structural diseases. Abnormal fiber formation disrupts the balance of kidney structure and function, causing to end-stage renal disease and subsequent renal failure. Despite this, the precise mechanism underlying renal damage in aging remains elusive. In this study, ABI3BP gene knockout mice were used to investigate the role of ABI3BP in renal aging induced by irradiation. The results revealed a significant increase in ABI3BP expression in HK2 cells and kidney tissue of aging mice, with ABI3BP gene knockout demonstrating a mitigating effect on radiation-induced cell aging. Furthermore, the study observed a marked decrease in Klotho levels and an increase in ferroptosis in renal tissue and HK2 cells following irradiation. Notably, ABI3BP gene knockout not only elevated Klotho expression but also reduced ferroptosis levels. A significant negative correlation between ABI3BP and Klotho was established. Further experiments demonstrated that Klotho knockdown alleviated the aging inhibition caused by ABI3BP downregulation. This study identifies the upregulation of ABI3BP in aged renal tubular epithelial cells, indicating a role in promoting ferroptosis and inducing renal aging by inhibiting Klotho expression.


Aging , Ferroptosis , Kidney , Klotho Proteins , Mice, Knockout , Animals , Humans , Male , Mice , Aging/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line , Glucuronidase/metabolism , Kidney/metabolism , Kidney/pathology , Klotho Proteins/metabolism , Mice, Inbred C57BL
13.
Clin Transl Med ; 14(5): e1660, 2024 May.
Article En | MEDLINE | ID: mdl-38764260

BACKGROUND: Human dermal fibroblasts (HDFs) are essential in the processes of skin ageing and wound healing. However, the underlying mechanism of HDFs in skin healing of the elderly has not been well defined. This study aims to elucidate the mechanisms of HDFs senescence and how senescent HDFs affect wound healing in aged skin. METHODS: The expression and function of sperm equatorial segment protein 1 (SPESP1) in skin ageing were evaluated via in vivo and in vitro experiments. To delve into the potential molecular mechanisms by which SPESP1 influences skin ageing, a combination of techniques was employed, including proteomics, RNA sequencing, immunoprecipitation, chromatin immunoprecipitation and liquid chromatography-mass spectrometry analyses. Clearance of senescent cells by dasatinib plus quercetin (D+Q) was investigated to explore the role of SPESP1-induced senescent HDFs in wound healing. RESULTS: Here, we define the critical role of SPESP1 in ameliorating HDFs senescence and retarding the skin ageing process. Mechanistic studies demonstrate that SPESP1 directly binds to methyl-binding protein, leading to Decorin demethylation and subsequently upregulation of its expression. Moreover, SPESP1 knockdown delays wound healing in young mice and SPESP1 overexpression induces wound healing in old mice. Notably, pharmacogenetic clearance of senescent cells by D+Q improved wound healing in SPESP1 knockdown skin. CONCLUSIONS: Taken together, these findings reveal the critical role of SPESP1 in skin ageing and wound healing, expecting to facilitate the development of anti-ageing strategies and improve wound healing in the elderly.


Carrier Proteins , Cellular Senescence , Fibroblasts , Seminal Plasma Proteins , Wound Healing , Animals , Humans , Male , Mice , Cellular Senescence/drug effects , Down-Regulation/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Quercetin/pharmacology , Skin Aging/drug effects , Wound Healing/drug effects , Carrier Proteins/genetics , Carrier Proteins/metabolism , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism
14.
Neurol Res ; 46(7): 583-592, 2024 Jul.
Article En | MEDLINE | ID: mdl-38797679

BACKGROUND: Glioma is a common intracranial tumor, exhibiting a high degree of aggressiveness and invasiveness. Pyruvate kinase M2 (PKM2) is overexpressed in glioma tissues. However, the biological role of PKM2 in glioma is unclear. METHODS: The qRT-PCR, CCK-8, Transwell, flow cytometry detection, western blot assays, ELISA assay, and pyruvate kinase activity assays were performed in glioma cells transfected with PKM2 shRNA to explore the function of PKM2 in glioma progression. Then, STRING website was used to predict the proteins that interacted with PKM2, and Co-IP assay was conducted to further validate their interaction. Subsequently, the above experiments were performed again to find the effect of catenin beta 1 (CTNNB1) overexpression on PKM2-deficient glioma cells. The transplanted tumor models were also established to further validate our findings. RESULTS: PKM2 was up-regulated in glioma cells and tissues. After inhibiting PKM2, the proliferation, migration, glycolysis, and EMT of glioma cells were significantly decreased, and the proportion of apoptosis was increased. The prediction results of STRING website showed that CTNNB1 and PKM2 had the highest interaction score. The correlation between CTNNB1 and PKM2 was further confirmed by Co-IP test. PKM2 knockdown suppressed glioma cell proliferation, migration, glycolysis, and EMT, while CTNNB1 overexpression rescued these inhibitory effects. Correspondingly, PKM2 knockdown inhibited glioma growth in vivo. CONCLUSION: In summary, these findings indicated that PKM2 promotes glioma progression by mediating CTNNB1 expression, providing a possible molecular marker for the clinical management of gliomas.


Brain Neoplasms , Cell Proliferation , Disease Progression , Glioma , Thyroid Hormone-Binding Proteins , Thyroid Hormones , beta Catenin , Glioma/pathology , Glioma/genetics , Glioma/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Animals , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice, Nude , Cell Movement/physiology , Apoptosis/physiology , Gene Expression Regulation, Neoplastic , Male , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics
15.
Commun Biol ; 7(1): 648, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802450

In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.


Carrier Proteins , Mice, Knockout , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice , Sarcomeres/metabolism , Myofibrils/metabolism , Myofibrils/genetics , Muscle, Skeletal/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Male , Myosins/metabolism , Myosins/genetics
16.
Metallomics ; 16(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38692844

Eukaryotic DNA codes not only for proteins but contains a wealth of information required for accurate splicing of messenger RNA precursors and inclusion of constitutively or alternatively spliced exons in mature transcripts. This "auxiliary" splicing code has been characterized as exonic splicing enhancers and silencers (ESE and ESS). The exact interplay between protein and splicing codes is, however, poorly understood. Here, we show that exons encoding copper-coordinating amino acids in human cuproproteins lack ESEs and/or have an excess of ESSs, yet RNA sequencing and expressed sequence tags data show that they are more efficiently included in mature transcripts by the splicing machinery than average exons. Their largely constitutive inclusion in messenger RNA is facilitated by stronger splice sites, including polypyrimidine tracts, consistent with an important role of the surrounding intron architecture in ensuring high expression of metal-binding residues during evolution. ESE/ESS profiles of codons and entire exons that code for copper-coordinating residues were very similar to those encoding residues that coordinate zinc but markedly different from those that coordinate calcium. Together, these results reveal how the traditional and auxiliary splicing motifs responded to constraints of metal coordination in proteins.


Copper , Exons , RNA Splicing , Humans , Exons/genetics , Copper/metabolism , Alternative Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Enhancer Elements, Genetic/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism
17.
Nutrients ; 16(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38794644

Endothelial dysfunction is a crucial event in the early pathogenesis of cardiovascular diseases and is linked to magnesium (Mg) deficiency. Indeed, in endothelial cells, low Mg levels promote the acquisition of a pro-inflammatory and pro-atherogenic phenotype. This paper investigates the mechanisms by which Mg deficiency promotes oxidative stress and affects endothelial behavior in human umbilical vascular endothelial cells (HUVECs). Our data show that low Mg levels trigger oxidative stress initially by increasing NAPDH oxidase activity and then by upregulating the pro-oxidant thioredoxin-interacting protein TXNIP. The overproduction of reactive oxygen species (ROS) activates NF-κB, leading to its increased binding to the inducible nitric oxide synthase (iNOS) promoter, with the consequent increase in iNOS expression. The increased levels of nitric oxide (NO) generated by upregulated iNOS contribute to disrupting endothelial cell function by inhibiting growth and increasing permeability. In conclusion, we provide evidence that multiple mechanisms contribute to generate a pro-oxidant state under low-Mg conditions, ultimately affecting endothelial physiology. These data add support to the notion that adequate Mg levels play a significant role in preserving cardiovascular health and may suggest new approaches to prevent or manage cardiovascular diseases.


Human Umbilical Vein Endothelial Cells , Magnesium Deficiency , Magnesium , Nitric Oxide Synthase Type II , Nitric Oxide , Oxidative Stress , Reactive Oxygen Species , Humans , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Magnesium Deficiency/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Magnesium/metabolism , NF-kappa B/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Endothelium, Vascular/metabolism
18.
Physiol Plant ; 176(3): e14359, 2024.
Article En | MEDLINE | ID: mdl-38797943

Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.


Carrier Proteins , Droughts , Endophytes , Plant Proteins , Endophytes/physiology , Endophytes/metabolism , Antarctic Regions , Carrier Proteins/metabolism , Carrier Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Fungi/physiology , Fungi/genetics , Stress, Physiological , Molecular Dynamics Simulation
19.
Int J Biol Macromol ; 270(Pt 1): 132364, 2024 Jun.
Article En | MEDLINE | ID: mdl-38750837

The mitochondrial inner membrane contains some hydrophobic proteins that mediate the exchange of metabolites between the mitochondrial matrix and the cytosol. Ctp1 and Yhm2 are two carrier proteins in the yeast Saccharomyces cerevisiae responsible for the transport of citrate, a tricarboxylate involved in several metabolic pathways. Since these proteins also contribute to respiratory metabolism, in this study we investigated for the first time whether changes in citrate transport can affect the structural organization and functional properties of respiratory complexes. Through experiments in yeast mutant cells in which the gene encoding Ctp1 or Yhm2 was deleted, we found that in the absence of either mitochondrial citrate transporter, mitochondrial respiration was impaired. Structural analysis of the respiratory complexes III and IV revealed different expression levels of the catalytic and supernumerary subunits in the Δctp1 and Δyhm2 strains. In addition, Δyhm2 mitochondria appeared to be more sensitive than Δctp1 to the oxidative damage. Our results provide the first evidence for a coordinated modulation of mitochondrial citrate transport and respiratory chain activity in S. cerevisiae metabolism.


Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Mitochondria/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Electron Transport , Carrier Proteins/metabolism , Carrier Proteins/genetics , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics
20.
HLA ; 103(4): e15457, 2024 Apr.
Article En | MEDLINE | ID: mdl-38575368

NKG2D is a natural killer cell activating receptor recognising ligands on infected or tumorigenic cells, leading to their cytolysis. There are eight known genes encoding NKG2D ligands: MICA, MICB and ULBP1-6. MICA and MICB are highly polymorphic and well characterised, whilst ULBP ligands are less polymorphic and the functional implication of their diversity is not well understood. Using International HLA and Immunogenetics Workshop (IHIW) cell line DNA, we previously characterised alleles of the RAET1E gene (encoding ULBP4 proteins), including the 5' UTR promoter region and exons 1-3. We found 11 promoter haplotypes associating with alleles based on exons 1-3, revealing 19 alleles overall. The current study extends this analysis using 87 individual DNA samples from IHIW cell lines or cord blood to include RAET1E exon 4 and the 3' UTR, as polymorphism in these regions have not been previously investigated. We found two novel exon 4 polymorphisms encoding amino acid substitutions altering the transmembrane domain. An amino acid substitution at residue 233 was unique to the RAET1E*008 allele whereas the substitution at residue 237 was shared between groups of alleles. Additionally, four haplotypes were found based on 3' UTR sequences, which were unique to certain alleles or shared with allele groups based on exons 1-4 polymorphisms. Furthermore, putative microRNAs were identified that may interact with these polymorphic sites, repressing transcription and potentially affecting expression levels.


DNA , NK Cell Lectin-Like Receptor Subfamily K , Humans , 3' Untranslated Regions , Alleles , NK Cell Lectin-Like Receptor Subfamily K/genetics , Exons/genetics , Histocompatibility Antigens Class I/genetics , Carrier Proteins/genetics , Membrane Proteins/metabolism
...