Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 878-885, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39170014

ABSTRACT

Objective: To investigate the ameliorative effect of tanshinone ⅡA (Tan) on osteoarticular degeneration in ovariectomized rats (a postmenopausal estrogen deficiency model) and the mechanisms involved. Methods: Eight-week-old female Sprague Dawley (SD) rats were randomly allocated to 5 groups (n=10 each), including a Sham operation group (Sham), an ovariectomy group (OVX), and low, medium, and high-dose Tan groups. Eight weeks after bilateral ovariectomy, the rats in the low, medium, and high-dose Tan groups were treated with Tan at the doses of 5, 10, and 20 mg/kg for a duration of 28 days. Evaluation of the rat articular cartilage was performed using X-ray imaging, anatomical observation, hematoxylin and eosin (H&E) staining, and toluidine blue staining. Immunohistochemistry was performed to assess the expression levels of transforming growth factor ß1 (TGF-ß1), phosphorylated-smad2 (p-Smad2), type Ⅱ collagen (CⅡ), matrix metalloproteinase 9 (MMP-9), and MMP-13 in the cartilage tissue. Results: The knee joints of the OVX rats exhibited narrowed joint spaces, osteophyte formation, cartilage erosion or even localized cartilage cracks, faded methylene blue staining on the cartilage surface, disordered arrangement of chondrocytes, unclear or interrupted tidal line, and increased Kellgren-Lawrence grading, Pelletier grading, Mankin grading, and OARSI scores compared to those of the Sham group (P<0.01), as revealed by X-ray imaging, anatomical observation, and histological examination results. Tan ameliorated the degenerative changes in the knee joint caused by OVX in a dose-dependent manner while improving Kellgren-Lawrence grading, Pelletier grading, Mankin grading, and OARSI scores. Immunohistochemistry findings showed that TGF-ß1, p-Smad2, and CⅡ expression levels were significantly increased (P<0.01), while MMP-9 and MMP-13 expression levels were significantly decreased (P<0.01) in the articular cartilage of the Tan group compared to those of the OVX group, with all these effects being dose-dependent. Conclusion: Tan mitigates articular cartilage degeneration in ovariectomized rats, which may be related to the regulation of TGF-ß1/Smad2/MMPs signaling pathway.


Subject(s)
Abietanes , Cartilage, Articular , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction , Smad2 Protein , Transforming Growth Factor beta1 , Animals , Female , Transforming Growth Factor beta1/metabolism , Rats , Abietanes/pharmacology , Abietanes/therapeutic use , Signal Transduction/drug effects , Smad2 Protein/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 13/metabolism , Collagen Type II/metabolism
2.
PLoS One ; 19(8): e0301199, 2024.
Article in English | MEDLINE | ID: mdl-39172956

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is a chronic inflammatory disease where pro-inflammatory cytokines, damage-associated molecular patterns and macrophages play a crucial role. However, the interaction of these mediators, the exact cause, and the treatment of knee osteoarthritis (KOA) are still unclear. Moreover, the interaction of interleukin (IL)-33, platelet-derived growth factor-BB (PDGF-BB), and matrix metalloproteinase-9 (MMP-9) with other factors in the pathogenesis of KOA has not been elaborately explored. METHOD: Therefore, in this study, we analyzed the expression of IL-33, PDGF-BB, and MMP-9 in the knee cartilage tissue of model mice, murine KOA was induced by using the destabilization of the medial meniscus (DMM) model. RESULTS: Compared with the sham operation control group, the expression levels of PDGF-BB, IL-33, and MMP-9 were increased significantly, and the pathological sections showed obvious cartilage damage. Additionally, we assessed the levels of IL-33 and MMP-9 expression in the knee joint of KOA model mice following intervention with PDGF-BB antibody, and we found that the expression level of MMP-9 was reduced following intervention with IL-33 antibody. When the effects of the three antibodies were compared in a mouse disease model, it was discovered that the IL-33 antibody could dramatically lower the relative expression level of MMP-9, resulting in the least amount of cartilage damage and improved protection. In conclusion, inhibiting IL-33 can significantly lower inflammatory factor levels in the knee joint, including IL-33 and MMP-9, and it can improve cartilage breakdown in osteoarthritis of the knee. CONCLUSION: Overall, the results indicate that IL-33 has a therapeutic function in the treatment of knee osteoarthritis and may be a novel target for treatment of the underlying causes of KOA. Additionally, PDGF-BB might be an upstream pathway of IL-33, and KOA's MMP-9 is an downstream pathway of IL-33.


Subject(s)
Disease Models, Animal , Interleukin-33 , Matrix Metalloproteinase 9 , Osteoarthritis, Knee , Animals , Interleukin-33/metabolism , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Matrix Metalloproteinase 9/metabolism , Mice , Becaplermin/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Male , Mice, Inbred C57BL , Proto-Oncogene Proteins c-sis/metabolism
3.
Int J Rheum Dis ; 27(8): e15297, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39175261

ABSTRACT

BACKGROUND: Ferroptosis is caused by iron-dependent peroxidation of membrane phospholipids and chondrocyte ferroptosis contributes to osteoarthritis (OA) progression. Glutathione peroxidase 4 (GPX4) plays a master role in blocking ferroptosis. N6-methyladenosine (m6A) is an epigenetic modification among mRNA post-transcriptional modifications. This study investigated the effect of methyltransferase-like 14 (METTL14), the key component of the m6A methyltransferase, on chondrocyte ferroptosis via m6A modification. METHODS: An OA rat model was established through an intra-articular injection of monosodium iodoacetate in the right knee. OA cartilages in rat models were used for gene expression analysis. Primary mouse chondrocytes or ADTC5 cells were stimulated with IL-1ß or erastin. The m6A RNA methylation quantification kit was used to measure m6A level. The effect of METTL14 and GPX4 on ECM degradation and ferroptosis was investigated through western blotting, fluorescence immunostaining, propidium iodide staining, and commercially available kits. The mechanism of METTL14 action was explored through MeRIP-qPCR assays. RESULTS: METTL14 and m6A expression was upregulated in osteoarthritic cartilages and IL-1ß-induced chondrocytes. METTL14 depletion repressed the IL-1ß or erastin-stimulated ECM degradation and ferroptosis in mouse chondrocytes. METTL14 inhibited GPX4 gene through m6A methylation modification. GPX4 knockdown reversed the si-METTL14-mediated protection in IL-1ß-induced chondrocytes. CONCLUSION: METTL14 depletion inhibits ferroptosis and ECM degradation by suppressing GPX4 mRNA m6A modification in injured chondrocytes.


Subject(s)
Chondrocytes , Ferroptosis , Methyltransferases , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Chondrocytes/drug effects , Chondrocytes/pathology , Chondrocytes/metabolism , Chondrocytes/enzymology , Ferroptosis/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/enzymology , Osteoarthritis/genetics , Osteoarthritis/chemically induced , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cells, Cultured , Disease Models, Animal , Rats , Humans , Rats, Sprague-Dawley
4.
Chem Biol Interact ; 400: 111183, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39098741

ABSTRACT

Nicotine is developmentally toxic. Prenatal nicotine exposure (PNE) affects the development of multiple fetal organs and causes susceptibility to a variety of diseases in offspring. In this study, we aimed to investigate the effect of PNE on cartilage development and osteoarthritis susceptibility in female offspring rats. Wistar rats were orally gavaged with nicotine on days 9-20 of pregnancy. The articular cartilage was obtained at gestational day (GD) 20 and postnatal week (PW) 24, respectively. Further, the effect of nicotine on chondrogenic differentiation was explored by the chondrogenic differentiation model in human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). The PNE group showed significantly shallower Safranin O staining and lower Collagen 2a1 content of articular cartilage in female offspring rats. Further, we found that PNE activated pyroptosis in the articular cartilage at GD20 and PW24. In vitro experiments revealed that nicotine inhibited chondrogenic differentiation and activated pyroptosis. After interfering with nod-like receptors3 (NLRP3) expression by SiRNA, it was found that pyroptosis mediated the chondrogenic differentiation inhibition of WJ-MSCs induced by nicotine. In addition, we found that α7-nAChR antagonist α-BTX reversed nicotine-induced NLRP3 and P300 high expression. And, P300 SiRNA reversed the increase of NLRP3 mRNA expression and histone acetylation level in its promoter region induced by nicotine. In conclusion, PNE caused chondrodysplasia and poor articular cartilage quality in female offspring rats. PNE increased the histone acetylation level of NLRP3 promoter region by α7-nAChR/P300, which resulting in the high expression of NLRP3. Further, NLRP3 mediated the inhibition of chondrogenic differentiation by activating pyroptosis.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Nicotine , Prenatal Exposure Delayed Effects , Pyroptosis , Rats, Wistar , alpha7 Nicotinic Acetylcholine Receptor , Animals , Nicotine/pharmacology , Nicotine/toxicity , Female , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pregnancy , Pyroptosis/drug effects , Rats , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Chondrogenesis/drug effects , Cell Differentiation/drug effects , Humans , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/cytology
5.
J Cell Mol Med ; 28(16): e70019, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39164798

ABSTRACT

Knee osteoarthritis (KOA) is a chronic joint disease that significantly affects the health of the elderly. As an herbal remedy, Gubi decoction (GBD) has been traditionally used for the treatment of osteoarthritis-related syndromes. However, the anti-KOA efficacy and mechanism of GBD remain unclear. This study aimed to experimentally investigate the anti-KOA efficacy and the underlying mechanism of GBD. The medial meniscus (DMM) mice model and IL-1ß-stimulated chondrocytes were, respectively, constructed as in vivo and in vitro models of KOA to evaluate the osteoprotective effect and molecular mechanism of GBD. The UPLC-MS/MS analysis showed that GBD mainly contained pinoresinol diglucoside, rehmannioside D, hesperidin, liquiritin, baohuoside I, glycyrrhizic acid, kaempferol and tangeretin. Animal experiment showed that GBD could alleviate articular cartilage destruction and recover histopathological alterations in DMM mice. In addition, GBD inhibited chondrocyte apoptosis and restored DMM-induced dysregulated autophagy evidenced by the upregulation of ATG7 and LC3 II/LC3 I but decreased P62 level. Mechanistically, METTL3-mediated m6A modification decreased the expression of ATG7 in DMM mice, as it could be significantly attenuated by GBD. METTL3 overexpression significantly counteracted the protective effect of GBD on chondrocyte autophagy. Further research showed that GBD promoted proteasome-mediated ubiquitination degradation of METLL3. Our findings suggest that GBD could act as a protective agent against KOA. The protective effect of GBD may result from its promotion on chondrocyte autophagy by suppressing METTL3-dependent ATG7 m6A methylation.


Subject(s)
Autophagy-Related Protein 7 , Autophagy , Chondrocytes , Methyltransferases , Osteoarthritis, Knee , Animals , Chondrocytes/metabolism , Chondrocytes/drug effects , Autophagy/drug effects , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/drug therapy , Mice , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein 7/genetics , Methyltransferases/metabolism , Methylation/drug effects , Male , Drugs, Chinese Herbal/pharmacology , Disease Models, Animal , Apoptosis/drug effects , Mice, Inbred C57BL , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/metabolism , Humans , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology
6.
J Cell Mol Med ; 28(16): e70027, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159149

ABSTRACT

Ageing is the most prominent risk for osteoarthritis (OA) development. This study aimed to investigate the role of phosphoinositide-specific phospholipase Cγ (PLCγ) 1, previously linked to OA progression, in regulating age-related changes in articular cartilage and subchondral bone. d-galactose (d-Gal) was employed to treat chondrocytes from rats and mice or injected intraperitoneally into C57BL/6 mice. RTCA, qPCR, Western blot and immunohistochemistry assays were used to evaluate cell proliferation, matrix synthesis, senescence genes and senescence-associated secretory phenotype, along with PLCγ1 expression. Subchondral bone morphology was assessed through micro-CT. In mice with chondrocyte-specific Plcg1 deficiency (Plcg1flox/flox; Col2a1-CreERT), articular cartilage and subchondral bone were examined over different survival periods. Our results showed that d-Gal induced chondrocyte senescence, expedited articular cartilage ageing and caused subchondral bone abnormalities. In d-Gal-induced chondrocytes, diminished PLCγ1 expression was observed, and its further inhibition by U73122 exacerbated chondrocyte senescence. Plcg1flox/flox; Col2a1-CreERT mice exhibited more pronounced age-related changes in articular cartilage and subchondral bone compared to Plcg1flox/flox mice. Therefore, not only does d-Gal induce senescence in chondrocytes and age-related changes in articular cartilage and subchondral bone, as well as diminished PLCγ1 expression, but PLCγ1 deficiency in chondrocytes may also accelerate age-related changes in articular cartilage and subchondral bone. PLCγ1 may be a promising therapeutic target for mitigating age-related changes in joint tissue.


Subject(s)
Cartilage, Articular , Chondrocytes , Mice, Inbred C57BL , Phospholipase C gamma , Animals , Chondrocytes/metabolism , Phospholipase C gamma/metabolism , Phospholipase C gamma/genetics , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Mice , Aging/metabolism , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/etiology , Cellular Senescence , Rats , Estrenes/pharmacology , Galactose/metabolism , Cell Proliferation , Male , Bone and Bones/metabolism , Bone and Bones/pathology , Bone and Bones/diagnostic imaging , Pyrrolidinones/pharmacology
7.
J Immunol Res ; 2024: 4751168, 2024.
Article in English | MEDLINE | ID: mdl-39104594

ABSTRACT

In recent years, as the aging population continues to grow, osteoarthritis (OA) has emerged as a leading cause of disability, with its incidence rising annually. Current treatments of OA include exercise and medications in the early stages and total joint replacement in the late stages. These approaches only relieve pain and reduce inflammation; however, they have significant side effects and high costs. Therefore, there is an urgent need to identify effective treatment methods that can delay the pathological progression of this condition. The changes in the articular cartilage microenvironment, which are complex and diverse, can aggravate the pathological progression into a vicious cycle, inhibiting the repair and regeneration of articular cartilage. Understanding these intricate changes in the microenvironment is crucial for devising effective treatment modalities. By searching relevant research articles and clinical trials in PubMed according to the keywords of articular cartilage, microenvironment, OA, mechanical force, hypoxia, cytokine, and cell senescence. This study first summarizes the factors affecting articular cartilage regeneration, then proposes corresponding treatment strategies, and finally points out the future research direction. We find that regulating the opening of mechanosensitive ion channels, regulating the expression of HIF-1, delivering growth factors, and clearing senescent cells can promote the formation of articular cartilage regeneration microenvironment. This study provides a new idea for the treatment of OA in the future, which can promote the regeneration of articular cartilage through the regulation of the microenvironment so as to achieve the purpose of treating OA.


Subject(s)
Cartilage, Articular , Cellular Microenvironment , Osteoarthritis , Regeneration , Humans , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/physiology , Osteoarthritis/therapy , Osteoarthritis/pathology , Animals , Chondrocytes/metabolism , Chondrocytes/physiology , Cellular Senescence
8.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126115

ABSTRACT

Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1ß), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1ß showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.


Subject(s)
Chondrocytes , Connexin 43 , Interleukin-1beta , Osteoarthritis , Osteoblasts , Tumor Necrosis Factor-alpha , Humans , Connexin 43/metabolism , Connexin 43/genetics , Chondrocytes/metabolism , Osteoblasts/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Synovial Fluid/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cells, Cultured , Aged , Middle Aged , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Cartilage/metabolism , Cartilage/pathology , Joint Diseases/metabolism , Joint Diseases/pathology , Joint Diseases/genetics
9.
J Nanobiotechnology ; 22(1): 466, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095867

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive degeneration of articular cartilage, leading to pain, stiffness, and loss of joint function. The pathogenesis of OA involves multiple factors, including increased intracellular reactive oxygen species (ROS), enhanced chondrocyte apoptosis, and disturbances in cartilage matrix metabolism. These processes contribute to the breakdown of the extracellular matrix (ECM) and the loss of cartilage integrity, ultimately resulting in joint damage and dysfunction. RNA interference (RNAi) therapy has emerged as a promising approach for the treatment of various diseases, including hATTR and acute hepatic porphyria. By harnessing the natural cellular machinery for gene silencing, RNAi allows for the specific inhibition of target genes involved in disease pathogenesis. In the context of OA, targeting key molecules such as matrix metalloproteinase-13 (MMP13), which plays a critical role in cartilage degradation, holds great therapeutic potential. RESULTS: In this study, we developed an innovative therapeutic approach for OA using a combination of liposome-encapsulated siMMP13 and NG-Monomethyl-L-arginine Acetate (L-NMMA) to form an injectable hydrogel. The hydrogel served as a delivery vehicle for the siMMP13, allowing for sustained release and targeted delivery to the affected joint. Experiments conducted on destabilization of the medial meniscus (DMM) model mice demonstrated the therapeutic efficacy of this composite hydrogel. Treatment with the hydrogel significantly inhibited the degradation of cartilage matrix, as evidenced by histological analysis showing preserved cartilage structure and reduced loss of proteoglycans. Moreover, the hydrogel effectively suppressed intracellular ROS accumulation in chondrocytes, indicating its anti-oxidative properties. Furthermore, it attenuated chondrocyte apoptosis, as demonstrated by decreased levels of apoptotic markers. CONCLUSION: In summary, the injectable hydrogel containing siMMP13, endowed with anti-ROS and anti-apoptotic properties, may represent an effective therapeutic strategy for osteoarthritis in the future.


Subject(s)
Apoptosis , Chondrocytes , Hydrogels , Matrix Metalloproteinase 13 , Osteoarthritis , Reactive Oxygen Species , Animals , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Hydrogels/chemistry , Matrix Metalloproteinase 13/metabolism , Mice , Chondrocytes/metabolism , Chondrocytes/drug effects , Mice, Inbred C57BL , Male , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Liposomes/chemistry , Humans
10.
FASEB J ; 38(15): e23852, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39101942

ABSTRACT

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.


Subject(s)
Exosomes , Osteoarthritis , Temporomandibular Joint , Exosomes/metabolism , Animals , Osteoarthritis/therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Rats , Male , Humans , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Stem Cells/cytology , Stem Cells/metabolism , Rats, Sprague-Dawley , Urine/cytology , Temporomandibular Joint Disorders/therapy , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/pathology , Female , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
11.
Anal Cell Pathol (Amst) ; 2024: 1083143, 2024.
Article in English | MEDLINE | ID: mdl-38946863

ABSTRACT

Objectives: Osteochondral defects (OCDs) are localized areas of damaged cartilage and underlying subchondral bone that can produce pain and seriously impair joint function. Literature reports indicated that icariin (ICA) has the effect of promoting cartilage repair. However, its mechanism remains unclear. Here, we explored the effects of icariin and extracellular vesicles (EVs) from rabbit synovial-derived mesenchymal stem cells (rSMSCs) on repairing of OCDs. Materials and Methods: Rabbit primary genicular chondrocytes (rPGCs), knee skeletal muscle cells (rSMCKs), and rSMSCs, and extracellular vesicles derived from the latter two cells (rSMCK-EVs and rSMSC-EVs) were isolated and identified. The rPGCs were stimulated with ICA, rSMSC-EVs either separately or in combination. The rSMCK-EVs were used as a control. After stimulation, chondrogenic-related markers were analyzed by quantitative RT-PCR and western blotting. Cell proliferation was determined by the CCK-8 assay. The preventative effects of ICA and SMSC-EVs in vivo were determined by H&E and toluidine blue staining. Immunohistochemical analyses were performed to evaluate the levels of COL2A1 and ß-catenin in vivo. Results. In vitro, the proliferation of rPGCs was markedly increased by ICA treatment in a dose-dependent manner. When compared with ICA or rSMSC-EVs treatment alone, combined treatment with ICA and SMSC-EVs produced stronger stimulative effects on cell proliferation. Moreover, combined treatment with ICA and rSMSC-EVs promoted the expression of chondrogenic-related gene, including COL2A1, SOX-9, and RUNX2, which may be via the activation of the Wnt/ß-catenin pathway. In vivo, combined treatment with rSMSC-EVs and ICA promoted cartilage repair in joint bone defects. Results also showed that ICA or rSMSC-EVs both promoted the COL2A1 and ß-catenin protein accumulation in articular cartilage, and that was further enhanced by combined treatment with rSMSC-EVs and ICA. Conclusion: Our findings highlight the promising potential of using combined treatment with ICA and rSMSC-EVs for promoting osteochondral repair.


Subject(s)
Chondrocytes , Chondrogenesis , Extracellular Vesicles , Flavonoids , Mesenchymal Stem Cells , Synovial Membrane , Wnt Signaling Pathway , Animals , Rabbits , Flavonoids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Wnt Signaling Pathway/drug effects , Extracellular Vesicles/metabolism , Chondrocytes/metabolism , Chondrocytes/drug effects , Synovial Membrane/metabolism , Synovial Membrane/cytology , Chondrogenesis/drug effects , Cell Proliferation/drug effects , beta Catenin/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects
12.
Commun Biol ; 7(1): 828, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972919

ABSTRACT

Crystallization of monosodium urate monohydrate (MSU) leads to painful gouty arthritis. Despite extensive research it is still unknown how this pathological biomineralization occurs, which hampers its prevention. Here we show how inflammatory MSU crystals form after a non-inflammatory amorphous precursor (AMSU) that nucleates heterogeneously on collagen fibrils from damaged articular cartilage of gout patients. This non-classical crystallization route imprints a nanogranular structure to biogenic acicular MSU crystals, which have smaller unit cell volume, lower microstrain, and higher crystallinity than synthetic MSU. These distinctive biosignatures are consistent with the template-promoted crystallization of biotic MSU crystals after AMSU at low supersaturation, and their slow growth over long periods of time (possibly years) in hyperuricemic gout patients. Our results help to better understand gout pathophysiology, underline the role of cartilage damage in promoting MSU crystallization, and suggest that there is a time-window to treat potential gouty patients before a critical amount of MSU has slowly formed as to trigger a gout flare.


Subject(s)
Crystallization , Gout , Uric Acid , Uric Acid/metabolism , Humans , Gout/metabolism , Gout/pathology , Biomineralization , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology
13.
Shanghai Kou Qiang Yi Xue ; 33(2): 113-116, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-39005084

ABSTRACT

PURPOSE: To study the damage and the expression of LC3 and p62 of condylar cartilage in fluorosis mouse. METHODS: Thirty 4-week-old male C57BL/6 mice were randomly divided into control group and the experimental group with 15 animals in each group. The control group received regular drinking water and the experimental group received a fluoride concentration of 75 mg/L drinking water for 8 weeks. The structure of condylar cartilage was observed through modified safranine O-fast green FCF cartilage stain kit. Immunohistochemistry was used to detect the expression of MMP-13, type Ⅱ collagen and LC3 and p62. Two-way analysis of variance test was conducted for analysis of semi-quantitative results of immunohistochemistry using SPSS 22.0 software package. RESULTS: Compared with the control group, the fibrocartilage layer of the experimental group became thinner, the condrocytes were smaller, and the staining became deeper.Immunohistochemistry results showed that the expression of MMP-13 and LC3 increased; the expression of type Ⅱ collagen and p62 decreased in the experimental group. CONCLUSIONS: There was degeneration of the condylar cartilage and autophagy in mice with drinking water containing 75 mg/L fluoride.


Subject(s)
Autophagy , Fluorosis, Dental , Matrix Metalloproteinase 13 , Mice, Inbred C57BL , Microtubule-Associated Proteins , Animals , Mice , Autophagy/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Male , Microtubule-Associated Proteins/metabolism , Fluorosis, Dental/metabolism , Collagen Type II/metabolism , Mandibular Condyle/metabolism , Mandibular Condyle/pathology , Fluorides/toxicity , Cartilage, Articular/metabolism , Immunohistochemistry
14.
Bone Res ; 12(1): 41, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019845

ABSTRACT

Mechanical overloading and aging are two essential factors for osteoarthritis (OA) development. Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology, but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated. Herein, we found that PDZ domain containing 1 (PDZK1), one of the PDZ proteins, which belongs to the Na+/H+ Exchanger (NHE) regulatory factor family, is a key factor in biomechanically induced mitochondrial dysfunction and chondrocyte senescence during OA progression. PDZK1 is reduced by mechanical overload, and is diminished in the articular cartilage of OA patients, aged mice and OA mice. Pdzk1 knockout in chondrocytes exacerbates mechanical overload-induced cartilage degeneration, whereas intraarticular injection of adeno-associated virus-expressing PDZK1 had a therapeutic effect. Moreover, PDZK1 loss impaired chondrocyte mitochondrial function with accumulated damaged mitochondria, decreased mitochondrion DNA (mtDNA) content and increased reactive oxygen species (ROS) production. PDZK1 supplementation or mitoubiquinone (MitoQ) application alleviated chondrocyte senescence and cartilage degeneration and significantly protected chondrocyte mitochondrial functions. MRNA sequencing in articular cartilage from Pdzk1 knockout mice and controls showed that PDZK1 deficiency in chondrocytes interfered with mitochondrial function through inhibiting Hmgcs2 by increasing its ubiquitination. Our results suggested that PDZK1 deficiency plays a crucial role in mediating excessive mechanical load-induced chondrocyte senescence and is associated with mitochondrial dysfunction. PDZK1 overexpression or preservation of mitochondrial functions by MitoQ might present a new therapeutic approach for mechanical overload-induced OA.


Subject(s)
Cellular Senescence , Chondrocytes , Mice, Knockout , Mitochondria , Osteoarthritis , Animals , Humans , Male , Mice , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Cellular Senescence/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Reactive Oxygen Species/metabolism , Stress, Mechanical
15.
Int J Biol Macromol ; 276(Pt 1): 133840, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004250

ABSTRACT

We previously found that modified citrus pectin (MCP), an inhibitor of pro-inflammatory factor Galectin-3 (Gal-3), has significant anti-inflammatory and chondroprotective effects. In this study, a hyaluronate (HA) gel-based sustained release system of MCP (MCP-HA) was developed as an anti-inflammatory agent for chronic inflammation for osteoarthritis (OA) treatment. The MCP-HA gel was injected into the knee joint cavities of OA rabbit models induced by anterior cruciate ligament transection (ACLT) or modified Hulth method once a week for five weeks. We found that MCP-HA could improve the symptoms and signs of OA, protect articular cartilage from degeneration, suppress synovial inflammation, and therefore alleviate OA progression. Proteomic analysis of the synovial fluid obtained from the knee joints of OA rabbits revealed that MCP-HA synergistically regulated the levels of multiple inflammatory mediators and proteins involved in metabolic pathways. Taken together, our results demonstrate that the MCP-HA shows a synergistic effect of HA and MCP by modulating both inflammation and metabolic processes, thereby alleviating OA progression. The MCP-HA sustained release system has promising potential for long-term use in OA treatment.


Subject(s)
Hyaluronic Acid , Osteoarthritis , Pectins , Pectins/pharmacology , Pectins/chemistry , Pectins/administration & dosage , Animals , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Rabbits , Injections, Intra-Articular , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Gels , Disease Models, Animal , Drug Synergism , Male , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Synovial Fluid/metabolism , Synovial Fluid/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
16.
Nutrients ; 16(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39064807

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative disease leading to articular cartilage destruction. Menopausal and postmenopausal women are susceptible to both OA and osteoporosis. S-equol, a soy isoflavone-derived molecule, is known to reduce osteoporosis in estrogen-deficient mice, but its role in OA remains unknown. This study aimed to explore the effect of S-equol on different degrees of menopausal OA in female Sprague-Dawley (SD) rats induced by estrogen deficiency caused by bilateral ovariectomy (OVX) combined with intra-articular injection of mono-iodoacetate (MIA). Knee joint histopathological change; serum biomarkers of bone turnover, including N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (CTX-I) and N-terminal telopeptide of type I collagen (NTX-I); the cartilage degradation biomarkers hyaluronic acid (HA) and N-terminal propeptide of type II procollagen (PIINP); and the matrix-degrading enzymes matrix metalloproteinases (MMP)-1, MMP-3 and MMP-13, as well as the oxidative stress-inducing molecules nitric oxide (NO) and hydrogen peroxide (H2O2), were assessed for evaluation of OA progression after S-equol supplementation for 8 weeks. The results showed that OVX without or with MIA injection induced various severity levels of menopausal OA by increasing pathological damage, oxidative stress, and cartilage matrix degradation to various degrees. Moreover, S-equol supplementation could significantly reduce these increased biomarkers in different severity levels of OA. This indicates that S-equol can lessen menopausal OA progression by reducing oxidative stress and the matrix-degrading enzymes involved in cartilage degradation.


Subject(s)
Cartilage, Articular , Equol , Menopause , Ovariectomy , Oxidative Stress , Rats, Sprague-Dawley , Animals , Oxidative Stress/drug effects , Female , Menopause/drug effects , Rats , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Equol/pharmacology , Biomarkers/blood , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Disease Models, Animal , Nitric Oxide/metabolism
17.
Gene ; 927: 148740, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38955308

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a progressive condition affecting the joints that lacking effective therapy. However, the underlying molecular mechanism has not been fully clarified. METHODS: A model of OA was established in Sprague-Dawley (SD) rats through intra-articularly injected with monoiodoacetate (MIA). Western blot analysis was used to identify the levels of UBE2I and hnRNPA2B1 in articular cartilage. Overexpression and siRNA vectors for UBE2I were constructed and transfected into rat chondrocytes. CCK-8, TUNEL and transwell assay were utilized to assess the cell viability, apoptosis and migration ability. Western blot analysis was used to determine the levels of chondrogenic-specific genes including SOX9, COL2A1, Aggrecan, and PRG4. Then, molecular interactions were confirmed by immunoprecipitation. RESULTS: We observed significant upregulation of UBE2I and hnRNPA2B1 expression in articular cartilage samples of OA. The Pearson correlation analysis revealed positive correlation between UBE2I and hnRNPA2B1 levels. Functional experiments showed that increased UBE2I expression significantly suppressed cell growth, migration, and reduced the expression of chondrogenic-specific genes, while decreasing UBE2I levels had the opposite effects. Molecular interactions between UBE2I and hnRNPA2B1were determined via co-localization and immunoprecipitation. SUMO1 and SUMO3 proteins were enriched by immunoprecipitation using hnRNPA2B1 antibodies. Rescue experiments were performed using SUMOylation inhibitor (2-D08) and SUMOylation activator (N106). Overexpression of UBE2I increased the expression of hnRNPA2B1 in the cytoplasm and decreased the level in the nucleus, which was reversed by the treatment of 2-D08. Conversely, UBE2I knockdown and N106 treatment had the opposite effect. CONCLUSIONS: UBE2I modulated the nuclear translocation of hnRNPA2B1 by promoting SUMOylation in OA.


Subject(s)
Chondrocytes , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Osteoarthritis , Sumoylation , Ubiquitin-Conjugating Enzymes , Animals , Male , Rats , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell Movement , Cell Nucleus/metabolism , Cell Proliferation , Cells, Cultured , Chondrocytes/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , Rats, Sprague-Dawley , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics
18.
Biomolecules ; 14(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39062498

ABSTRACT

With the rise in longevity within the population, medicine continues to encounter fresh hurdles necessitating prompt actions, among which are those associated with hip joint aging. Age-related arthropathies encompass damage to bones' articulating extremities and their supporting structures, such as articular cartilage, and alterations in the quantity and quality of synovial fluid. This study aims to summarize the biomolecular methods of hip joint evaluation focused on its vascularization, using data correlated with biomolecular research on other joints and tissues, in order to reach an objective opinion of the study prospects in this field. Following a retrospective study on most modern biomolecular research methods on the synovium, the capsule, and the articular cartilage of the hip joint, we have hereby concretized certain future research directions in this field that will improve the qualitative and morphofunctional management of the hip joint at an advanced age, even within population categories at risk of developing various degenerative joint pathologies.


Subject(s)
Cartilage, Articular , Hip Joint , Humans , Hip Joint/pathology , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Synovial Membrane/pathology , Synovial Membrane/metabolism , Femoracetabular Impingement/pathology
19.
Cell Commun Signal ; 22(1): 366, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026271

ABSTRACT

BACKGROUND: Z-DNA binding protein 1 (ZBP1) is a nucleic acid sensor that is involved in multiple inflammatory diseases, but whether and how it contributes to osteoarthritis (OA) are unclear. METHODS: Cartilage tissues were harvested from patients with OA and a murine model of OA to evaluate ZBP1 expression. Subsequently, the functional role and mechanism of ZBP1 were examined in primary chondrocytes, and the role of ZBP1 in OA was explored in mouse models. RESULTS: We showed the upregulation of ZBP1 in articular cartilage originating from OA patients and mice with OA after destabilization of the medial meniscus (DMM) surgery. Specifically, knockdown of ZBP1 alleviated chondrocyte damage and protected mice from DMM-induced OA. Mechanistically, tumor necrosis factor alpha induced ZBP1 overexpression in an interferon regulatory factor 1 (IRF1)-dependent manner and elicited the activation of ZBP1 via mitochondrial DNA (mtDNA) release and ZBP1 binding. The upregulated and activated ZBP1 could interact with receptor-interacting protein kinase 1 and activate the transforming growth factor-beta-activated kinase 1-NF-κB signaling pathway, which led to chondrocyte inflammation and extracellular matrix degradation. Moreover, inhibition of the mtDNA-IRF1-ZBP1 axis with Cyclosporine A, a blocker of mtDNA release, could delay the progression of DMM-induced OA. CONCLUSIONS: Our data revealed the pathological role of the mtDNA-IRF1-ZBP1 axis in OA chondrocytes, suggesting that inhibition of this axis could be a viable therapeutic approach for OA.


Subject(s)
Chondrocytes , DNA, Mitochondrial , Interferon Regulatory Factor-1 , Osteoarthritis , RNA-Binding Proteins , Animals , Humans , Male , Mice , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice, Inbred C57BL , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction
20.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000568

ABSTRACT

Osteoarthritis (OA) is the most common joint disease, causing symptoms such as joint pain, swelling, and deformity, which severely affect patients' quality of life. Despite advances in medical treatment, OA management remains challenging, necessitating the development of safe and effective drugs. Quercetin (QUE), a natural flavonoid widely found in fruits and vegetables, shows promise due to its broad range of pharmacological effects, particularly in various degenerative diseases. However, its role in preventing OA progression and its underlying mechanisms remain unclear. In this study, we demonstrated that QUE has a protective effect against OA development both in vivo and in vitro, and we elucidated the underlying molecular mechanisms. In vitro, QUE inhibited the expression of IL-1ß-induced chondrocyte matrix metalloproteinases (MMP3 and MMP13) and inflammatory mediators such as INOS and COX-2. It also promoted the expression of collagen II, thereby preventing the extracellular matrix (ECM). Mechanistically, QUE exerts its protective effect on chondrocytes by activating the SIRT1/Nrf-2/HO-1 and inhibiting chondrocyte ferroptosis. Similarly, in an OA rat model induced by anterior cruciate ligament transection (ACLT), QUE treatment improved articular cartilage damage, reduced joint pain, and normalized abnormal subchondral bone remodeling. QUE also reduced serum IL-1ß, TNF-α, MMP3, CTX-II, and COMP, thereby slowing the progression of OA. QUE exerts chondroprotective effects by inhibiting chondrocyte oxidative damage and ferroptosis through the SIRT1/Nrf-2/HO-1 pathway, effectively alleviating OA progression in rats.


Subject(s)
Cartilage, Articular , Chondrocytes , Disease Models, Animal , Ferroptosis , NF-E2-Related Factor 2 , Osteoarthritis , Quercetin , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Quercetin/pharmacology , Quercetin/therapeutic use , NF-E2-Related Factor 2/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Ferroptosis/drug effects , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Male , Signal Transduction/drug effects , Rats, Sprague-Dawley , Interleukin-1beta/metabolism , Heme Oxygenase (Decyclizing)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL