Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.863
Filter
1.
Immun Inflamm Dis ; 12(7): e1303, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967379

ABSTRACT

BACKGROUND: Psoriasis refers to a highly prevalent and immunologically mediated dermatosis with considerable deterioration in life quality. Wogonin, a sort of flavonoid, has been mentioned to elicit protective activities in skin diseases. However, whether Wogonin is implicated in the treatment of psoriasis and its specific mechanisms are not fully understood. AIM: The present work attempted to elaborate the role of Wogonin during the process of psoriasis and to concentrate on the associated action mechanism. METHODS: Cell counting kit-8 (CCK-8) method was initially applied to assay the viability of human keratinocyte HaCaT cells treated by varying concentrations of Wogonin. To mimic psoriasis in vitro, HaCaT cells were exposed to M5 cytokines. CCK-8 and 5-Ethynyl-2'-deoxyuridine  assays were adopted for the measurement of cell proliferation. Inflammatory levels were examined with enzyme-linked immunosorbent assay. Immunofluorescence staining tested nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and Caspase-1 expressions. Western blot examined the protein expressions of proliferation-, inflammation-, pyroptosis-associated factors, and NLRP3. RESULTS: Wogonin treatment antagonized the proliferation, inflammatory response, and NLRP3/caspase-1/Gasdermin-D (GSDMD)-mediated pyroptosis in M5-challenged HaCaT cells. Besides, NLRP3 elevation partially abrogated the effects of Wogonin on M5-induced proliferation, inflammatory response, and NLRP3/caspase-1/GSDMD-mediated pyroptosis in HaCaT cells. CONCLUSION: In a word, Wogonin might exert anti-proliferation, anti-inflammatory and anti-pyroptosis activities in M5-induced cell model of psoriasis and the blockade of NLRP3/Caspase-1/GSDMD pathway might be recognized as a potential mechanism underlying the protective mechanism of Wogonin in psoriasis, suggesting Wogonin as a prospective anti-psoriasis drug.


Subject(s)
Caspase 1 , Cell Proliferation , Flavanones , Keratinocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Humans , Flavanones/pharmacology , Pyroptosis/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Proliferation/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 1/metabolism , Signal Transduction/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/pathology , Inflammation/metabolism , Inflammation/drug therapy , HaCaT Cells , Cell Line , Gasdermins , Phosphate-Binding Proteins
2.
Physiol Rep ; 12(14): e16143, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034131

ABSTRACT

Inflammation through activation of caspase-1, seems to play a role in pulmonary hypertension induced by alveolar hypoxia. Whether alveolar hypoxia induces caspase-1-mediated inflammation and influx of leukocytes in other organs than the lungs, is not known. Our aim was to explore sites of caspase-1-related inflammation in alveolar hypoxia. Wild type (WT) mice were exposed to environmental hypoxia or room-air, and organs were analyzed. Right heart catheterization was performed after 14 days of alveolar hypoxia in WT mice and mice transplanted with WT or caspase-1-/- bone marrow. Hypoxia induced leukocyte accumulation and increased caspase-1 protein in the lungs, not in other organs. WT mice transplanted with WT or caspase-1-/- bone marrow showed no difference in pulmonary leukocyte accumulation or development of pulmonary hypertension after alveolar hypoxia. Caspase-1 and IL-18 were detected in bronchial epithelium in WT mice, and hypoxia induced IL-18 secretion from bronchial epithelial cells. IL-18 stimulation generated IL-6 mRNA in monocytes. Phosphorylated STAT3 was increased in hypoxic lungs, not in other organs. Alveolar hypoxia induces caspase-1 activation and leukocyte accumulation specific to the lungs, not in other organs. Caspase-1 activation and IL-18 secretion from bronchial epithelial cells might initiate hypoxia-induced inflammation, leading to pulmonary hypertension.


Subject(s)
Caspase 1 , Hypoxia , Inflammasomes , Interleukin-18 , Lung , Mice, Inbred C57BL , Animals , Male , Inflammasomes/metabolism , Mice , Caspase 1/metabolism , Caspase 1/genetics , Lung/metabolism , Lung/pathology , Interleukin-18/metabolism , Interleukin-18/genetics , Hypoxia/metabolism , Inflammation/metabolism , Inflammation/pathology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Mice, Knockout , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology
3.
Vet Microbiol ; 295: 110160, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964034

ABSTRACT

Infection with Glaesserella parasuis, the primary pathogen behind Glässer's disease, is often associated with diverse clinical symptoms, including serofibrinous polyserositis, arthritis, and meningitis. Autophagy plays a dual role in bacterial infections, exerting either antagonistic or synergistic effects depending on the nature of the pathogen. Our previous studies have demonstrated that autophagy serves as a defense mechanism, combating inflammation and invasion caused by infection of highly virulent G. parasuis. However, the precise mechanisms remain to be elucidated. Pathogens exhibit distinct interactions with inflammasomes and autophagy processes. Herein, we explored the effect of autophagy on inflammasomes during G. parasuis infection. We found that G. parasuis infection triggers NLRP3-dependent pro-CASP-1-IL-18/IL-1ß processing and maturation pathway, resulting in increased release of IL-1ß and IL-18. Inhibition of autophagy enhances NLRP3 inflammasome activity, whereas stimulation of autophagy restricts it during G. parasuis infection. Furthermore, assembled NLRP3 inflammasomes undergo ubiquitination and recruit the autophagic adaptor, p62, facilitating their sequestration into autophagosomes during G. parasuis infection. These results suggest that the induction of autophagy mitigates inflammation by eliminating overactive NLRP3 inflammasomes during G. parasuis infection. Our research uncovers a mechanism whereby G. parasuis infection initiates inflammatory responses by promoting the assembly of the NLRP3 inflammasomes and activating NLRP3-CASP-1, both of which processes are downregulated by autophagy. This suggests that pharmacological manipulation of autophagy could be a promising approach to modulate G. parasuis-induced inflammatory responses.


Subject(s)
Autophagy , Caspase 1 , Haemophilus Infections , Haemophilus parasuis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Haemophilus parasuis/immunology , Haemophilus parasuis/pathogenicity , Haemophilus parasuis/genetics , Caspase 1/metabolism , Caspase 1/genetics , Haemophilus Infections/veterinary , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Swine , Interleukin-18/metabolism , Interleukin-18/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Swine Diseases/microbiology , Swine Diseases/immunology , Mice
4.
J Physiol Pharmacol ; 75(3)2024 Jun.
Article in English | MEDLINE | ID: mdl-39042394

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a common serious complication of premature babies. No effective means control it. Hyperoxia damage is one of the important mechanisms of BPD. The reaserach confirmed pyroptosis existed in BPD. Dexmedetomidine is a new, high-specific α2 receptor agonist. Previous research foundation found that dexmedetomidine has a protective effect on BPD. To investigate how dexmedetomidine improves hyperoxic lung injury in neonatal mice by regulating pyroptosis. Neonatal rats were randomly divided into four groups: normal control group, hyperoxic injury group, air plus dexmedetomidine group, and hyperoxia plus dexmedetomidine group. After seven days the lungs of rats in each group were extracted, and the wet-to-dry weight ratio of the lung was measured. The lung injury in rats was observed using hematoxylin-eosin staining. Additionally, the expression and localization of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and gasdermin D (GSDMD) proteins were examined in the lungs of rats using immunofluorescence staining. The mRNA levels of NLRP3, ASC, caspase-1, and interleukin 18 (IL-18) in the lungs of rats were determined using real-time PCR. Moreover, the protein levels of NLRP3, ASC, caspase-1/cleaved caspase-1, interleukin 1beta (IL-1ß), IL-18, and tunor necrosis factor alpha (TNF-α) were detected in lungs of rats using Western blot. The extent of mitochondrial damage in lung tissues of each group was observed by transmission electron microscopy. The lung tissue injury of the neonatal rats was significantly improved in the hyperoxia plus dexmedetomidine group compared to the hyperoxic injury group. Furthermore, the expressions of pyroptosis-related proteins such as NLRP3, ASC, cleaved-caspase-1, and GSDMD were significantly decreased, along with the expressions of inflammatory factors in lung tissues. By inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway, dexmedetomidine reduces the activation and release of inflammatory factors and provides a protective effect against hyperoxic lung injury in neonatal mice.


Subject(s)
Animals, Newborn , Dexmedetomidine , Hyperoxia , Lung Injury , Lung , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Rats, Sprague-Dawley , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Hyperoxia/metabolism , Hyperoxia/complications , Hyperoxia/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Pyroptosis/drug effects , Lung Injury/metabolism , Lung Injury/prevention & control , Lung Injury/pathology , Lung Injury/drug therapy , Rats , Phosphate-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , Interleukin-18/metabolism , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Male , Gasdermins
5.
Am J Reprod Immunol ; 92(1): e13893, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958245

ABSTRACT

PROBLEM: Vulvovaginal candidiasis (VVC) is a common mucosal fungal infection, and Candida albicans is the main causative agent. The NLRP3 inflammasome plays an important role in VVC, but the underlying mechanism is unknown. METHOD OF STUDY: Vaginal epithelial cells were divided into three groups: control, C. albicans strain SC5314 (wild-type, WT), and WT+ Matt Cooper Compound 950 (MCC950, a specific NLRP3 inhibitor). After human vaginal epithelial cells were pretreated with 1 µmol/L MCC950 for 2 h, C. albicans (MOI = 1) was cocultured with the human vaginal epithelial cells for 12 h. The cell supernatants were collected, LDH was detected, and the IL-1ß and IL-18 levels were determined by ELISA. The expression of the pyroptosis-related proteins NLRP3, Caspase-1 p20 and GSDMD was measured by Western blotting analysis. The protein expression of the pyroptosis-related N-terminus of GSDMD (GSDMD-N) was detected by immunofluorescence. RESULTS: In this study, we showed that the WT C. albicans strain induced pyroptosis in vaginal epithelial cells, as indicated by the LDH and proinflammatory cytokine levels and the upregulated levels of the pyroptosis-related proteins NLRP3, Caspase-1 p20, and GSDMD-N. MCC950 reversed the changes in the expression of these proteins and proinflammatory cytokines in vaginal epithelial cells. CONCLUSION: C. albicans activated the NLRP3 inflammasome to induce vaginal epithelial cell pyroptosis. MCC950 inhibited the NLRP3 inflammasome, reduced vaginal epithelial cell pyroptosis, and decreased the release of inflammatory cytokines.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Epithelial Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Vagina , Female , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Candidiasis, Vulvovaginal/immunology , Candidiasis, Vulvovaginal/microbiology , Candidiasis, Vulvovaginal/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Candida albicans/immunology , Vagina/microbiology , Vagina/immunology , Vagina/pathology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Indenes , Furans/pharmacology , Caspase 1/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Phosphate-Binding Proteins/metabolism , Cells, Cultured , Sulfonamides
6.
Food Funct ; 15(14): 7592-7604, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38938065

ABSTRACT

Sinensetin (SIN), a polymethoxylated flavonoid, exists widely in citrus fruits with abundant biological activities, such as antioxidant and anti-inflammatory properties, delaying the progression of lung fibers and ameliorating inflammatory lung injury. Herein, an in vivo model of LPS-induced acute lung injury (ALI) in mice and an in vitro model of LPS + IFN-γ-induced M1 polarization in RAW264.7 cells were established to assess the effects and molecular mechanisms of SIN in ameliorating ALI. In the present study, the results showed that SIN significantly reduced BALF IL1ß, IL6, and TNF-α levels and neutrophil infiltration, inhibited lung tissue COX2 and iNOS expression, reduced serum and lung tissue inflammatory factor levels, and attenuated lung tissue inflammatory infiltration and ROS levels in animal experiments. RNA sequencing analysis showed that SIN markedly inhibited the expression of inflammation-related pathway genes such as NOD-like receptor signaling. Further mechanistic studies confirmed that SIN significantly inhibited the dissociation of Txnip and Trx-1 and decreased the expression of NLRP3, ASC, pro-Caspase-1, cleavage Caspase-1 p10, NEK7, Caspase-8, IL1ß, IL18, and GSDMD. Meanwhile, SIN docked to NLRP3 with strong affinity and bound stably in the hydrophobic docking pocket. Similarly, the same results were observed in in vitro macrophage M1 polarization experiments. In conclusion, the results revealed that SIN ameliorated the onset and progression of ALI by inhibiting Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated inflammatory responses and pyroptosis. These findings emphasize the significant role of SIN in ameliorating ALI and provide insights into the strategy for exploring the functional effects of foods.


Subject(s)
Acute Lung Injury , Carrier Proteins , Caspase 1 , Citrus , Flavonoids , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Animals , Male , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Carrier Proteins/metabolism , Caspase 1/metabolism , Citrus/chemistry , Flavonoids/pharmacology , Fruit/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Thioredoxins
7.
Folia Biol (Praha) ; 70(1): 74-83, 2024.
Article in English | MEDLINE | ID: mdl-38830125

ABSTRACT

Chlamydia psittaci pneumonia (CPP) is a lung disease caused by the infection with the Chla-mydia psittaci bacterium, which can lead to severe acute respiratory distress syndrome and systemic symptoms. This study explored the specific mechanisms underlying the impact of reactive oxygen species (ROS) on the Th17/Treg balance in CPP. The levels of ROS and the differentiation ratio of Th17/Treg in the peripheral blood of healthy individuals and CPP patients were measured using ELISA and flow cytometry, respectively. The association between the ROS levels and Th17/Treg was assessed using Pearson correlation analysis. The ROS levels and the Th17/Treg ratio were measured in CD4+ T cells following H2O2 treatment and NLRP3 inhibition. The effects of H2O2 treatment and NLRP3 inhibition on the NLRP3/IL-1ß/caspase-1 pathway were observed using immunoblotting. Compared to the healthy group, the CPP group exhibited increased levels of ROS in the peripheral blood, an elevated ratio of Th17 differentiation, and a decreased ratio of Treg differentiation. ROS levels were positively correlated with the Th17 cell proportion but negatively correlated with the Treg cell proportion. The ROS levels and NLRP3/IL-1ß/caspase-1 expression were up-regulated in CD4+ T cells after H2O2 treatment. Furthermore, there was an increase in Th17 differentiation and a decrease in Treg differentiation. Conversely, the NLRP3/IL-1ß/caspase-1 pathway inhibition reversed the effects of H2O2 treatment, with no significant change in the ROS levels. ROS regulates the Th17/Treg balance in CPP, possibly through the NLRP3/IL-1ß/caspase-1 pathway. This study provides a new perspective on the development of immunotherapy for CPP.


Subject(s)
Caspase 1 , Cell Differentiation , Chlamydophila psittaci , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , T-Lymphocytes, Regulatory , Th17 Cells , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Reactive Oxygen Species/metabolism , T-Lymphocytes, Regulatory/immunology , Caspase 1/metabolism , Cell Differentiation/drug effects , Interleukin-1beta/metabolism , Signal Transduction , Male , Female , Middle Aged , Adult , Hydrogen Peroxide/metabolism , Psittacosis
8.
Pestic Biochem Physiol ; 202: 105930, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879323

ABSTRACT

Due to the widespread use of metolachlor (MET), the accumulation of MET and its metabolites in the environment has brought serious health problems to aquatic organisms. At present, the toxicity of MET on the physiological metabolism of aquatic animals mainly focused on the role of enzymes. There is still a lack of research on the molecular mechanisms of MET hepatotoxicity, especially on antagonizing MET toxicity. Therefore, this study focuses on grass carp hepatocytes (L8824 cells) closely related to toxin accumulation. By establishing a MET exposed L8824 cells model, it is determined that MET exposure induces pyrolytic inflammation of L8824 cells. Subsequent mechanistic studies found that MET exposure induces pyroptosis in L8824 cells through mitochondrial dysfunction, and siCaspase-1 inhibits the MET induced ROS production, suggesting a regulation of ROS-NLRP3- Caspase-1 pyroptotic inflammation cycling center in MET induced injury to L8824 cells. Molecular docking revealed a strong binding energy between melatonin (MT) and Caspase-1. Finally, a model of L8824 cells with MT intervention in MET exposure was established. MT can antagonize the pyroptosis induced by MET exposure in L8824 cells by targeting Caspase-1, thereby restoring mitochondrial function and inhibiting the ROS-pyroptosis cycle. This study discovered targets and mechanisms of MT regulating pyroptosis in MET exposed-L8824 cells, and the results are helpful to provide new targets for the design of MET antidotes.


Subject(s)
Acetamides , Carps , Hepatocytes , Melatonin , Molecular Docking Simulation , Animals , Carps/metabolism , Melatonin/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Acetamides/toxicity , Acetamides/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Pyroptosis/drug effects , Caspase 1/metabolism , Herbicides/toxicity , Computer Simulation , Mitochondria/drug effects , Mitochondria/metabolism
9.
Phytomedicine ; 131: 155783, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838402

ABSTRACT

BACKGROUND: Psoriasis, a chronic immune-mediated skin disease with pathological features such as aberrant differentiation of keratinocytes, dermal-epidermal inflammation, and angiogenesis. 2,3,5,4'-Tetrahydroxy stilbene 2-Ο-ß-d-glucoside (2354Glu) is a natural small molecule polyhydrostilbenes isolated from Polygonum multiglorum Thunb. The regulation of IL-36 subfamily has led to new pharmacologic strategies to reverse psoriasiform dermatitis. PURPOSE: Here we investigated the therapeutic potential of 2354Glu and elucidated the underlying mechanism in psoriasis. METHODS: The effects of 2354Glu on IL-36 signaling were assessed by psoriasiform in vivo, in vitro and ex vivo model. The in vivo mice model of psoriasis-like skin inflammation was established by applying imiquimod (IMQ), and the in vitro and ex vitro models were established by stimulating mouse primary keratinocyte, human keratinocytes cells (HaCaT) and ex vivo skin tissue isolated from the mice back with Polyinosine-polycytidylic acid (Poly(I:C)), IMQ, IL-36γ and Lipopolysaccharide (LPS) respectively. Moreover, NETs formation was inhibited by Cl-amidine to evaluate the effect of NETs in psoriatic mouse model. The effects of 2354Glu on skin inflammation were assessed by western blot, H&E, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay and real-time quantitative PCR. RESULTS: In Poly(I:C)-stimulated keratinocytes, the secretion of IL-36 was inhibited after treatment with 2354Glu, similar to the effects of TLR3, P2X7R and caspase-1 inhibitors. In aldara (imiquimod)-induced mice, 2354Glu (100 and 25 mg/kg) improved immune cell infiltration and hyperkeratosis in psoriasis by directly targeting IL-36 in keratinocytes through P2X7R-caspase-1. When treatment with 2354Glu (25 mg/kg) was insufficient to inhibit IL-36γ, NETs reduced pathological features and IL-36 signaling by interacting with keratinocytes to combat psoriasis like inflammation. CONCLUSION: These results indicated that NETs had a beneficial effect on psoriasiform dermatitis. 2354Glu alleviates psoriasis by directly targeting IL-36/P2X7R axis and NET formation, providing a potential candidate for the treatment of psoriasis.


Subject(s)
Disease Models, Animal , Glucosides , Imiquimod , Interleukin-1 , Psoriasis , Stilbenes , Animals , Psoriasis/drug therapy , Glucosides/pharmacology , Humans , Interleukin-1/metabolism , Stilbenes/pharmacology , Mice , Keratinocytes/drug effects , Polygonum/chemistry , Skin/drug effects , Skin/pathology , Mice, Inbred BALB C , Signal Transduction/drug effects , Male , Caspase 1/metabolism
10.
Phytomedicine ; 131: 155758, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843643

ABSTRACT

BACKGROUND: The adaptor protein apoptosis-associated speck-like protein (ASC) containing a caspase recruitment domain (CARD) can be activated through pyrin domain (PYD) interactions between sensors and ASC, and through CARD interactions between caspase-1 and ASC. Although the majority of ternary inflammasome complexes depend on ASC, drugs targeting ASC protein remain scarce. After screening natural compounds from Isatidis Radixin, we found that tryptanthrin (TPR) could inhibit NLRP3-induced IL-1ß and caspase-1 production, but the underlying anti-inflammatory mechanisms remain to be elucidated. PURPOSE: The purpose of this study was to determine the impact of TPR on the NLRP3, NLRC4, and AIM2 inflammasomes and the underlying mechanisms. Additionally, the efficacy of TPR was analysed in the further course of methionine- and choline-deficient (MCD)-induced NASH and lipopolysaccharide (LPS)-induced sepsis models of mice. METHODS: In vitro studies used bone marrow-derived macrophages to assess the anti-inflammatory activity of TPR, and the techniques included western blot, testing of intracellular K+ and Ca2+, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), co-immunoprecipitation, ASC oligomerization assay, surface plasmon resonance (SPR), and molecular docking. We used LPS-induced sepsis models and MCD-induced NASH models in vivo to evaluate the effectiveness of TPR in inhibiting inflammatory diseases. RESULTS: Our observations suggested that TPR could inhibit NLRP3, NLRC4, and AIM2 inflammasome activation. As shown in a mouse model of inflammatory diseases caused by MCD-induced NASH and LPS-induced sepsis, TPR significantly alleviated the progression of diseases. TPR interrupted the interactions between ASC and NLRP3/NLRC4/AIM2 in the co-immunoprecipitation experiment, and stable binding of TPR to ASC was also evident in SPR experiments. The underlying mechanisms of anti-inflammatory activities of TPR might be associated with targeting ASC, in particular, PYD domain of ASC. CONCLUSION: In general, the requirement for ASC in multiple inflammasome complexes makes TPR, as a novel broad-spectrum inflammasome inhibitor, potentially useful for treating a wide range of multifactorial inflammasome-related diseases.


Subject(s)
CARD Signaling Adaptor Proteins , Calcium-Binding Proteins , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Quinazolines , Animals , Inflammasomes/metabolism , Inflammasomes/drug effects , CARD Signaling Adaptor Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Calcium-Binding Proteins/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Quinazolines/pharmacology , Mice , Apoptosis Regulatory Proteins/metabolism , Interleukin-1beta/metabolism , DNA-Binding Proteins/metabolism , Caspase 1/metabolism , Sepsis/drug therapy , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Disease Models, Animal
11.
Nature ; 631(8019): 207-215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926576

ABSTRACT

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Subject(s)
Macrophages , Oxylipins , Pyroptosis , Secretome , Wound Healing , Animals , Female , Humans , Mice , Caspase 1/metabolism , Cell Movement , Cell Proliferation , Cyclooxygenase 2/metabolism , Dinoprostone/biosynthesis , Dinoprostone/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Gasdermins/metabolism , Inflammasomes/metabolism , Interleukin-1beta , Lipidomics , Macrophages/metabolism , Macrophages/cytology , Mice, Inbred C57BL , Oxylipins/metabolism , Phosphate-Binding Proteins/metabolism , Secretome/metabolism , Wound Healing/physiology
12.
Int Immunopharmacol ; 137: 112472, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897131

ABSTRACT

AIM OF THE STUDY: This study aimed to determine the effect of Epimedium brevicornu Maxim. (EF) on osteoporosis (OP) and its underlying molecular mechanisms, and to explore the existence of the "Gut-Bone Axis". MATERIAL AND METHODS: The impact of EF decoction (EFD) on OP was evaluated using istopathological examination and biochemical assays. Targeted metabolomics was employed to identify key molecules and explore their molecular mechanisms. Alterations in the gut microbiota (GM) were evaluated by 16S rRNA gene sequencing. The role of the GM was clarified using an antibiotic cocktail and faecal microbiota transplantation. RESULTS: EFD significantly increased the weight (14.06%), femur length (4.34%), abdominal fat weight (61.14%), uterine weight (69.86%), and insulin-like growth factor 1 (IGF-1) levels (59.48%), while reducing serum type I collagen cross-linked carboxy-terminal peptide (CTX-I) levels (15.02%) in osteoporotic mice. The mechanism of action may involve the regulation of the NLRP3/cleaved caspase-1/IL-1ß signalling pathway in improving intestinal tight junction proteins and bone metabolism. Additionally, EFD modulated the abundance of related GM communities, such as Lactobacillus, Coriobacteriaceae, bacteria of family S24-7, Clostridiales, and Prevotella, and increased propionate and butyrate levels. Antibiotic-induced dysbiosis of gut bacteria disrupted OP regulation of bone metabolism, which was restored by the recovery of GM. CONCLUSIONS: Our study is the first to demonstrate that EFD works in an OP mouse model by utilising GM and butyric acid. Thus, EF shows promise as a potential remedy for OP in the future.


Subject(s)
Caspase 1 , Epimedium , Gastrointestinal Microbiome , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoporosis , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Gastrointestinal Microbiome/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Signal Transduction/drug effects , Caspase 1/metabolism , Mice , Female , Interleukin-1beta/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Bone and Bones/drug effects , Bone and Bones/metabolism , Insulin-Like Growth Factor I/metabolism , Fecal Microbiota Transplantation
13.
Int Immunopharmacol ; 137: 112414, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897132

ABSTRACT

BACKGROUND: Chronic stress-induced neuroinflammation plays a pivotal role in the development and exacerbation of mental disorders, such as anxiety and depression. Dimethyl Fumarate (DMF), an effective therapeutic agent approved for the treatment of multiple sclerosis, has been widely reported to display anti-inflammatory and anti-oxidative effects. However, the impact of DMF on chronic stress-induced anxiety disorders and the exact underlying mechanisms remain largely unknown. METHODS: We established a mouse model of chronic social defeat stress (CSDS). DMF was administered orally 1 h before daily stress session for 10 days in CSDS + DMF group. qRT-PCR and western blotting were used to analyze mRNA and protein expression of NLRP3, Caspase-1 and IL-1ß. Immunofluorescence staining was carried out to detect the expression of Iba 1 and c-fos positive cells as well as morphological change of Iba 1+ microglia. Whole-cell patch-clamp recording was applied to evaluate synaptic transmission and intrinsic excitability of neurons. RESULTS: DMF treatment significantly alleviated CSDS-induced anxiety-like behaviors in mice. Mechanistically, DMF treatment prevented CSDS-induced neuroinflammation by inhibiting the activation of microglia and NLRP3/Caspase-1/IL-1ß signaling pathway in basolateral amygdala (BLA), a brain region important for emotional processing. Furthermore, DMF treatment effectively reversed the CSDS-caused disruption of excitatory and inhibitory synaptic transmission balance, as well as the increased intrinsic excitability of BLA neurons. CONCLUSIONS: Our findings provide new evidence that DMF may exert anxiolytic effect by preventing CSDS-induced activation of NLRP3/Caspase-1/IL-1ß signaling pathway and alleviating hyperactivity of BLA neurons.


Subject(s)
Anxiety , Dimethyl Fumarate , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Stress, Psychological , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Male , Stress, Psychological/drug therapy , Stress, Psychological/immunology , Mice , Anxiety/drug therapy , Neurons/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amygdala/drug effects , Amygdala/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Disease Models, Animal , Interleukin-1beta/metabolism , Microglia/drug effects , Behavior, Animal/drug effects , Caspase 1/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Signal Transduction/drug effects , Social Defeat
14.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38873985

ABSTRACT

Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S­sulfhydrating caspase­1 under the stimulation of oxidized low­density lipoprotein (ox­LDL), a pro­atherosclerotic factor. Macrophages derived from THP­1 monocytes were pre­treated using exogenous H2S donors sodium hydrosulfide (NaHS) and D,L­propargylglycine (PAG), a pharmacological inhibitor of endogenous H2S­producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox­LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of H2S in THP­1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP­1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase­1 activity in THP­1 cells was assayed by caspase­1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase­1. Western blotting and ELISA were performed to determine the expression of pyroptosis­specific markers (NLRP3, pro­caspase­1, caspase­1, GSDMD and GSDMD­N) in cells and the secretion of pyroptosis­related cytokines [interleukin (IL)­1ß and IL­18] in the cell­free media, respectively. The S­sulfhydration of pro­caspase­1 in cells was assessed using a biotin switch assay. ox­LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous H2S synthesis by PAG augmented the pro­pyroptotic effects of ox­LDL. Conversely, exogenous H2S (NaHS) ameliorated ox­LDL­and ox­LDL + PAG­induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox­LDL and the DTT increased caspase­1 activity and downstream events (IL­1ß and IL­18 secretion) of the caspase­1­dependent pyroptosis pathway by reducing S­sulfhydration of pro­caspase­1. Conversely, NaHS increased S­sulfhydration of pro­caspase­1, reducing caspase­1 activity and caspase­1­dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S­sulfhydration of pro­caspase­1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.


Subject(s)
Caspase 1 , Hydrogen Sulfide , Lipoproteins, LDL , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Pyroptosis/drug effects , Humans , Caspase 1/metabolism , Macrophages/metabolism , Macrophages/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Phosphate-Binding Proteins/metabolism , THP-1 Cells , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction/drug effects , Gasdermins , Alkynes , Glycine/analogs & derivatives , Sulfides
15.
Exp Eye Res ; 245: 109955, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843984

ABSTRACT

Chronic inflammation is one of the central drivers in the development of dry eye disease (DED), in which pyroptosis induced by the NLRP3/caspase-1/gasdermin D (GSDMD) pathway plays a key role. This pathway has become a major target for the treatment of a variety of inflammatory disorders. Oridonin (Ori) is a naturally occurring substance with anti-inflammatory properties obtained from Rabdosia rubescens. Whether Ori can exert an anti-inflammatory effect on DED, and its anti-inflammatory mechanism of action, are still unknown. This experiment is intended to investigate the impact of Ori on the hyperosmolarity-induced NLRP3/caspase-1/GSDMD pyroptosis pathway in immortalized human corneal epithelial (HCE-T) cells, as well as its efficacy and mechanism of action on ocular surface injury in DED mice. Our study showed that Ori could inhibit hyperosmotic-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway in HCE-T cells, and similarly, Ori inhibited the expression of this pathway in DED mice. Moreover, Ori was protective against hyperosmolarity-induced HCE-T cell damage. In addition, we found that the morphology and number of HCE-T cells were altered under culture conditions of various osmolarities. With increasing osmolarity, the proliferation, migration, and healing ability of HCE-T cells decreased significantly, and the expression of N-GSDMD was elevated. In a mouse model of DED, Ori application inhibited the expression of the NLRP3/caspase-1/GSDMD pyroptosis pathway, improved DED signs and injury, decreased corneal sodium fluorescein staining scores, and increased tear volume. Thus, our study suggests that Ori has potential applications for the treatment of DED, provides potential novel therapeutic approaches to treat DED, and provides a theoretical foundation for treating DED using Ori.


Subject(s)
Caspase 1 , Disease Models, Animal , Diterpenes, Kaurane , Dry Eye Syndromes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Mice , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/metabolism , Caspase 1/metabolism , Humans , Diterpenes, Kaurane/pharmacology , Phosphate-Binding Proteins/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Tears/metabolism , Cells, Cultured , Blotting, Western , Gasdermins
16.
Mol Med Rep ; 30(2)2024 08.
Article in English | MEDLINE | ID: mdl-38940333

ABSTRACT

Elevated levels of blood glucose in patients with ischemic stroke are associated with a worse prognosis. The present study aimed to explore whether hyperglycemia promotes microglial pyroptosis by increasing the oxygen extraction rate in an acute ischemic stroke model. C57BL/6 mice that underwent middle cerebral artery occlusion were used for assessment of blood glucose level and neurological function. The cerebral oxygen extraction ratio (CERO2), oxygen consumption rate (OCR) and partial pressure of brain tissue oxygen (PbtO2) were measured. To investigate the significance of the NOD­like receptor protein 3 (NLRP3) inflammasome, NLRP3­/­ mice were used, and the expression levels of NLRP3, caspase­1, full­length gasdermin D (GSDMD­FL), GSDMD­N domain (GSDMD­N), IL­1ß and IL­18 were evaluated. In addition, Z­YVAD­FMK, a caspase­1 inhibitor, was used to treat microglia to determine whether activation of the NLRP3 inflammasome was required for the enhancing effect of hyperglycemia on pyroptosis. It was revealed that hyperglycemia accelerated cerebral injury in the acute ischemic stroke model, as evidenced by decreased latency to fall and the percentage of foot fault. Hyperglycemia aggravated hypoxia by increasing the oxygen extraction rate, as evidenced by increased CERO2 and OCR, and decreased PbtO2 in response to high glucose treatment. Furthermore, hyperglycemia­induced microglial pyroptosis was confirmed by detection of increased levels of caspase­1, GSDMD­N, IL­1ß and IL­18 and a decreased level of GSDMD­FL. However, the knockout of NLRP3 attenuated these effects. Pharmacological inhibition of caspase­1 also reduced the expression levels of GSDMD­N, IL­1ß and IL­18 in microglial cells. These results suggested that hyperglycemia stimulated NLRP3 inflammasome activation by increasing the oxygen extraction rate, thus leading to the aggravation of pyroptosis following ischemic stroke.


Subject(s)
Hyperglycemia , Inflammasomes , Ischemic Stroke , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Oxygen , Pyroptosis , Animals , Microglia/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxygen/metabolism , Male , Hyperglycemia/metabolism , Inflammasomes/metabolism , Caspase 1/metabolism , Disease Models, Animal , Mice, Knockout , Interleukin-1beta/metabolism , Phosphate-Binding Proteins/metabolism , Oxygen Consumption , Gasdermins
17.
Cells ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38920626

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration in the central nervous system. Recent research has increasingly linked the activation of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome to ALS pathogenesis. NLRP3 activation triggers Caspase 1 (CASP 1) auto-activation, leading to the cleavage of Gasdermin D (GSDMD) and pore formation on the cellular membrane. This process facilitates cytokine secretion and ultimately results in pyroptotic cell death, highlighting the complex interplay of inflammation and neurodegeneration in ALS. This study aimed to characterize the NLRP3 inflammasome components and their colocalization with cellular markers using the wobbler mouse as an ALS animal model. Firstly, we checked the levels of miR-223-3p because of its association with NLRP3 inflammasome activity. The wobbler mice showed an increased expression of miR-223-3p in the ventral horn, spinal cord, and cerebellum tissues. Next, increased levels of NLRP3, pro-CASP 1, cleaved CASP 1 (c-CASP 1), full-length GSDMD, and cleaved GDSMD revealed NLRP3 inflammasome activation in wobbler spinal cords, but not in the cerebellum. Furthermore, we investigated the colocalization of the aforementioned proteins with neurons, microglia, and astrocyte markers in the spinal cord tissue. Evidently, the wobbler mice displayed microgliosis, astrogliosis, and motor neuron degeneration in this tissue. Additionally, we showed the upregulation of protein levels and the colocalization of NLRP3, c-CASP1, and GSDMD in neurons, as well as in microglia and astrocytes. Overall, this study demonstrated the involvement of NLRP3 inflammasome activation and pyroptotic cell death in the spinal cord tissue of wobbler mice, which could further exacerbate the motor neuron degeneration and neuroinflammation in this ALS mouse model.


Subject(s)
Amyotrophic Lateral Sclerosis , Inflammasomes , MicroRNAs , Motor Neurons , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , Inflammasomes/metabolism , Mice , MicroRNAs/metabolism , MicroRNAs/genetics , Spinal Cord/pathology , Spinal Cord/metabolism , Disease Models, Animal , Nerve Degeneration/pathology , Nerve Degeneration/metabolism , Microglia/metabolism , Microglia/pathology , Mice, Inbred C57BL , Caspase 1/metabolism
18.
Clin Rheumatol ; 43(8): 2661-2667, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879629

ABSTRACT

Familial Mediterranean fever (FMF) is a recessively inherited autoinflammatory disorder with wide phenotypic variation that has been observed among individuals who have the same genotype. Modifying genes, epigenetic factors, or environmental factors might all have an impact on genotype-phenotype correlation in FMF. The current research aims to determine the expression levels of microRNAs (miR-148b and miR-17) in Egyptian FMF participants. We also aimed to investigate Caspase -1 gene expression to make a correlation with disease severity. The study comprised 25 clinically diagnosed FMF cases and 25 healthy subjects matched for age and sex. The molecular diagnosis of FMF cases was assessed using real-time SNP genotyping assay. MiR-148b and miR-17 expression were profiled using TaqMan assay technology. The expression level of Caspase -1 gene was also verified using qRT-PCR. MiR-17 in the studied cases was significantly upregulated compared to healthy individuals (P = 0.006), whereas miR-148b was significantly downregulated in the examined patients (P = 0.030). Moreover, statistically significant upregulation of Caspase-1 expression was also elucidated in relation to normal subjects (P = 0.033). The results obtained indicated that miR-17 and miR-148b might be potential regulatory biomarkers in FMF cases. We further hypothesized that the upregulation of Caspase-1 could hint at its significance as a future therapeutic target to alleviate the inflammatory process in these patients. Key Points • The role of miRNAs in FMF and various mechanisms involved in FMF pathogenesis has received increasing attention. • Studying the expression profiles of miR-17 and miR-148b in FMF patients revealed their potential role as regulatory biomarkers in these patients. • Significant upregulation of Caspase-1 expression in FMF cases could hint at its significance as a future therapeutic target. • Future studies on larger cohorts are warranted to clarify and better understand the role of miRNAs in the pathogenesis and severity of FMF.


Subject(s)
Caspase 1 , Familial Mediterranean Fever , MicroRNAs , Humans , Familial Mediterranean Fever/genetics , MicroRNAs/genetics , Female , Male , Child , Caspase 1/metabolism , Caspase 1/genetics , Case-Control Studies , Adolescent , Egypt , Up-Regulation , Polymorphism, Single Nucleotide
19.
Cytokine ; 181: 156677, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896955

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction activated by microglia. The potential pathological changes of SAE are complex, and the cellular pathophysiological characteristics remains unclear. This study aims to explore the ROS/TXNIP/NLRP3 pathway mediated lipopolysaccharide (LPS)-induced inflammatory response in microglia. METHODS: BV-2 cells were pre-incubated with 10 µM N-acetyl-L-cysteine (NAC) for 2 h, which were then reacted with 1 µg/mL LPS for 24 h. Western blot assay examined the protein levels of IBA1, CD68, TXNIP, NLRP3, ASC, and Cleaved Caspase-1 in BV-2 cells. The contents of inflammatory factor were detected by ELISA assay. The co-immunoprecipitation assay examined the interaction between TXNIP and NLRP3. RESULTS: LPS was confirmed to promote the positive expressions of IBA1 and CD68 in BV-2 cells. The further experiments indicated that LPS enhanced ROS production and NLRP3 inflammasome activation in BV-2 cells. Moreover, we also found that NAC partially reversed the facilitation of LPS on the levels of ROS, IL-1ß, IL-18, TXNIP, NLRP3, ASC, and Cleaved Caspase-1 in BV-2 cells. NAC treatment also notably alleviated the interaction between TXNIP and NLRP3 in BV-2 cells. CONCLUSION: ROS inhibition mediated NLRP3 signaling inactivation by decreasing TXNIP expression.


Subject(s)
Carrier Proteins , Caspase 1 , Inflammasomes , Inflammation , Lipopolysaccharides , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , Microglia/drug effects , Lipopolysaccharides/pharmacology , Carrier Proteins/metabolism , Animals , Mice , Reactive Oxygen Species/metabolism , Caspase 1/metabolism , Signal Transduction/drug effects , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/pathology , Cell Line , Acetylcysteine/pharmacology , Calcium-Binding Proteins/metabolism , Interleukin-1beta/metabolism , Interleukin-18/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Microfilament Proteins/metabolism , Thioredoxins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology , CD68 Molecule
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 810-817, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862438

ABSTRACT

OBJECTIVE: To explore the neuroprotective effect of coenzyme Q10 and its possible mechanism in mice with chronic restraint stress (CRS). METHODS: Mouse models of CRS were treated with intraperitoneal injections of coenzyme Q10 at low, moderate and high doses (50, 100 and 200 mg/kg, respectively, n=8), VX765 (a caspase-1 specific inhibitor, 50 mg/kg, n=8), or fluoxetine (10 mg/kg, n=8) on a daily basis for 4 weeks, and the changes in depression-like behaviors of the mice were assessed by sugar water preference test, forced swimming test and tail suspension test. The expression of glial fibrillary acidic protein (GFAP) in the hippocampus of the mice was detected using immunohistochemistry, and the number of synaptic spines was determined with Golgi staining. Western blotting was performed to detect the changes in the expressions of GFAP and pyroptosis-related proteins in the hippocampus, and the colocalization of neurons and caspase-1 p10 was examined with immunofluorescence assay. RESULTS: Compared with the normal control mice, the mouse models of CRS showed significantly reduced sugar water preference and increased immobility time in forced swimming and tail suspension tests (P < 0.05), and these depression-like behaviors were obviously improved by treatment with coenzyme Q10, VX765 or FLX. The mouse models showed a significantly decreased positive rate of GFAP and lowered GFAP protein expression in the hippocampus with obviously decreased synaptic spines, enhanced expressions of GSDMD-N, caspase-1 and IL-1ß, and increased colocalization of neurons and caspase-1 p10 (all P < 0.05). All these changes were significantly ameliorated in the mouse models after treatment with Q10. CONCLUSION: Coenzyme Q10 can alleviate depression-like behaviors in mice with CRS by down-regulating the pyroptosis signaling pathway.


Subject(s)
Depression , Disease Models, Animal , Hippocampus , Pyroptosis , Restraint, Physical , Signal Transduction , Stress, Psychological , Ubiquinone , Animals , Mice , Pyroptosis/drug effects , Depression/drug therapy , Depression/etiology , Depression/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Hippocampus/metabolism , Hippocampus/drug effects , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Down-Regulation/drug effects , Caspase 1/metabolism , Glial Fibrillary Acidic Protein/metabolism , Behavior, Animal/drug effects , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL