Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.550
Filter
1.
Bone Res ; 12(1): 40, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987568

ABSTRACT

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.


Subject(s)
Caspase 8 , Cell Fusion , Osteoclasts , Phosphatidylserines , Phospholipid Transfer Proteins , Caspase 8/metabolism , Caspase 8/genetics , Animals , Osteoclasts/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Mice , Mice, Inbred C57BL , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Cell Differentiation , RANK Ligand/metabolism
2.
Biochem Biophys Res Commun ; 725: 150215, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38870845

ABSTRACT

Cardiac ischemia results in anaerobic metabolism and lactic acid accumulation and with time, intracellular and extracellular acidosis. Ischemia and subsequent reperfusion injury (IRI) lead to various forms of programmed cell death. Necroptosis is a major form of programmed necrosis that worsens cardiac function directly and also promotes inflammation by the release of cellular contents. Potential effects of increasing acidosis on programmed cell death and their specific components have not been well studied. While apoptosis is caspase-dependent, in contrast, necroptosis is mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1/3). In our study, we observed that at physiological pH = 7.4, caspase-8 inhibition did not prevent TNFα-induced cell death in mouse cardiac vascular endothelial cells (MVECs) but promoted necroptotic cell death. As expected, necroptosis was blocked by RIPK1 inhibition. However, at pH = 6.5, TNFα induced an apoptosis-like pattern which was inhibited by caspase-8 inhibition. Interestingly phosphorylation of necroptotic molecules RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL) was enhanced in an acidic pH environment. However, RIPK3 and MLKL phosphorylation was self-limited which may have limited their participation in necroptosis. In addition, an acidic pH promoted apoptosis-inducing factor (AIF) cleavage and nuclear translocation. AIF RNA silencing inhibited cell death, supporting the role of AIF in this cell death. In summary, our study demonstrated that the pH of the micro-environment during inflammation can bias cell death pathways by altering the function of necroptosis-related molecules and promoting AIF-mediated cell death. Further insights into the mechanisms by which an acidic cellular micro-environment influences these and perhaps other forms of regulated cell death, may lead to therapeutic strategies to attenuate IRI.


Subject(s)
Apoptosis , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Tumor Necrosis Factor-alpha , Animals , Hydrogen-Ion Concentration , Apoptosis/drug effects , Necroptosis/drug effects , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha/metabolism , Caspase 8/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Cells, Cultured , Phosphorylation , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology
3.
Infect Immun ; 92(7): e0005324, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38837340

ABSTRACT

Coxiella burnetii is an obligate intracellular bacteria that causes the global zoonotic disease Q Fever. Treatment options for chronic infection are limited, and the development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected tumor necrosis factor alpha (TNFα)/cycloheximide-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- bone marrow-derived macrophages (BMDMs) to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.


Subject(s)
Caspase 8 , Coxiella burnetii , Macrophages , Q Fever , Tumor Necrosis Factor-alpha , Caspase 8/metabolism , Animals , Tumor Necrosis Factor-alpha/metabolism , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Mice , Q Fever/microbiology , Q Fever/immunology , Q Fever/metabolism , Humans , Apoptosis , Signal Transduction , Cell Line , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , THP-1 Cells
4.
Cell Death Differ ; 31(7): 938-953, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849574

ABSTRACT

Z-DNA binding protein 1 (ZBP1) has important functions in anti-viral immunity and in the regulation of inflammatory responses. ZBP1 induces necroptosis by directly engaging and activating RIPK3, however, the mechanisms by which ZBP1 induces inflammation and in particular the role of RIPK1 and the contribution of cell death-independent signaling remain elusive. Here we show that ZBP1 causes skin inflammation by inducing RIPK3-mediated necroptosis and RIPK1-caspase-8-mediated apoptosis in keratinocytes. ZBP1 induced TNFR1-independent skin inflammation in mice with epidermis-specific ablation of FADD by triggering keratinocyte necroptosis. Moreover, transgenic expression of C-terminally truncated constitutively active ZBP1 (ZBP1ca) in mouse epidermis caused skin inflammation that was only partially inhibited by abrogation of RIPK3-MLKL-dependent necroptosis and fully prevented by combined deficiency in MLKL and caspase-8. Importantly, ZBP1ca induced caspase-8-mediated skin inflammation by RHIM-dependent but kinase activity-independent RIPK1 signaling. Furthermore, ZBP1ca-induced inflammatory cytokine production in the skin was completely prevented by combined inhibition of apoptosis and necroptosis arguing against a cell death-independent pro-inflammatory function of ZBP1. Collectively, these results showed that ZBP1 induces inflammation by activating necroptosis and RIPK1 kinase activity-independent apoptosis.


Subject(s)
Apoptosis , Caspase 8 , Inflammation , Keratinocytes , Necroptosis , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice , Caspase 8/metabolism , Inflammation/pathology , Inflammation/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Keratinocytes/metabolism , Fas-Associated Death Domain Protein/metabolism , Signal Transduction , Humans , Protein Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Mice, Inbred C57BL , Mice, Transgenic
5.
Cell Rep ; 43(6): 114335, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850531

ABSTRACT

Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.


Subject(s)
Caspase 8 , Fas-Associated Death Domain Protein , Inflammation , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Fas-Associated Death Domain Protein/metabolism , Inflammation/metabolism , Inflammation/pathology , Mice , Caspase 8/metabolism , Protein Kinases/metabolism , Apoptosis , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Necroptosis , Protein Binding , Mice, Inbred C57BL
6.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791369

ABSTRACT

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Subject(s)
Bacterial Toxins , Interleukin-8 , Pasteurella Infections , Pasteurella multocida , Animals , Apoptosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Bacterial Toxins/metabolism , Caspase 8/metabolism , Caspase 8/genetics , Cell Line , CRISPR-Cas Systems , Gene Knockout Techniques , Interleukin-8/metabolism , Interleukin-8/genetics , Pasteurella multocida/genetics , Swine , Pasteurella Infections/metabolism , Pasteurella Infections/veterinary
7.
J Clin Invest ; 134(13)2024 May 14.
Article in English | MEDLINE | ID: mdl-38743492

ABSTRACT

Steatotic donor livers are becoming more and more common in liver transplantation. However, the current use of steatotic grafts is less acceptable than normal grafts due to their higher susceptibility to ischemia/reperfusion (I/R) injury. To investigate the mechanism underlying the susceptibility of steatotic liver to I/R injury, we detected cell death markers and inflammation in clinical donor livers and animal models. We found that caspase-8-mediated hepatic apoptosis is activated in steatotic liver I/R injury. However, ablation of caspase-8 only slightly mitigated steatotic liver I/R injury without affecting inflammation. We further demonstrated that RIPK1 kinase induces both caspase-8-mediated apoptosis and cell death-independent inflammation. Inhibition of RIPK1 kinase significantly protects against steatotic liver I/R injury by alleviating both hepatic apoptosis and inflammation. Additionally, we found that RIPK1 activation is induced by Z-DNA binding protein 1 (ZBP1) but not the canonical TNF-α pathway during steatotic liver I/R injury. Deletion of ZBP1 substantially decreases the steatotic liver I/R injury. Mechanistically, ZBP1 is amplified by palmitic acid-activated JNK pathway in steatotic livers. Upon I/R injury, excessive reactive oxygen species trigger ZBP1 activation by inducing its aggregation independent of the Z-nucleic acids sensing action in steatotic livers, leading to the kinase activation of RIPK1 and the subsequent aggravation of liver injury. Thus, ZBP1-mediated RIPK1-driven apoptosis and inflammation exacerbate steatotic liver I/R injury, which could be targeted to protect steatotic donor livers during transplantation.


Subject(s)
Apoptosis , Caspase 8 , Fatty Liver , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases , Reperfusion Injury , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice , Humans , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Caspase 8/metabolism , Caspase 8/genetics , Liver/pathology , Liver/metabolism , Mice, Knockout , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Male , Liver Transplantation , Mice, Inbred C57BL
8.
Stem Cell Reports ; 19(6): 839-858, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38821055

ABSTRACT

Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.


Subject(s)
Apoptosis , Induced Pluripotent Stem Cells , Microphthalmos , Microphthalmos/genetics , Microphthalmos/pathology , Microphthalmos/metabolism , Humans , Apoptosis/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Cell Proliferation , Caspase 8/metabolism , Caspase 8/genetics , Extracellular Matrix/metabolism , Eye/metabolism , Eye/pathology , Phenotype
9.
Mol Carcinog ; 63(7): 1406-1416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695620

ABSTRACT

Tanshinone IIA (Tan IIA), a main active ingredient of salvia miltiorrhiza, has a wide range of antitumor effects, while its specific role and mechanism in head and neck squamous cell carcinomas (HNSCC) is not fully understood. Totally 59 primary HNSCC patients underwent two courses of induction chemotherapy before surgery. The association between expression of Fas-Associated Death Domain (FADD) and receptor interacting protein kinase 1 (RIPK1) and chemotherapy resistance and survival were evaluated. The cell counting kit-8 was used to detect the effect of Tan IIA on the activity of cisplatin in chemoresistant HNSCC cells through a series of in vitro experiments. The quantitative real-time reverse-transcription polymerase chain reaction, Western blot analysis and flow cytometry were used. FADD and RIPK1 expressions were differentially expressed in Chemosensitive and drug-resistant patients. Furthermore, patients with tumors exhibiting high expression of FADD and RIPK1 had significantly greater risk for chemoresistance and mortality than patients with tumors that had low levels of these proteins. Moreover, Tan IIA reduced the expression of RIPK1 and FADD in HNSCC chemoresistant cell lines, which could increase the chemosensitivity of cisplatin and promote apoptosis. Overexpression of RIPK1 led to attenuation of therapeutic effects of Tan IIA, which were mainly realized through regulation of the RIPK1-FADD-Caspase 8 complex. This study is the first to demonstrate the clinical value and role of FADD and RIPK1 in the treatment of HNSCC. This work establishes the proapoptotic effects of Tan IIA and its potential to enhance chemosensitivity in HNSCC by modulating the RIPK1-FADD-Caspase 8 complex.


Subject(s)
Abietanes , Caspase 8 , Cisplatin , Drug Resistance, Neoplasm , Fas-Associated Death Domain Protein , Head and Neck Neoplasms , Receptor-Interacting Protein Serine-Threonine Kinases , Squamous Cell Carcinoma of Head and Neck , Humans , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Abietanes/pharmacology , Male , Female , Caspase 8/metabolism , Caspase 8/genetics , Drug Resistance, Neoplasm/drug effects , Middle Aged , Cisplatin/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Aged , Apoptosis/drug effects , Adult , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics
10.
Cell Death Differ ; 31(7): 897-909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783091

ABSTRACT

Necroptosis is a caspase-independent modality of cell death implicated in many inflammatory pathologies. The execution of this pathway requires the formation of a cytosolic platform that comprises RIPK1 and RIPK3 which, in turn, mediates the phosphorylation of the pseudokinase MLKL (S345 in mouse). The activation of this executioner is followed by its oligomerisation and accumulation at the plasma-membrane where it leads to cell death via plasma-membrane destabilisation and consequent permeabilisation. While the biochemical and cellular characterisation of these events have been amply investigated, the study of necroptosis involvement in vivo in animal models is currently limited to the use of Mlkl-/- or Ripk3-/- mice. Yet, even in many of the models in which the involvement of necroptosis in disease aetiology has been genetically demonstrated, the fundamental in vivo characterisation regarding the question as to which tissue(s) and specific cell type(s) therein is/are affected by the pathogenic necroptotic death are missing. Here, we describe and validate an immunohistochemistry and immunofluorescence-based method to reliably detect the phosphorylation of mouse MLKL at serine 345 (pMLKL-S345). We first validate the method using tissues derived from mice in which Caspase-8 (Casp8) or FADD are specifically deleted from keratinocytes, or intestinal epithelial cells, respectively. We next demonstrate the presence of necroptotic activation in the lungs of SARS-CoV-infected mice and in the skin and spleen of mice bearing a Sharpin inactivating mutation. Finally, we exclude necroptosis occurrence in the intestines of mice subjected to TNF-induced septic shock. Importantly, by directly comparing the staining of pMLKL-345 with that of cleaved Caspase-3 staining in some of these models, we identify spatio-temporal and functional differences between necroptosis and apoptosis supporting a role of RIPK3 in inflammation independently of MLKL versus the role of RIPK3 in activation of necroptosis.


Subject(s)
Necroptosis , Protein Kinases , Animals , Protein Kinases/metabolism , Protein Kinases/genetics , Mice , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Caspase 8/metabolism , Mice, Inbred C57BL , Mice, Knockout
11.
Cell Death Differ ; 31(6): 820-832, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734851

ABSTRACT

The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of Ripk1 in conventional T cells (Ripk1ΔCD4) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4+, naive CD8+, and FoxP3+ regulatory T cells. Interestingly, peripheral naive CD8+ T cells in Ripk1ΔCD4 mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4+ T cells. Ripk1K45A mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of Ripk1ΔCD4 naive T cells expressed the proliferation marker Ki-67+ despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore, Ripk1ΔCD4Casp8 ΔCD4 and Ripk1ΔCD4Tnfr1-/- double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4+ and CD8+ cells and FoxP3+ regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis.


Subject(s)
Apoptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Receptors, Tumor Necrosis Factor, Type I , T-Lymphocytes, Regulatory , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , Receptors, Tumor Necrosis Factor, Type I/metabolism , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Mice, Knockout , Caspase 8/metabolism , Lymphopenia/pathology , Lymphopenia/immunology
12.
Oncogene ; 43(25): 1955-1971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38730267

ABSTRACT

Procaspase-8 is a key mediator of death receptor (DR)-mediated pathways. Recently, the role of post-translational modifications (PTMs) of procaspase-8 in controlling cell death has received increasing attention. Here, using mass spectrometry screening, pharmacological inhibition and biochemical assays, we show that procaspase-8 can be targeted by the PRMT5/RIOK1/WD45 methylosome complex. Furthermore, two potential methylation sites of PRMT5 on procaspase-8, R233 and R435, were identified in silico. R233 and R435 are highly conserved in mammals and their point mutations are among the most common mutations of caspase-8 in cancer. The introduction of mutations at these positions resulted in inhibitory effects on CD95L-induced caspase-8 activity, effector caspase activation and apoptosis. In addition, we show that procaspase-8 can undergo symmetric di-methylation. Finally, the pharmacological inhibition of PRMT5 resulted in the inhibitory effects on caspase activity and apoptotic cell death. Taken together, we have unraveled the additional control checkpoint in procaspase-8 activation and the arginine methylation network in the extrinsic apoptosis pathway.


Subject(s)
Apoptosis , Arginine , Caspase 8 , Protein-Arginine N-Methyltransferases , Caspase 8/metabolism , Caspase 8/genetics , Arginine/metabolism , Humans , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein Processing, Post-Translational
13.
Int J Cardiol ; 408: 132158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38744338

ABSTRACT

BACKGROUND: Cardiomyocyte apoptosis plays a vital role in myocardial ischemia-reperfusion (MI/R) injury; however, the role of beclin1 (BECN1) remains unclear. This study aimed at revealing the function of BECN1 during cardiomyocyte apoptosis after MI/R injury. METHODS: In vivo, TTC and Evan's blue double staining was applied to verify the gross morphological alteration in both wild type (WT) mice and BECN1 transgene mice (BECN1-TG), and TUNEL staining and western blot were adopted to evaluate the cardiomyocyte apoptosis. In vitro, a hypoxia/reoxygenation (H/R) model was established in H9c2 cells to simulate MI/R injury. Proteomics analysis was preformed to verify if apoptosis occurs in the H/R cellular model. And apoptosis factors, RIPK1, Caspase-1, Caspase-3, and cleaved Caspase-3, were investigated using western bolting. In addition, the mRNA level were verified using RT-PCR. To further investigate the protein interactions small interfering RNA and lentiviral transfection were used. To continue investigate the protein interactions, immunofluorescence and coimmunoprecipitation were applied. RESULTS: Morphologically, BECN1 significantly attenuated the apoptosis from TTC-Evan's staining, TUNEL, and cardiac tissue western blot. After H/R, a RIPK1-induced complex (complex II) containing RIPK1, Caspase-8, and FADD was formed. Thereafter, cleaved Caspase-3 was activated, and myocyte apoptosis occurred. However, BECN1 decreased the expression of RIPK1, Caspase-8, and FADD. Nevertheless, BECN1 overexpression increased RIPK1 ubiquitination before apoptosis by inhibiting OTUD1. CONCLUSIONS: BECN1 regulates FADD/RIPK1/Caspase-8 complex formation via RIPK1 ubiquitination by downregulating OTUD1 in C-Caspase-3-induced myocyte apoptosis after MI/R injury. Therefore, BECN1 can function as a cardioprotective candidate.


Subject(s)
Apoptosis , Beclin-1 , Caspase 8 , Down-Regulation , Fas-Associated Death Domain Protein , Myocardial Reperfusion Injury , Myocytes, Cardiac , Receptor-Interacting Protein Serine-Threonine Kinases , Ubiquitination , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Fas-Associated Death Domain Protein/metabolism , Apoptosis/physiology , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Caspase 8/metabolism , Beclin-1/metabolism , Ubiquitination/physiology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Down-Regulation/physiology , Male , Mice, Transgenic , Mice, Inbred C57BL , Cells, Cultured
14.
EMBO Mol Med ; 16(7): 1717-1749, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750308

ABSTRACT

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.


Subject(s)
Immunohistochemistry , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Humans , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Immunohistochemistry/methods , Protein Kinases/metabolism , Protein Kinases/genetics , Caspase 8/metabolism , Signal Transduction , Mice, Inbred C57BL
15.
Nat Commun ; 15(1): 3791, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710704

ABSTRACT

Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein , Caspase 8 , Fas-Associated Death Domain Protein , Humans , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , HEK293 Cells , Models, Molecular , Protein Binding , Protein Domains , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
16.
World Neurosurg ; 187: e136-e147, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636634

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is an important health concern in the society. Previous studies have suggested that necroptosis occurs following TBI. However, the underlying mechanisms and roles of necroptosis are not well understood. In this study, we aimed to assess the role of receptor-interacting serine/threonine-protein kinase 3 (RIP3)-mediated necroptosis after TBI both in vitro and in vivo. METHODS: We established a cell-stretching injury and mouse TBI model by applying a cell injury controller and controlled cortical impactor to evaluate the relationships among necroptosis, apotosis, inflammation, and TBI both in vitro and in vivo. RESULTS: The results revealed that necroptosis mediated by RIP1, RIP3, and mixed lineage kinase domain-like protein was involved in secondary TBI. Additionally, protein kinase B (Akt), phosphorylated Akt, mammalian target of rapamycin (mTOR), and phosphorylated mTOR potentially contribute to necroptosis. The inhibition of RIP3 by GSK'872 (a specific inhibitor) blocked necroptosis and reduced the activity of Akt/mTOR, leading to the alleviation of inflammation by reducing the levels of NOD-, LRR- and pyrin domain-containing protein 3. Moreover, the inhibition of RIP3 by GSK'872 promoted the activity of cysteinyl aspartate specific proteinase-8, an enzyme involved in apoptosis and inflammation. CONCLUSIONS: These data demonstrate that RIP3 inhibition could improve the prognosis of TBI, based on the attenuation of inflammation by switching RIP3-dependent necroptosis to cysteinyl aspartate specific proteinase-8-dependent apoptosis.


Subject(s)
Apoptosis , Brain Injuries, Traumatic , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Necroptosis/physiology , Necroptosis/drug effects , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Mice , Apoptosis/physiology , Apoptosis/drug effects , Male , Prognosis , Mice, Inbred C57BL , Caspase 8/metabolism
17.
Immunology ; 172(4): 566-576, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38618995

ABSTRACT

The inflammatory response is tightly regulated to eliminate invading pathogens and avoid excessive production of inflammatory mediators and tissue damage. Caspase-8 is a cysteine protease that is involved in programmed cell death. Here we show the TRIF-RIPK1-Caspase-8 is required for LPS-induced CYLD degradation in macrophages. TRIF functions in the upstream of RIPK1. The homotypic interaction motif of TRIF and the death domain of RIPK1 are essential for Caspase-8 activation. Caspase-8 cleaves CYLD and the D235A mutant is resistant to the protease activity of Caspase-8. TRIF and RIPK1 serve as substrates of Capase-8 in vitro. cFLIP interacts with Caspase-8 to modulate its protease activity on CYLD and cell death. Deficiency in TRIF, Caspase-8 or CYLD can lead to a decrease or increase in the expression of genes encoding inflammatory cytokines. Together, the TRIF-Caspase-8 and CYLD play opposite roles in the regulation of TLR4 signalling.


Subject(s)
Adaptor Proteins, Vesicular Transport , Caspase 8 , Deubiquitinating Enzyme CYLD , Lipopolysaccharides , Receptor-Interacting Protein Serine-Threonine Kinases , Signal Transduction , Toll-Like Receptor 4 , Caspase 8/metabolism , Caspase 8/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Deubiquitinating Enzyme CYLD/metabolism , Deubiquitinating Enzyme CYLD/genetics , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice , Humans , Gene Expression Regulation , Macrophages/immunology , Macrophages/metabolism , Mice, Knockout , Mice, Inbred C57BL , Fas-Associated Death Domain Protein
18.
Biochem Biophys Res Commun ; 715: 150006, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678786

ABSTRACT

Vascular endothelial cells play a critical role in maintaining the health of blood vessels, but dysfunction can lead to cardiovascular diseases. The impact of arsenite exposure on cardiovascular health is a significant concern due to its potential adverse effects. This study aims to explore how NBR1-mediated autophagy in vascular endothelial cells can protect against oxidative stress and apoptosis induced by arsenite. Initially, our observations revealed that arsenite exposure increased oxidative stress and triggered apoptotic cell death in human umbilical vein endothelial cells (HUVECs). However, treatment with the apoptosis inhibitor Z-VAD-FMK notably reduced arsenite-induced apoptosis. Additionally, arsenite activated the autophagy pathway and enhanced autophagic flux in HUVECs. Interestingly, inhibition of autophagy exacerbated arsenite-induced apoptotic cell death. Our findings also demonstrated the importance of autophagy receptor NBR1 in arsenite-induced cytotoxicity, as it facilitated the recruitment of caspase 8 to autophagosomes for degradation. The protective effect of NBR1 against arsenite-induced apoptosis was compromised when autophagy was inhibited using pharmacological inhibitors or through genetic knockdown of essential autophagy genes. Conversely, overexpression of NBR1 facilitated caspase 8 degradation and reduced apoptotic cell death in arsenite-treated HUVECs. In conclusion, our study highlights the vital role of NBR1-mediated autophagic degradation of caspase 8 in safeguarding vascular endothelial cells from arsenite-induced oxidative stress and apoptotic cell death. Targeting this pathway could offer a promising therapeutic approach to mitigate cardiovascular diseases associated with arsenite exposure.


Subject(s)
Apoptosis , Arsenites , Autophagy , Caspase 8 , Human Umbilical Vein Endothelial Cells , Oxidative Stress , Humans , Arsenites/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Caspase 8/metabolism , Caspase 8/genetics , Oxidative Stress/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Proteolysis/drug effects , Cells, Cultured
19.
Cell Death Dis ; 15(4): 278, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637559

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.


Subject(s)
Myelodysplastic Syndromes , Animals , Humans , Mice , Bone Marrow Failure Disorders/complications , Caspase 8/genetics , Caspase 8/metabolism , Inflammation/metabolism , Mice, Knockout , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism
20.
Front Immunol ; 15: 1384606, 2024.
Article in English | MEDLINE | ID: mdl-38660315

ABSTRACT

Introduction: Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods: Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results: We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion: These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.


Subject(s)
Caspase 8 , Interferon-alpha , Keratinocytes , Animals , Mice , Apoptosis , Caspase 8/metabolism , Caspase 8/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-alpha/metabolism , Keratinocytes/metabolism , Keratinocytes/radiation effects , Mice, Inbred C57BL , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...