Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.101
Filter
1.
Rev Bras Parasitol Vet ; 33(2): e006324, 2024.
Article in English | MEDLINE | ID: mdl-38958295

ABSTRACT

Diseases such as those caused by feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) represent health problems for cats. Feline leishmaniasis (FL) has been reported in several cities across the country. The objective was to carry out a clinical-epidemiological and laboratory study of FIV, FeLV and FL in cats from shelters in Dourados, Mato Grosso do Sul, Brazil. Blood samples and swabs from the conjunctival and nasal mucosa were obtained from 75 cats, from four animal shelters. Serology for FIV and FeLV was performed. For Leishmania, polymerase chain reaction (PCR) was performed on blood, conjunctiva and nasal mucosa. In the immunochromatographic serological test, seven cats tested positive for FIV and none for FeLV. No samples was positive in PCR for Leishmania. The study showed that despite the presence of human and canine leishmaniasis in the studied region, Leishmania spp. were absent in the cats studied. To avoid an increase in contagion in shelters, it is essential isolate cats with FIV.


Subject(s)
Cat Diseases , Immunodeficiency Virus, Feline , Leishmaniasis , Leukemia Virus, Feline , Animals , Cats , Brazil/epidemiology , Immunodeficiency Virus, Feline/isolation & purification , Leukemia Virus, Feline/isolation & purification , Leukemia Virus, Feline/genetics , Cat Diseases/epidemiology , Cat Diseases/parasitology , Cat Diseases/virology , Prevalence , Male , Leishmaniasis/veterinary , Leishmaniasis/epidemiology , Female , Leishmania/isolation & purification
2.
Viruses ; 16(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38932167

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a potentially fatal tick-borne zoonosis caused by SFTS virus (SFTSV). In addition to tick bites, animal-to-human transmission of SFTSV has been reported, but little is known about feline SFTSV infection. In this study, we analyzed data on 187 cats with suspected SFTS to identify biomarkers for SFTS diagnosis and clinical outcome. Body weight, red and white blood cell and platelet counts, and serum aspartate aminotransferase and total bilirubin levels were useful for SFTS diagnosis, whereas alanine aminotransferase, aspartate aminotransferase and serum SFTSV RNA levels were associated with clinical outcome. We developed a scoring model to predict SFTSV infection. In addition, we performed a phylogenetic analysis to reveal the relationship between disease severity and viral strain. This study provides comprehensive information on feline SFTS and could contribute to the protection of cat owners, community members, and veterinarians from the risk of cat-transmitted SFTSV infection.


Subject(s)
Cat Diseases , Phlebovirus , Phylogeny , Severe Fever with Thrombocytopenia Syndrome , Animals , Cats , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , Cat Diseases/virology , Cat Diseases/diagnosis , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Male , Female , Biomarkers/blood , RNA, Viral/genetics , Severity of Illness Index , Aspartate Aminotransferases/blood , Alanine Transaminase/blood
3.
Vet J ; 305: 106128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754624

ABSTRACT

The utility of neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), and platelet-lymphocyte ratio (PLR) as prognostic markers in Feline Leukemia Virus (FeLV) and Feline Immunodeficiency Virus (FIV) infections has not yet been investigated. The aim of this study was to investigate these leukocyte ratios in retrovirus-positive cats and to evaluate their prognostic value for survival. This retrospective case-control study included 142 cats, 75 FIV-Antibodies (Ab)-positive, 52 FeLV-Antigen (Ag)-positive, and 15 FIV-Ab+FeLV-Ag-positive, and a control population of 142 retrovirus-negative age-, sex-, and lifestyle-matched cats. Signalment, complete blood count at the time of serological testing, and outcome were recorded. Leukocyte ratios were compared within the same case-control population, among the three retrovirus-seropositive populations, and were related to survival time. No significant difference was found in NLR, MLR, or PLR between FIV-Ab-positive and FIV-Ab+FeLV-Ag-positive cats and their cross-matched controls. In the FeLV-Ag-positive population, MLR was significantly lower than in the control population (0.05 and 0.14, respectively, P=0.0008). No ratio discriminated among the three infectious states. No ratio was significantly different between survivors and non-survivors in the population of FIV-Ab-positive cats. MLR at diagnosis was significantly higher in FeLV-Ag-positive cats that died 1-3 years after diagnosis than in FeLV-Ag-positive cats still alive at 3 years (P=0.0284). None of the three ratios could predict retroviruses-positive cats that would survive to the end of the study. Overall the results indicate that NLR, MLR, and PLR are not significantly different among retrovirus statuses evaluated and had a very limited prognostic value for the survival time in retrovirus-positive cats.


Subject(s)
Immunodeficiency Virus, Feline , Leukemia Virus, Feline , Cats , Animals , Retrospective Studies , Female , Male , Case-Control Studies , Prognosis , Retroviridae Infections/veterinary , Retroviridae Infections/mortality , Retroviridae Infections/virology , Retroviridae Infections/blood , Feline Acquired Immunodeficiency Syndrome/mortality , Feline Acquired Immunodeficiency Syndrome/virology , Cat Diseases/mortality , Cat Diseases/virology , Cat Diseases/blood , Cat Diseases/diagnosis , Leukocyte Count/veterinary , Biomarkers/blood
4.
Res Vet Sci ; 174: 105278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759348

ABSTRACT

Little research is available on acquired immunity to rabies in dogs and cats from Central Africa, particularly regarding the legal movements of pets. Movement of domestic animals from rabies-endemic countries like Cameroon to rabies free areas poses one of the main risks for rabies introduction into rabies-free areas. Thus, the aim of this study was to assess the effect of various risk factors on rabies vaccine efficacy in Cameroonian. Since the dependent variable, rabies neutralizing titres, were censored from above (right-censoring), Generalized Additive Model for Location, Scale and Shape (GAMLSS) was used in the analysis. Overall, 85.7% of dogs and 100% of cats had titres greater than or equal to 0.5 IU/mL, which is considered protective. Additionally, compared to cats, the value of the rabies-neutralizing serum titres in dogs was on average smaller by 2.3 IU/mL. For each additional year of age, the value of the rabies-neutralizing serum titre, on average, increased by approximately 0.14 IU/mL. Finally, for each 30 additional days between the date of the last rabies vaccination and the date of the sampling, the value the rabies neutralizing titre, on average, decreased by approximately 0.10 IU/mL, given the species and age at sampling were equivalent. These results are useful for assessing risk and improving surveillance to prevent the introduction of rabies into a country via the international movement of animals.


Subject(s)
Cat Diseases , Dog Diseases , Rabies Vaccines , Rabies , Animals , Dogs , Cats , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Dog Diseases/prevention & control , Dog Diseases/immunology , Cat Diseases/prevention & control , Cat Diseases/immunology , Cat Diseases/virology , Rabies/prevention & control , Rabies/veterinary , Risk Factors , Cameroon , Travel , Male , Female , Vaccination/veterinary
5.
PLoS One ; 19(5): e0299388, 2024.
Article in English | MEDLINE | ID: mdl-38696456

ABSTRACT

This study aimed to evaluate the seroprevalence and spatial and temporal clustering of SARS-CoV-2 antibodies in household cats within 63 counties in Illinois from October 2021 to May 2023. The analysis followed a stepwise approach. First, in a choropleth point map, we illustrated the distribution of county-level seroprevalence of SARS-CoV-2 antibodies. Next, spatial interpolation was used to predict the seroprevalence in counties without recorded data. Global and local clustering methods were used to identify the extent of clustering and the counties with high or low seroprevalence, respectively. Next, temporal, spatial, and space-time scan statistic was used to identify periods and counties with higher-than-expected seroprevalence. In the last step, to identify more distinct areas in counties with high seroprevalence, city-level analysis was conducted to identify temporal and space-time clusters. Among 1,715 samples tested by serological assays, 244 samples (14%) tested positive. Young cats had higher seropositivity than older cats, and the third quarter of the year had the highest odds of seropositivity. Three county-level space-time clusters with higher-than-expected seroprevalence were identified in the northeastern, central-east, and southwest regions of Illinois, occurring between June and October 2022. In the city-level analysis, 2 space-time clusters were identified in Chicago's downtown and the southwestern suburbs of Chicago between June and September 2022. Our results suggest that the high density of humans and cats in large cities such as Chicago, might play a role in the transmission and clustering of SARS-CoV-2. Our study provides an in-depth analysis of SARS-CoV-2 epidemiology in Illinois household cats, which will aid in COVID-19 control and prevention.


Subject(s)
Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spatio-Temporal Analysis , Cats , Animals , Illinois/epidemiology , Seroepidemiologic Studies , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/immunology , Antibodies, Viral/blood , Humans , Cluster Analysis , Female , Male , Cat Diseases/epidemiology , Cat Diseases/virology , Cat Diseases/immunology
6.
Zoonoses Public Health ; 71(5): 600-608, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38706119

ABSTRACT

BACKGROUND: Rabies virus (RABV) is the etiologic agent of rabies, a fatal brain disease in mammals. Rabies circulation has historically involved the dog has the main source of human rabies worldwide. Nevertheless, in Colombia, cats (Felis catus) have become a relevant species in the epidemiology of rabies. AIMS: To characterize rabies cases in humans in Colombia in the last three decades in the context of the epidemiology of the aggressor animal. MATERIALS AND METHODS: We conducted a retrospective longitudinal epidemiological study of human rabies caused by cats' aggression, collecting primary and secondary information. Variables considered included the demography of the patient, symptoms, information about the aggressor animal as the source of infection and the viral variant identified. RESULTS: We found that the distribution of rabies incidence over the years has been constant in Colombia. Nevertheless, between 2003 and 2012 a peak of cases occurred in rural Colombia where cats were the most frequent aggressor animal reported. Most cats involved in aggression were unvaccinated against rabies. Cat's clinical signs at the time of the report of the human cases included hypersalivation and changes in behaviour. Human patients were mostly children and female and the exposure primarily corresponded to bite and puncture lacerations in hands. The RABV lineage detected in most cases corresponded to variant 3, linked to the common vampire bat (Desmodus rotundus). The geographical presentation of cat borne RABV in humans occurred along the Andes mountains, epidemiologically known as the rabies red Andean corridor. DISCUSSION: By finding cats as the primary source of rabies spillover transmission in Colombia, this report highlights the importance of revising national rabies control and prevention protocol in countries in the Andes region. CONCLUSION: Our results demonstrate that rabies vaccination for outdoor cats needs to prioritize to reduce the number of rabies-related human deaths.


Subject(s)
Cat Diseases , Rabies virus , Rabies , Rabies/epidemiology , Rabies/veterinary , Animals , Cats , Humans , Colombia/epidemiology , Male , Female , Cat Diseases/epidemiology , Cat Diseases/virology , Retrospective Studies , Rabies virus/isolation & purification , Child , Adolescent , Adult , Child, Preschool , Bites and Stings/epidemiology , Young Adult , Middle Aged , Longitudinal Studies , Zoonoses/epidemiology , Incidence
8.
Virol J ; 21(1): 115, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778352

ABSTRACT

BACKGROUND: Feline herpesvirus type 1 (FHV-1) is a life threatening highly contagious virus in cats and typically causes upper respiratory tract infections as well as conjunctival and corneal ulcers. Genetic variability could alter the severity of diseases and clinical signs. Despite regular vaccine practices against FHV-1 in China, new FHV-1 cases still commonly occur. The genetic and phylogenetic characteristics of FHV-1 in Kunshan city of China has not been studied yet. Therefore, this study was planned to investigate the prevalence, molecular characteristics of circulating strains, and phylogenetic analyses of FHV-1. This is the first report of molecular epidemiology and phylogenetic characteristics of FHV-1 from naturally infected cats in Kunshan, China. METHODS: The occulo-nasal swabs were collected from diseased cats showing respiratory distress, conjunctivitis, and corneal ulcers at different veterinary clinics in Kunshan from 2022 to 2023. Clinical data and general information were recorded. Swab samples were processed for preliminary detection of FHV-1. Thymidine kinase (TK), glycoprotein B (gB) and glycoprotein D (gD) genes were sequenced and analyzed to investigate genetic diversity and evolution of FHV-1. RESULTS: The FHV-1 genome was detected in 43 (43/200, 21.5%) samples using RT-PCR targeting the TK gene. Statistical analysis showed a significant correlation between age, vaccination status and living environment (p < 0.05) with FHV-1 positivity, while a non-significant correlation was observed for FHV-1 positivity and sex of cats (p > 0.05). Additionally, eight FHV-1 positive cats were co-infected with feline calicivirus (8/43,18.6%). FHV-1 identified in the present study was confirmed as FHV-1 based on phylogenetic analyses. The sequence analyses revealed that 43 FHV-1 strains identified in the present study did not differ much with reference strains within China and worldwide. A nucleotide homology of 99-100% was determined among gB, TK and gD genes nucleotide sequences when compared with standard strain C-27 and vaccine strains. Amino acid analysis showed some amino acid substitutions in TK, gB and gD protein sequences. A potential N-linked glycosylation site was observed in all TK protein sequences. Phylogenetic analyses revealed minor variations and short evolutionary distance among FHV-1 strains detected in this study. CONCLUSIONS: Our findings indicate that genomes of 43 FHV-1 strains are highly homogenous and antigenically similar, and the degree of variation in major envelope proteins between strains is low. This study demonstrated some useful data about prevalence, genetic characteristics, and evolution of FHV-1 in Kunshan, which may aid in future vaccine development.


Subject(s)
Cat Diseases , Genetic Variation , Herpesviridae Infections , Molecular Epidemiology , Phylogeny , Varicellovirus , Animals , Cats , China/epidemiology , Cat Diseases/virology , Cat Diseases/epidemiology , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Varicellovirus/genetics , Varicellovirus/classification , Female , Male , Prevalence
9.
Methods Mol Biol ; 2808: 153-165, 2024.
Article in English | MEDLINE | ID: mdl-38743369

ABSTRACT

Domestic cats are the natural host of feline morbilliviruses (FeMV). Although other species can also be infected (such as dogs and opossums), no laboratory animal infection model is established so far. In vitro models for studying the molecular pathogenesis are therefore needed. For this purpose, propagation and titration of FeMV are key techniques. Unlike other morbilliviruses, such as canine distemper virus (CDV) or measles virus (MV), FeMV is a slow growing virus in cell culture and is difficult to titrate using classical plaque techniques. Here we describe methods for the efficient isolation of FeMV from natural sources (e.g., urine), the propagation of viral stocks, and their titration. In addition, we establish the generation of a three-dimensional infection model mimicking the feline tubular epithelium.


Subject(s)
Morbillivirus Infections , Morbillivirus , Animals , Cats , Morbillivirus/pathogenicity , Morbillivirus/genetics , Morbillivirus/physiology , Morbillivirus Infections/veterinary , Morbillivirus Infections/virology , Kidney/virology , Kidney/cytology , Cat Diseases/virology , Cells, Cultured , Virus Cultivation/methods , Disease Models, Animal , Primary Cell Culture/methods
10.
Viruses ; 16(4)2024 04 15.
Article in English | MEDLINE | ID: mdl-38675954

ABSTRACT

The first point-of-care (PoC) test (v-RetroFel®; modified version 2021) determining the presence of FeLV p27 antigen and FeLV anti-p15E antibodies has become recently commercially available to identify different feline leukaemia virus (FeLV) infection outcomes. This study aimed to assess this PoC test's performance concerning FeLV p27 antigen and FeLV anti-p15E antibody detection. Sensitivity, specificity, positive and negative predictive values (PPV, NPV) were assessed after ten minutes (recommended) and 20 min (prolonged) incubation times. The test results were evaluated as either positive or negative. Serum samples from 934 cats were included, originating from Italy (n = 269), Portugal (n = 240), Germany (n = 318), and France (n = 107). FeLV p27 antigen and anti-p15E antibodies were measured by reference standard ELISAs and compared to the PoC test results. The PoC test was easy to perform and the results easy to interpret. Sensitivity and specificity for FeLV p27 antigen were 82.8% (PPV: 57.8%) and 96.0% (NPV: 98.8%) after both, ten and 20 minues of incubation time. Sensitivity and specificity for anti-p15E antibodies were 31.4% (PPV: 71.6%) and 96.9% (NPV: 85.1%) after ten minutes incubation time; sensitivity was improved by a prolonged incubation time (20 min) to 40.0% (PPV: 76.3%), while specificity remained the same (96.9%, NPV: 86.7%). Despite the improved sensitivity using the prolonged incubation time, lower than ideal sensitivities for both p27 antigen and especially anti-p15E antibodies were found, indicating that the PoC test in its current version needs further improvement prior to application in the field.


Subject(s)
Antibodies, Viral , Antigens, Viral , Leukemia Virus, Feline , Point-of-Care Testing , Proliferating Cell Nuclear Antigen , Animals , Cats , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cat Diseases/diagnosis , Cat Diseases/immunology , Cat Diseases/virology , Enzyme-Linked Immunosorbent Assay/methods , Leukemia Virus, Feline/immunology , Leukemia, Feline/diagnosis , Leukemia, Feline/immunology , Leukemia, Feline/virology , Point-of-Care Systems , Retroviridae Proteins, Oncogenic/chemistry , Retroviridae Proteins, Oncogenic/immunology , Sensitivity and Specificity
11.
Emerg Infect Dis ; 30(7): 1335-1343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38683888

ABSTRACT

We report highly pathogenic avian influenza A(H5N1) virus in dairy cattle and cats in Kansas and Texas, United States, which reflects the continued spread of clade 2.3.4.4b viruses that entered the country in late 2021. Infected cattle experienced nonspecific illness, reduced feed intake and rumination, and an abrupt drop in milk production, but fatal systemic influenza infection developed in domestic cats fed raw (unpasteurized) colostrum and milk from affected cows. Cow-to-cow transmission appears to have occurred because infections were observed in cattle on Michigan, Idaho, and Ohio farms where avian influenza virus-infected cows were transported. Although the US Food and Drug Administration has indicated the commercial milk supply remains safe, the detection of influenza virus in unpasteurized bovine milk is a concern because of potential cross-species transmission. Continued surveillance of highly pathogenic avian influenza viruses in domestic production animals is needed to prevent cross-species and mammal-to-mammal transmission.


Subject(s)
Cat Diseases , Cattle Diseases , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Animals , Cats , Cattle , Cat Diseases/virology , Cat Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cattle Diseases/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/epidemiology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , United States/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Milk/virology , Female
12.
Res Vet Sci ; 172: 105256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613921

ABSTRACT

Infection and clinical cases of leishmaniasis caused by Leishmania infantum in cats have been increasingly reported in several countries, including Brazil. In this study, we used an enzyme-linked immunosorbent assay (ELISA) and an immunochromatographic test (ICT) based on a recombinant antigen (rKDDR-plus) to detect anti-Leishmania antibodies in cats from an animal shelter in northeastern Brazil. We compared the results with an ELISA using L. infantum crude antigen (ELISA-CA). We also investigated the presence of Leishmania DNA in blood or ocular conjunctival samples as well as the association between Leishmania PCR positivity and serological positivity to feline immunodeficiency virus (FIV), feline leukemia virus (FeLV) and Toxoplasma gondii. Concerning serological assays, a higher positivity was detected using the ICT-rKDDR-plus (7.5%; 7/93) as compared to ELISA-rKDDR-plus (5.4%; 5/93) and ELISA-CA (4.3%; 4/93). Upon PCR testing, 52.7% (49/93) of the ocular conjunctival swabs and 48.3% (44/91) of the blood samples were positive. Together, PCR and serological testing revealed overall positivities of 73.1% (68/93) and 12.9% (12/93), respectively. Among PCR-positive samples, 45.5% (31/68) showed co-infection with FIV, 17.6% (12/68) with FeLV, and 82.3% (56/68) with T. gondii. More than half of the PCR-positive cats showed at least one clinical sign suggestive of leishmaniasis (58.8%; 40/68) and dermatological signs were the most frequent ones (45.5%; 31/68). Both tests employing the recombinant antigen rKDDR-plus (i.e., ICT-rKDDR-plus and ELISA-rKDDR-plus) detected more positive cats than the ELISA-CA but presented low overall accuracy. PCR testing using either blood or ocular conjunctival samples detected much more positive cats than serological tests.


Subject(s)
Cat Diseases , Coinfection , Enzyme-Linked Immunosorbent Assay , Immunodeficiency Virus, Feline , Leishmania infantum , Leukemia Virus, Feline , Recombinant Proteins , Cats , Animals , Cat Diseases/diagnosis , Cat Diseases/parasitology , Cat Diseases/virology , Cat Diseases/blood , Cat Diseases/epidemiology , Brazil/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Immunodeficiency Virus, Feline/isolation & purification , Coinfection/veterinary , Coinfection/parasitology , Coinfection/epidemiology , Coinfection/virology , Leishmania infantum/isolation & purification , Leukemia Virus, Feline/genetics , Leukemia Virus, Feline/immunology , Male , Female , Toxoplasma , Antibodies, Protozoan/blood , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/blood , Polymerase Chain Reaction/veterinary , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/blood
14.
Vet Pathol ; 61(4): 609-620, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38323378

ABSTRACT

Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/veterinary , COVID-19/virology , COVID-19/pathology , COVID-19/mortality , Female , Male , Lions/virology , Panthera/virology , Lung/pathology , Lung/virology , Cats , Felidae/virology , Cat Diseases/virology , Cat Diseases/pathology
15.
Microbiol Spectr ; 11(6): e0267623, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37943512

ABSTRACT

IMPORTANCE: Spike-receptor interaction is a critical determinant for the host range of coronaviruses. In this study, we investigated the SARS-CoV-2 WHU01 strain and five WHO-designated SARS-CoV-2 variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and the early Omicron variant, for their Spike interactions with ACE2 proteins of 18 animal species. First, the receptor-binding domains (RBDs) of Alpha, Beta, Gamma, and Omicron were found to display progressive gain of affinity to mouse ACE2. More interestingly, these RBDs were also found with progressive loss of affinities to multiple ACE2 orthologs. The Omicron RBD showed decreased or complete loss of affinity to eight tested animal ACE2 orthologs, including that of some livestock animals (horse, donkey, and pig), pet animals (dog and cat), and wild animals (pangolin, American pika, and Rhinolophus sinicus bat). These findings shed light on potential host range shift of SARS-CoV-2 VOCs, especially that of the Omicron variant.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Cat Diseases , Chiroptera , Dog Diseases , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Cats , Dogs , Mice , Angiotensin-Converting Enzyme 2/metabolism , Animals, Wild/virology , Cat Diseases/virology , Chiroptera/virology , COVID-19/metabolism , Dog Diseases/virology , Horses/virology , Mutation , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Swine/virology , Spike Glycoprotein, Coronavirus/genetics
17.
Arch Virol ; 168(9): 227, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37566243

ABSTRACT

Feline coronavirus (FCoV) is the causative agent of feline infectious peritonitis and diarrhoea in kittens worldwide. In this study, a total of 73 feline diarrhoeal faecal samples were collected from animal hospitals and pet markets in ShanDong province from 2017 to 2019. FCoV was detected in 58.23% (46/73) of the samples, using the RT-PCR method. The results showed that the detection rate of FCoV in healthy cats and sick cats was 41.7% (10/24) and 81.6% (40/49), respectively. Full gene amplification and sequencing of the N, M, and S2 genes of FCoV isolates were performed. An amino acid mutation (M1058L) in the S2 gene was found that can be used as a marker for distinguishing feline enteric coronavirus (FECV) from feline infectious peritonitis virus (FIPV). This study provides new epidemiological information about FCoV that will aid in the prevention of FCoV in China.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Coronavirus, Feline/genetics , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Cat Diseases/virology , Animals , Cats , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus M Proteins/genetics , Spike Glycoprotein, Coronavirus/genetics , Male , Female
18.
J Virol ; 97(8): e0068123, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37493545

ABSTRACT

Feline herpesvirus type 1 (FHV-1) is an enveloped dsDNA virus belonging to the Herpesviridae family and is considered one of the two primary viral etiological factors of feline upper respiratory tract disease. In this study, we investigated the entry of FHV-1 into host cells using two models: the AK-D cell line and primary feline skin fibroblasts (FSFs). We employed confocal microscopy, siRNA silencing, and selective inhibitors of various entry pathways. Our observations revealed that the virus enters cells via pH and dynamin-dependent endocytosis, as the infection was significantly inhibited by NH4Cl, bafilomycin A1, dynasore, and mitmab. Additionally, genistein, nystatin, and filipin treatments, siRNA knock-down of caveolin-1, as well as FHV-1 and caveolin-1 colocalization suggest the involvement of caveolin-mediated endocytosis during the entry process. siRNA knock-down of clathrin heavy chain and analysis of virus particle colocalization with clathrin indicated that clathrin-mediated endocytosis also takes part in the primary cells. This is the first study to systematically examine FHV-1 entry into host cells, and for the first time, we describe FHV-1 replication in AK-D and FSFs. IMPORTANCE Feline herpesvirus 1 (FHV-1) is one of the most prevalent viruses in cats, causing feline viral rhinotracheitis, which is responsible for over half of viral upper respiratory diseases in cats and can lead to ocular lesions resulting in loss of sight. Although the available vaccine reduces the severity of the disease, it does not prevent infection or limit virus shedding. Despite the clinical relevance, the entry mechanisms of FHV-1 have not been thoroughly studied. Considering the limitations of commonly used models based on immortalized cells, we sought to verify our findings using primary feline skin fibroblasts, the natural target for infection in cats.


Subject(s)
Cat Diseases , Endocytosis , Herpesviridae Infections , Varicellovirus , Animals , Cats , Cat Diseases/virology , Caveolin 1/metabolism , Clathrin/metabolism , Herpesviridae Infections/veterinary , RNA, Small Interfering/genetics , Varicellovirus/metabolism
19.
Virus Res ; 326: 199063, 2023 03.
Article in English | MEDLINE | ID: mdl-36738933

ABSTRACT

Feline herpesvirus-1 (FHV-1) is responsible for approximately 50% of diagnosed viral upper respiratory tract disease in cats. The virus infects and replicates in the epithelial cells located in upper respiratory tract. Commercial vaccines do not protect cats from the infection itself or development of latency. Previously, our lab developed a cell culture model using primary feline respiratory epithelial cells (pFRECs) to study respiratory innate immunity to FHV-1 and FHV-1 deletion mutants. However, the numbers of pFRECs that can be obtained per cat is limited. To improve the usage of respiratory epithelial 3D cultures in FHV-1 research, the present study immortalized feline respiratory epithelial cells (iFRECs) and characterized them morphologically and immunologically and evaluated the response to FHV-1 infection. Immortalization was achieved by transduction with Lenti-SV40T and Lenti-HPV E6/E7. Immortalized FRECs could be successfully subcultured for >20 passages, with positive gene expression of SV40T and HPV E6/E7. Immortalized FRECs expressed similar innate immunity-associated genes compared to pFRECs, including genes of Toll-like receptors (TLR1-9), interferon induced genes (OAS1, OAS3, IFI44, IFITM1, IFIT1), chemokines (CCL2, CCL3, CXCL8), pro-inflammatory and regulatory cytokines (IL-6, IL-4, IL-5, IL-12, and IL-18), and antimicrobials (DEFß10, DEFß4B). Finally, FHV-1 inoculation resulted in characteristic cytopathic effects starting at 24 hpi, with more than 80% cells detached and lysed by 72 hpi. Overall FHV-1 growth kinetics in iFRECs resembled the kinetics observed in pFRECs. In conclusion, we demonstrated that iFRECs are a useful tool to study feline respiratory disease including but not limited to FHV-1.


Subject(s)
Cat Diseases , Cell Line , Herpesviridae Infections , Varicellovirus , Animals , Cats , Cat Diseases/virology , Cytokines/genetics , Epithelial Cells , Herpesviridae Infections/veterinary , Varicellovirus/genetics
20.
BMC Vet Res ; 18(1): 443, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36539820

ABSTRACT

BACKGROUND: Little is known about the epidemic status of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cats in Japan due to insufficiently reliable seroepidemiological analysis methods that are easy to use in cats. RESULTS: We developed a protein-A/G-based enzyme-linked immunosorbent assay (ELISA) to detect antibodies against SARS-CoV-2 in cats. The assay was standardized using positive rabbit antibodies against SARS-CoV-2. The ELISA results were consistent with those of a conventional anti-feline-immunoglobulin-G (IgG)-based ELISA. To test the protein-A/G-based ELISA, we collected blood samples from 1,969 cats that had been taken to veterinary clinics in Japan from June to July 2020 and determined the presence of anti-SARS-CoV-2 antibodies. Nine cats were found to have SARS-CoV-2 S1-specific IgG, of which 4 had recombinant receptor-binding domain-specific IgG. Of those 9 samples, one showed neutralizing activity. Based on these findings, we estimated that the prevalence of SARS-CoV-2 neutralizing antibodies in cats in Japan was 0.05% (1/1,969 samples). This prevalence was consistent with the prevalence of neutralizing antibodies against SARS-CoV-2 in humans in Japan according to research conducted at that time. CONCLUSIONS: Protein-A/G-based ELISA has the potential to be a standardized method for measuring anti-SARS-CoV-2 antibodies in cats. The infection status of SARS-CoV-2 in cats in Japan might be linked to that in humans.


Subject(s)
COVID-19 , Cat Diseases , Animals , Cats , Antibodies, Neutralizing , Antibodies, Viral , Cat Diseases/diagnosis , Cat Diseases/epidemiology , Cat Diseases/virology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...