Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.407
Filter
1.
Vet Res ; 55(1): 74, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863015

ABSTRACT

Bovine coronavirus (BCoV) is a pneumoenteric virus that can infect the digestive and respiratory tracts of cattle, resulting in economic losses. Despite its significance, information regarding BCoV pathogenesis is limited. Hence, we investigated clinical signs, patterns of viral shedding, changes in antibody abundance, and cytokine/chemokine production in calves inoculated with BCoV via intranasal and oral. Six clinically healthy Korean native calves (< 30 days old), initially negative for BCoV, were divided into intranasal and oral groups and monitored for 15 days post-infection (dpi). BCoV-infected calves exhibited clinical signs such as nasal discharge and diarrhea, starting at 3 dpi and recovering by 12 dpi, with nasal discharge being the most common symptoms. Viral RNA was detected in nasal and fecal samples from all infected calves. Nasal shedding occurred before fecal shedding regardless of the inoculation route; however, fecal shedding persisted longer. Although the number of partitions was very few, viral RNA was identified in the blood of two calves in the oral group at 7 dpi and 9 dpi using digital RT-PCR analysis. The effectiveness of maternal antibodies in preventing viral replication and shedding appeared limited. Our results showed interleukin (IL)-8 as the most common and highly induced chemokine. During BCoV infection, the levels of IL-8, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1ß were significantly affected, suggesting that these emerge as potential and reliable biomarkers for predicting BCoV infection. This study underscores the importance of BCoV as a major pathogen causing diarrhea and respiratory disease.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Virus Shedding , Animals , Cattle , Cattle Diseases/virology , Cattle Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/immunology , Republic of Korea , Feces/virology , RNA, Viral/analysis , Antibodies, Viral/blood , Cytokines/metabolism , Cytokines/genetics , Male
2.
Anim Reprod Sci ; 266: 107513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843662

ABSTRACT

Escherichia coli (E. coli), a Gram-negative bacterium, is the primary pathogen responsible for endometritis in dairy cattle. The outer membrane components of E. coli, namely lipopolysaccharide (LPS) and bacterial lipoprotein, have the capacity to trigger the host's innate immune response through pattern recognition receptors (PRRs). Tolerance to bacterial cell wall components, including LPS, may play a crucial role as an essential regulatory mechanism during bacterial infection. However, the precise role of Braun lipoprotein (BLP) tolerance in E. coli-induced endometritis in dairy cattle remains unclear. In this study, we aimed to investigate the impact of BLP on the regulation of E. coli infection-induced endometritis in dairy cattle. The presence of BLP was found to diminish the expression and release of proinflammatory cytokines (IL-8 and IL-6), while concurrently promoting the expression and release of the anti-inflammatory cytokine IL-10 in endometrial epithelial cells (EECs). Furthermore, BLP demonstrated the ability to impede the activation of MAPK (ERK and p38) and NF-κB (p65) signaling pathways, while simultaneously enhancing signaling through the STAT3 pathway in EECs. Notably, BLP exhibited a dual role, acting both as an activator of TLR2 and as a regulator of TLR2 activation in LPS- and E. coli-treated EECs. In E. coli-infected endometrial explants, the presence of BLP was noted to decrease the release of proinflammatory cytokines and the expression of HMGB1, while simultaneously enhancing the release of anti-inflammatory cytokines. Collectively, our findings provide evidence that the bacterial component BLP plays a protective role in E. coli-induced endometritis in dairy cattle.


Subject(s)
Cattle Diseases , Endometrium , Escherichia coli Infections , Escherichia coli , Animals , Female , Cattle , Escherichia coli Infections/veterinary , Escherichia coli Infections/immunology , Endometrium/metabolism , Cattle Diseases/microbiology , Cattle Diseases/metabolism , Cattle Diseases/immunology , Lipoproteins/metabolism , Endometritis/veterinary , Endometritis/microbiology , Endometritis/metabolism , Endometritis/immunology , Cytokines/metabolism , Cytokines/genetics , Immune Tolerance
3.
Front Immunol ; 15: 1392681, 2024.
Article in English | MEDLINE | ID: mdl-38835751

ABSTRACT

Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Cattle Diseases , Hemorrhagic Septicemia , Pasteurella multocida , Animals , Cattle , Pasteurella multocida/immunology , Hemorrhagic Septicemia/prevention & control , Hemorrhagic Septicemia/veterinary , Hemorrhagic Septicemia/immunology , Hemorrhagic Septicemia/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Cattle Diseases/prevention & control , Cattle Diseases/immunology , Cattle Diseases/microbiology , Mice , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Female , Serogroup , Pasteurella Infections/prevention & control , Pasteurella Infections/veterinary , Pasteurella Infections/immunology , Pasteurella Infections/microbiology , Adjuvants, Immunologic/administration & dosage , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice, Inbred BALB C , Vaccination
4.
Vet Res ; 55(1): 69, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822400

ABSTRACT

Current diagnostic methods for Johne's disease in cattle allow reliable detection of infections with Mycobacterium avium ssp. paratuberculosis (MAP) not before animals are 2 years of age. Applying a flow cytometry-based approach (FCA) to quantify a MAP-specific interferon-gamma (IFN-γ) response in T cell subsets, the present study sought to monitor the kinetics of the cell-mediated immune response in experimentally infected calves. Six MAP-negative calves and six calves, orally inoculated with MAP at 10 days of age, were sampled every 4 weeks for 52 weeks post-inoculation (wpi). Peripheral blood mononuclear cells (PBMC) were stimulated with either purified protein derivatives (PPD) or whole cell sonicates derived from MAP (WCSj), M. avium ssp. avium or M. phlei for 6 days followed by labeling of intracellular IFN-γ in CD4+ and CD8+ T cells. No antigen-specific IFN-γ production was detectable in CD8+ cells throughout and the responses of CD4+ cells of MAP-infected and control calves were similar up to 12 wpi. However, the mean fluorescence intensity (MFI) for the detection of IFN-γ in CD4+ cells after WCSj antigen stimulation allowed for a differentiation of animal groups from 16 wpi onwards. This approach had a superior sensitivity (87.8%) and specificity (86.8%) to detect infected animals from 16 wpi onwards, i.e., in an early infection stage, as compared to the IFN-γ release assay (IGRA). Quantification of specific IFN-γ production at the level of individual CD4+ cells may serve, therefore, as a valuable tool to identify MAP-infected juvenile cattle.


Subject(s)
CD4-Positive T-Lymphocytes , Cattle Diseases , Flow Cytometry , Interferon-gamma , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Cattle , Paratuberculosis/immunology , Paratuberculosis/diagnosis , Paratuberculosis/microbiology , Mycobacterium avium subsp. paratuberculosis/immunology , Mycobacterium avium subsp. paratuberculosis/physiology , Interferon-gamma/metabolism , Flow Cytometry/veterinary , Flow Cytometry/methods , Cattle Diseases/immunology , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , CD4-Positive T-Lymphocytes/immunology , Biomarkers
5.
J Vet Med Sci ; 86(7): 777-786, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38719616

ABSTRACT

Vaccination is a feasible approach for controlling foot-and-mouth disease (FMD). In FMD-free countries, vaccines are stored as a precautionary measure to control potential outbreaks. However, the challenge lies in pre-stocking optimal vaccines against the newly emerging strains. This study examined the potency of pre-stocked vaccines administered at elevated doses during emergencies. We vaccinated the cows with either a single or double trivalent vaccine dose containing two serotype O and one serotype A strains. Subsequently, vaccinated and unvaccinated cows were exposed to virulent strains of serotype O (O/JPN/2010; topotype Southeast Asia/Mya-98 lineage) or A (A/IRN/2016; topotype ASIA/G-VII lineage), which were genetically and antigenically distinct from the vaccine strains. Following challenge infections, all cows that received a single dose vaccination exhibited vesicular lesions with excreted viruses in the oral and nasal discharges. However, a substantial reduction was observed in the total clinical scores and virus titers in the sera and nasal discharges compared to those in the unvaccinated group. Cows receiving a doubled dose vaccination were completely protected from infection with O/JPN/2010 or demonstrated a significant decrease in viral shedding and clinical scores against A/IRN/2016. To note, vesicular lesions harbor significant amounts of viruses; thus, by mitigating their formation, viral transmission can be impeded, thereby slowing viral spread in the field. Furthermore, increasing the vaccine dose induced higher neutralizing antibody titers against heterologous strains. These findings suggest an alternative strategy for the effective management of future epidemics using pre-stocked vaccines.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Cattle , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Cattle Diseases/prevention & control , Cattle Diseases/virology , Cattle Diseases/immunology , Foot-and-Mouth Disease Virus/immunology , Female , Vaccination/veterinary , Antibodies, Viral/blood , Virus Shedding , Serogroup
6.
Vet Immunol Immunopathol ; 272: 110772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704989

ABSTRACT

A live, infectious vaccine candidate for epizootic bovine abortion, designated EBAA Vaccine, USDA-APHIS Product code #1544.00, has been reported to be both safe and effective. Previous studies established that a single dose of EBAA vaccine administered to cows at potencies of either 2000 or 500 live P. abortibovis-infected murine spleen cells (P.a.-LIC) induced protective immunity for a minimum of 5 months. The current study employed 19 pregnant cows that were challenged with P. abortibovis in their 2nd trimester of gestation; 9 were vaccinated 17.2-months earlier as 1-year-olds with 2000 P.a.-LIC and 10 served as negative controls. Eighty-nine percent of the vaccinates gave birth to healthy calves as compared to 10% of challenge controls. Vaccine efficacy was significant when analyzed by prevented fractions (87.7%; 95% CI=0.4945-0.9781). Serologic data supports previous findings that pregnant cows with detectable P. abortibovis antibodies are immune to P. abortibovis challenge as demonstrated by the birth of healthy calves.


Subject(s)
Abortion, Veterinary , Animals , Cattle , Female , Pregnancy , Abortion, Veterinary/immunology , Abortion, Veterinary/prevention & control , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Seasons , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage
7.
Front Immunol ; 15: 1380660, 2024.
Article in English | MEDLINE | ID: mdl-38720894

ABSTRACT

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Subject(s)
Antigens, Protozoan , Babesia bovis , Babesiosis , Protozoan Proteins , Animals , Cattle , Amino Acid Motifs , Amino Acid Sequence , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Babesia bovis/immunology , Babesiosis/immunology , Babesiosis/parasitology , Babesiosis/prevention & control , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Conserved Sequence , Epitopes, B-Lymphocyte/immunology , Protozoan Proteins/immunology , Protozoan Vaccines/immunology
8.
Trop Anim Health Prod ; 56(5): 174, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787525

ABSTRACT

Studying cytokine profiling in Theleria annulata infection enhances our understanding of how the immune response unfolds, the intricate interactions between the host and the parasite, the strategies employed by the parasite to evade the immune system, and potential avenues for developing treatments. The generation of pro-inflammatory cytokines plays a pivotal role in the immune response against T. annulata infection. Elevated concentrations of these cytokines potentially contribute to the manifestation of clinical symptoms associated with the disease, such as fever, anemia, exophthalmia, and weight loss. The production of anti-inflammatory cytokines potentially serves as a regulatory mechanism for the immune response, preventing the development of severe disease. Nevertheless, in animals afflicted by T. annulata infection, there is often a notable decrease in the levels of these cytokines, suggesting that they may not be as effective in mitigating the disease as they are in uninfected animals. This knowledge can be harnessed to develop improved diagnostic methods, treatments, and vaccines for tropical theileriosis. The objective of this current mini review is to achieve the same goal by consolidating the available knowledge of cytokine interactions in Bovine Tropical Theileriosis (BTT).


Subject(s)
Cytokines , Theileriasis , Animals , Cattle , Cytokines/metabolism , Theileriasis/immunology , Theileria annulata , Cattle Diseases/immunology , Cattle Diseases/parasitology , Host-Parasite Interactions
10.
PLoS One ; 19(4): e0302172, 2024.
Article in English | MEDLINE | ID: mdl-38662753

ABSTRACT

Clinical illness (CI) scoring using visual observation is the most widely applied method of detecting respiratory disease in cattle but has limited effectiveness in practice. In contrast, body-mounted sensor technology effectively facilitates disease detection. To evaluate whether a combination of movement behavior and CI scoring is effective for disease detection, cattle were vaccinated to induce a temporary inflammatory immune response. Cattle were evaluated before and after vaccination to identify the CI variables that are most indicative of sick cattle. Respiratory rate (H2 = 43.08, P < 0.0001), nasal discharge (H2 = 8.35, P = 0.015), and ocular discharge (H2 = 16.38, P = 0.0003) increased after vaccination, and rumen fill decreased (H2 = 20.10, P < 0.0001). Locomotor activity was measured via leg-mounted sensors for the four days preceding and seven days following vaccination. A statistical model that included temperature, steps, lying time, respiratory rate, rumen fill, head position, and excess saliva was developed to distinguish between scores from before and after vaccination with a sensitivity of 0.898 and specificity of 0.915. Several clinical illness signs were difficult to measure in practice. Binoculars were required for scoring respiratory rate and eye-related metrics, and cattle had to be fitted with colored collars for individual identification. Scoring each animal took up to three minutes in a small research pen; therefore, technologies that can automate both behavior monitoring and identification of clinical illness signs are key to improving capacity for BRD detection and treatment.


Subject(s)
Behavior, Animal , Cattle Diseases , Inflammation , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/immunology , Biomarkers/analysis , Respiratory Rate , Vaccination/veterinary
11.
Microb Pathog ; 191: 106660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657710

ABSTRACT

Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.


Subject(s)
Apoptosis , Cattle Diseases , Endometritis , Escherichia coli Infections , Escherichia coli , Oxidative Stress , Up-Regulation , Uterus , Cattle , Animals , Female , Endometritis/veterinary , Endometritis/microbiology , Endometritis/pathology , Endometritis/metabolism , Cattle Diseases/microbiology , Cattle Diseases/metabolism , Cattle Diseases/immunology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Inflammation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation Mediators/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
12.
Microbiol Spectr ; 12(6): e0190923, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38651859

ABSTRACT

Acquired immunity is an important way to construct the intestinal immune barrier in mammals, which is almost dependent on suckling. To develop a new strategy for accelerating the construction of gut microbiome, newborn Holstein calves were continuously fed with 40 mL of compound probiotics (containing Lactobacillus plantarum T-14, Enterococcus faecium T-11, Saccharomyces cerevisiae T-209, and Bacillus licheniformis T-231) per day for 60 days. Through diarrhea rate monitoring, immune index testing, antioxidant capacity detection, and metagenome sequencing, the changes in diarrhea incidence, average daily gain, immune index, and gut microbiome of newborn calves within 60 days were investigated. Results indicated that feeding the compound probiotics reduced the average diarrhea rate of calves by 42.90%, increased the average daily gain by 43.40%, raised the antioxidant indexes of catalase, superoxide dismutase, total antioxidant capacity, and Glutathione peroxidase by 22.81%, 6.49%, 8.33%, and 13.67%, respectively, and increased the immune indexes of IgA, IgG, and IgM by 10.44%, 4.85%, and 6.12%, respectively. Moreover, metagenome sequencing data showed that feeding the compound probiotics increased the abundance of beneficial strains (e.g., Lactococcus lactis and Bacillus massionigeriensis) and decreased the abundance of some harmful strains (e.g., Escherichia sp. MOD1-EC5189 and Mycobacterium brisbane) in the gut microbiome of calves, thus contributing to accelerating the construction of healthy gut microbiome in newborn Holstein calves. IMPORTANCE: The unstable gut microbiome and incomplete intestinal function of newborn calves are important factors for the high incidence of early diarrhea. This study presents an effective strategy to improve the overall immunity and gut microbiome in calves and provides new insights into the application of compound probiotics in mammals.


Subject(s)
Diarrhea , Gastrointestinal Microbiome , Probiotics , Animals , Cattle , Probiotics/administration & dosage , Probiotics/pharmacology , Gastrointestinal Microbiome/drug effects , Diarrhea/veterinary , Diarrhea/microbiology , Diarrhea/immunology , Diarrhea/prevention & control , Animals, Newborn , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Cattle Diseases/immunology , Saccharomyces cerevisiae , Lactobacillus plantarum , Enterococcus faecium/immunology
13.
Vet Parasitol ; 328: 110165, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490159

ABSTRACT

The main objective of cattle breeders in tropical and subtropical regions is to acquire animals with taurine-productive traits adapted to the broad weather range of these regions. However, one of the main challenges on using taurine genetics in these areas is the high susceptibility of these animals to tick-borne diseases. Consequently, the present study evaluated from 10 November 2021-19 April 2022, the over 13 assessments, the Babesia bovis and Babesia bigemina DNA loads and the IgG anti-B. bovis and anti-B. bigemina levels in Angus (n = 17, 100% Taurine) and Ultrablack (n = 14, ∼82% taurine and 18% Zebu) calves. Data were analyzed using a multivariate mixed model with repeated measures of the same animal including the fixed effects of evaluation, genetic group, sex, Babesia spp., and their interactions. The repeatability values were estimated from the (co)variances matrix and expressed for each species. The correlations between the DNA loads (CNlog) and IgG titers (S/P) values for the two species were also estimated using the same model. Regarding the specific IgG antibody titers for both Babesia spp., no significant differences were observed between the two genetic groups. However, for B. bovis and B. bigemina DNA loads, Ultrablack calves presented significantly higher values than Angus calves. Under the conditions evaluated in this study, our findings suggest that the low percentage of Zebu genetic in the Ultrablack breed was insufficient to improve resistance against babesiosis. Further studies must demonstrate if the low percentages of Zebu genetics in Taurine breeds can modify the susceptibility to babesiosis infections.


Subject(s)
Babesia , Babesiosis , Cattle Diseases , Animals , Cattle , Babesiosis/parasitology , Babesiosis/immunology , Cattle Diseases/parasitology , Cattle Diseases/immunology , Babesia/genetics , Babesia/immunology , Female , Male , Genetic Background , Babesia bovis/genetics , Babesia bovis/immunology , Immunoglobulin G/blood , Disease Resistance/genetics
14.
Mamm Genome ; 35(2): 186-200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480585

ABSTRACT

Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Rhipicephalus , Tick Infestations , Animals , Cattle , Rhipicephalus/genetics , Rhipicephalus/physiology , Tick Infestations/veterinary , Tick Infestations/genetics , Tick Infestations/parasitology , Tick Infestations/immunology , Disease Resistance/genetics , Systems Biology , Cattle Diseases/genetics , Cattle Diseases/immunology , Cattle Diseases/parasitology , Quantitative Trait Loci , Female , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology
15.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38457927

ABSTRACT

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Subject(s)
Administration, Intranasal , Animals, Newborn , Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Herpesviridae Infections , Herpesvirus 1, Bovine , Vaccines, Attenuated , Viral Vaccines , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Administration, Intranasal/veterinary , Male , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Coronavirus, Bovine/immunology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Cattle Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Infectious Bovine Rhinotracheitis/prevention & control , Infectious Bovine Rhinotracheitis/immunology , Virus Shedding , Antibodies, Viral/blood , Random Allocation
16.
Acta Trop ; 254: 107194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521123

ABSTRACT

Among the available diagnostic techniques, antibody detection in bulk tank milk (BTM) represents a useful tool to estimate and monitor Neospora caninum herd prevalence. To evaluate the prevalence of N. caninum and the effect of parasite infection on herd performances, BTM samples collected from 586 dairy herds located in one of the largest dairy production areas in Italy (Lombardy) were analyzed by an indirect ELISA to detect anti-N. caninum specific antibodies. Generalized linear models (GLMs) were developed. A purely spatial analysis scanning for clusters with high or low rates for N. caninum using the Bernoulli model was performed. A maximum entropy approach was used to estimate the probability of distribution of the parasite based on occurrence records together with environmental variables. Overall, 180 herds resulted positive for N. caninum antibodies on bulk tank milk (P = 30.7 %). A higher risk of seropositivity was evidenced in the provinces of Milano, Cremona, Brescia, and Bergamo (P = 32-40 %); a lower risk was evidenced in Lodi, Pavia, and Mantova (P = 13-24 %). A higher risk of seropositivity was revealed for small-medium farms (101-300 animals) (O.R.=2.8) and for older animals with more than 4 years (O.R.=4.4). Regarding the effect of N. caninum infection on herd performances, the number of inseminations for conception was higher (> 3 inseminations), and the period from calving to conception was longer (> 150 days) for positive farms (O.R.=2.0 and O.R.=2.3, respectively); besides, lower head daily milk production (<20 kg and 21-25 kg) and mature equivalent milk yield (<11,000), and somatic cell counts higher than 300,000 cells/ml were observed for N. caninum positive herds (O.R.=0.4, O.R.=0.4 and O.R.=1.9 respectively). The geographical distribution of N. caninum positive farms with the highest level of probability covers the central sector of the Po Plain where a significant cluster for high risk of parasite infection was shown by spatial scan statistic and Maximum entropy ecological niche modelling. A further significant cluster of low risk occurred in the southern. The climatic and environmental variables with the highest training gain when used in isolation resulted altitude, land use/land cover, and other variables related to temperature and precipitation. Neosporosis is widely distributed in Italian dairy herds and an impact of the parasite on herd performances could be hypothesized. Even if the role of N. caninum in alterations of reproductive and productive parameters should be further explored, veterinarians and farmers should be aware of neosporosis, and control plans should be adopted.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Milk , Neospora , Spatial Analysis , Animals , Neospora/immunology , Italy/epidemiology , Milk/immunology , Milk/parasitology , Milk/chemistry , Cattle , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/immunology , Antibodies, Protozoan/blood , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/immunology , Female , Seroepidemiologic Studies , Enzyme-Linked Immunosorbent Assay , Prevalence , Dairying , Reproduction
17.
Genome ; 67(6): 204-209, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38330385

ABSTRACT

Mycoplasmopsis bovis is a worldwide economically important pathogen of cattle that can cause or indirectly contribute to bovine respiratory disease. M. bovis is also a primary etiological agent of respiratory disease in bison with high mortality rates. A major challenge in the development of an efficacious M. bovis vaccine is the design of antigens that contain both MHC-1 and MHC-2 T-cell epitopes, and that account for population level diversity within the species. Publicly available genomes and sequence read archive libraries of 381 M. bovis strains isolated from cattle (n = 202) and bison (n = 179) in North America were used to identify a core genome of 575 genes, including 38 that encode either known or predicted secreted or outer membrane proteins. The antigenic potentials of the proteins were characterized by the presence and strength of their T-cell epitopes, and their protein variant diversity at the population-level. The proteins had surprisingly low diversity and varying predictive levels of T-cell antigenicity. These results provide a reference for the selection or design of antigens for vaccine testing against strains infecting North American cattle and bison.


Subject(s)
Bison , Animals , Bison/microbiology , Cattle , North America , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Genetic Variation , Mycoplasma bovis/genetics , Mycoplasma bovis/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Genome, Bacterial , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Cattle Diseases/microbiology , Cattle Diseases/immunology
18.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38422620

ABSTRACT

OBJECTIVE: To determine the efficacy of primary or booster intranasal vaccination of beef steers on clinical protection and pathogen detection following simultaneous challenge with bovine respiratory syncytial virus and bovine herpes virus 1. METHODS: 30 beef steers were randomly allocated to 3 different treatment groups starting at 2 months of age. Group A (n = 10) was administered a single dose of a parenteral modified-live vaccine and was moved to a separate pasture. Groups B (n = 10) and C (10) remained unvaccinated. At 6 months of age, all steers were weaned and transported. Subsequently, groups A and B received a single dose of an intranasal modified-live vaccine vaccine while group C remained unvaccinated. Group C was housed separately until challenge. Two days following vaccination, all steers were challenged with bovine respiratory syncytial virus and bovine herpes virus 1 and housed in a single pen. Clinical and antibody response outcomes and the presence of nasal pathogens were evaluated. RESULTS: The odds of clinical disease were lower in group A compared with group C on day 7 postchallenge; however, antibody responses and pathogen detection were not significantly different between groups before and following viral challenge. All calves remained negative for Histophilus somni and Mycoplasma bovis; however, significantly greater loads of Mannheimia haemolytica and Pasteurella multocida were detected on day 7 postchallenge compared with day -2 prechallenge. CLINICAL RELEVANCE: Intranasal booster vaccination of beef steers at 6 months of age reduced clinical disease early after viral challenge. Weaning, transport, and viral infection promoted increased detection rates of M haemolytica and P multocida regardless of vaccination status.


Subject(s)
Administration, Intranasal , Coinfection , Herpesvirus 1, Bovine , Immunization, Secondary , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Bovine , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Male , Administration, Intranasal/veterinary , Respiratory Syncytial Virus, Bovine/immunology , Immunization, Secondary/veterinary , Coinfection/veterinary , Coinfection/prevention & control , Coinfection/microbiology , Respiratory Syncytial Virus Infections/veterinary , Respiratory Syncytial Virus Infections/prevention & control , Infectious Bovine Rhinotracheitis/prevention & control , Infectious Bovine Rhinotracheitis/immunology , Cattle Diseases/prevention & control , Cattle Diseases/microbiology , Cattle Diseases/virology , Cattle Diseases/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Bacterial Shedding , Antibodies, Viral/blood , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Random Allocation , Vaccination/veterinary
19.
Vet Res ; 54(1): 32, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016420

ABSTRACT

Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.


Subject(s)
Host Microbial Interactions , Mammary Glands, Animal , Milk , Proteome , Animals , Cattle , Female , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cell Count/veterinary , Mammary Glands, Animal/immunology , Mammary Glands, Animal/microbiology , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Milk/cytology , Proteome/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/veterinary , Host Microbial Interactions/immunology
20.
J Virol ; 97(2): e0142322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36692289

ABSTRACT

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Subject(s)
Cattle Diseases , Host Microbial Interactions , Mycoplasma Infections , Orthomyxoviridae Infections , Signal Transduction , Thogotovirus , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/virology , Lung/immunology , Lung/microbiology , Lung/virology , Mycoplasma bovis/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Signal Transduction/immunology , Superinfection/immunology , Superinfection/veterinary , Toll-Like Receptor 2 , Host Microbial Interactions/immunology , Mycoplasma Infections/immunology , Mycoplasma Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL