Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.630
Filter
1.
Theranostics ; 14(9): 3674-3692, 2024.
Article in English | MEDLINE | ID: mdl-38948057

ABSTRACT

Trophoblast cell surface antigen 2 (Trop2) is overexpressed in a range of solid tumors and participants in multiple oncogenic signaling pathways, making it an attractive therapeutic target. In the past decade, the rapid development of various Trop2-targeted therapies, notably marked by the advent of the antibody-drug conjugate (ADC), revolutionized the outcome for patients facing Trop2-positive tumors with limited treatment opinions, such as triple-negative breast cancer (TNBC). This review provides a comprehensive summary of advances in Trop2-targeted therapies, including ADCs, antibodies, multispecific agents, immunotherapy, cancer vaccines, and small molecular inhibitors, along with in-depth discussions on their designs, mechanisms of action (MOAs), and limitations. Additionally, we emphasize the clinical research progress of these emerging Trop2-targeted agents, focusing on their clinical application and therapeutic efficacy against tumors. Furthermore, we propose directions for future research, such as enhancing our understanding of Trop2's structure and biology, exploring the best combination strategies, and tailoring precision treatment based on Trop2 testing methodologies.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Immunoconjugates , Molecular Targeted Therapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/therapy , Immunotherapy/methods , Animals , Cancer Vaccines/therapeutic use
2.
PLoS One ; 19(6): e0299389, 2024.
Article in English | MEDLINE | ID: mdl-38870184

ABSTRACT

Renal fibrosis is the most common pathway in progressive kidney diseases. The unilateral ureteral obstruction (UUO) model is used to induce progressive renal fibrosis. We evaluated the effects of irisin on renal interstitial fibrosis in UUO mice. The GSE121190, GSE36496, GSE42303, and GSE96101 datasets were downloaded from the Gene Expression Omnibus (GEO) database. In total, 656 differentially expressed genes (DEGs) were identified in normal and UUO mouse renal samples. Periostin and matrix metalloproteinase-2 (MMP-2) were selected to evaluate the effect of irisin on renal fibrosis in UUO mice. In UUO mice, irisin ameliorated renal function, decreased the expression of periostin and MMP-2, and attenuated epithelial-mesenchymal transition and extracellular matrix deposition in renal tissues. In HK-2 cells, irisin treatment markedly attenuated TGF-ß1-induced expression of periostin and MMP-2. Irisin treatment also inhibited TGF-ß1-induced epithelial-mesenchymal transition, extracellular matrix formation, and inflammatory responses. These protective effects of irisin were abolished by the overexpression of periostin and MMP-2. In summary, irisin treatment can improve UUO-induced renal interstitial fibrosis through the TGF-ß1/periostin/MMP-2 signaling pathway, suggesting that irisin may be used for the treatment of renal interstitial fibrosis.


Subject(s)
Cell Adhesion Molecules , Epithelial-Mesenchymal Transition , Fibronectins , Fibrosis , Kidney Diseases , Matrix Metalloproteinase 2 , Signal Transduction , Transforming Growth Factor beta1 , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/drug therapy , Fibronectins/metabolism , Mice , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Epithelial-Mesenchymal Transition/drug effects , Male , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Kidney Diseases/drug therapy , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL , Cell Line , Disease Models, Animal , Periostin
3.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828726

ABSTRACT

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.


Subject(s)
Adaptor Proteins, Signal Transducing , Down Syndrome , Endothelial Cells , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Young Adult , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Down Syndrome/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Genetic Markers , Phenotype , Wnt Signaling Pathway
4.
Cell Metab ; 36(6): 1269-1286.e9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838640

ABSTRACT

Patients with metabolic dysfunction-associated steatotic liver disease (MASLD), especially advanced metabolic dysfunction-associated steatohepatitis (MASH), have an increased risk of cardiovascular diseases (CVDs). Whether CVD events will, in turn, influence the pathogenesis of MASLD remains unknown. Here, we show that myocardial infarction (MI) accelerates hepatic pathological progression of MASLD. Patients with MASLD who experience CVD events after their diagnosis exhibit accelerated liver fibrosis progression. MI promotes hepatic fibrosis in mice with MASH, accompanied by elevated circulating Ly6Chi monocytes and their recruitment to damaged liver tissues. These adverse effects are significantly abrogated when deleting these cells. Meanwhile, MI substantially increases circulating and cardiac periostin levels, which act on hepatocytes and stellate cells to promote hepatic lipid accumulation and fibrosis, finally exacerbating hepatic pathological progression of MASH. These preclinical and clinical results demonstrate that MI alters systemic homeostasis and upregulates pro-fibrotic factor production, triggering cross-disease communication that accelerates hepatic pathological progression of MASLD.


Subject(s)
Disease Progression , Mice, Inbred C57BL , Myocardial Infarction , Animals , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Humans , Mice , Male , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Monocytes/metabolism , Female , Middle Aged , Inflammation/pathology , Inflammation/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Cell Adhesion Molecules/metabolism
5.
Phys Rev E ; 109(5-1): 054406, 2024 May.
Article in English | MEDLINE | ID: mdl-38907394

ABSTRACT

Cell adhesion proteins typically form stable clusters that anchor the cell membrane to its environment. Several works have suggested that cell membrane protein clusters can emerge from a local feedback between the membrane curvature and the density of proteins. Here, we investigate the effect of such a curvature-sensing mechanism in the context of cell adhesion proteins. We show how clustering emerges in an intermediate range of adhesion and curvature-sensing strengths. We identify key differences with the tilt-induced gradient sensing mechanism we previously proposed (Lin et al., arXiv:2307.03670).


Subject(s)
Cell Adhesion , Cell Membrane , Cell Membrane/metabolism , Models, Biological , Cell Adhesion Molecules/metabolism , Membrane Proteins/metabolism
6.
Cancer Med ; 13(12): e7320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895886

ABSTRACT

PURPOSE: Improved survival rates have been observed in castration-resistant prostate cancer (CRPC) due to advancements in treatment options. However, individuals with brain metastases still have limited therapeutic options and an unfavorable prognosis. Therefore, there is an urgent need to explore new therapeutic avenues, such as antibody-drug conjugates (ADCs), which have demonstrated significant clinical activity against active brain metastases in solid tumors. Our objective was to determine the expression levels of the ADC targets Trop-2 and NECTIN-4 in cerebral metastasized CRPC (mCRPC). METHODS: Immunohistochemical staining of Trop-2 and NECTIN-4 with evaluation of H-score was performed in CRPC brain metastases (n = 31). Additionally, we examined Trop-2 protein expression in prostate cancer cell lines and studied their responsiveness to the anti-Trop-2 ADC Sacituzumab govitecan (SG) in vitro. RESULTS: Our analysis revealed that most patients exhibited moderate to strong Trop-2 expression [n = 27/31 with H-score ≥100, median H-score 220 (IQR 180-280)], while NECTIN-4 was absent in all cerebral metastases. Mechanistically, we demonstrated that the efficacy of SG depends on Trop-2 expression levels in vitro. Overexpression of Trop-2 in Trop-2-negative PC-3 cells led to sensitization to SG, whereas CRISPR-Cas9-mediated knockdown of Trop-2 in Trop-2-expressing DU-145 cells conferred resistance to SG. CONCLUSION: The substantial expression of Trop-2 in cerebral metastases, along with our preclinical in vitro results, supports the efficacy of SG in treating cerebral mCRPC. Thus, our results extend the understanding of the potential of ADCs in prostate cancer treatment and provide an additional treatment strategy for the challenging subset of patients with cerebral metastases.


Subject(s)
Antibodies, Monoclonal, Humanized , Antigens, Neoplasm , Brain Neoplasms , Camptothecin , Cell Adhesion Molecules , Immunoconjugates , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Antigens, Neoplasm/immunology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/pharmacology , Cell Line, Tumor , Nectins
7.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892298

ABSTRACT

Periostin, a multifunctional 90 kDa protein, plays a pivotal role in the pathogenesis of fibrosis across various tissues, including skeletal muscle. It operates within the transforming growth factor beta 1 (Tgf-ß1) signalling pathway and is upregulated in fibrotic tissue. Alternative splicing of Periostin's C-terminal region leads to six protein-coding isoforms. This study aimed to elucidate the contribution of the isoforms containing the amino acids encoded by exon 17 (e17+ Periostin) to skeletal muscle fibrosis and investigate the therapeutic potential of manipulating exon 17 splicing. We identified distinct structural differences between e17+ Periostin isoforms, affecting their interaction with key fibrotic proteins, including Tgf-ß1 and integrin alpha V. In vitro mouse fibroblast experimentation confirmed the TGF-ß1-induced upregulation of e17+ Periostin mRNA, mitigated by an antisense approach that induces the skipping of exon 17 of the Postn gene. Subsequent in vivo studies in the D2.mdx mouse model of Duchenne muscular dystrophy (DMD) demonstrated that our antisense treatment effectively reduced e17+ Periostin mRNA expression, which coincided with reduced full-length Periostin protein expression and collagen accumulation. The grip strength of the treated mice was rescued to the wild-type level. These results suggest a pivotal role of e17+ Periostin isoforms in the fibrotic pathology of skeletal muscle and highlight the potential of targeted exon skipping strategies as a promising therapeutic approach for mitigating fibrosis-associated complications.


Subject(s)
Alternative Splicing , Cell Adhesion Molecules , Exons , Fibrosis , Mice, Inbred mdx , Oligonucleotides, Antisense , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Mice , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Fibroblasts/metabolism , Disease Models, Animal , Protein Isoforms/genetics , Protein Isoforms/metabolism , Male
8.
PLoS One ; 19(6): e0304800, 2024.
Article in English | MEDLINE | ID: mdl-38924073

ABSTRACT

BACKGROUND: Despite Antiplatelet therapy (APT), cardiovascular patients undergoing revascularisation remain at high risk for thrombotic events. Individual response to APT varies substantially, resulting in insufficient protection from thrombotic events due to high on-treatment platelet reactivity (HTPR) in ≤40% of patients. Individual variation in platelet response impairs APT guidance on a single patient level. Unfortunately, little is known about individual platelet response to APT over time, timing for accurate residual platelet reactivity measurement, or the optimal test to monitor residual platelet reactivity. AIMS: To investigate residual platelet reactivity variability over time in individual patients undergoing carotid endarterectomy (CEA) treated with clopidogrel. METHODS: Platelet reactivity was determined in patients undergoing CEA in a prospective, single-centre, observational study using the VerifyNow (change in turbidity from ADP-induced binding to fibrinogen-coated beads), the VASP assay (quantification of phosphorylation of vasodilator-stimulated phosphoprotein), and a flow-cytometry-based assay (PACT) at four perioperative time points. Genotyping identified slow (CYP2C19*2 and CYP2C19*3) and fast (CYP2C19*17) metabolisers. RESULTS: Between December 2017 and November 2019, 50 patients undergoing CEA were included. Platelet reactivity measured with the VerifyNow (p = < .001) and VASP (p = .029) changed over time, while the PACT did not. The VerifyNow identified patients changing HTRP status after surgery. The VASP identified patients changing HTPR status after eight weeks (p = .018). CYP2C19 genotyping identified 13 slow metabolisers. CONCLUSION: In patients undergoing CEA, perioperative platelet reactivity measurements fluctuate over time with little agreement between platelet reactivity assays. Consequently, HTPR status of individual patients measured with the VerifyNow and VASP assay changed over time. Therefore, generally used perioperative platelet reactivity measurements seem unreliable for adjusting perioperative APT strategy.


Subject(s)
Blood Platelets , Clopidogrel , Endarterectomy, Carotid , Platelet Aggregation Inhibitors , Humans , Male , Female , Aged , Pilot Projects , Blood Platelets/metabolism , Prospective Studies , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Clopidogrel/therapeutic use , Platelet Function Tests/methods , Middle Aged , Perioperative Period , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Vascular Surgical Procedures , Platelet Activation/drug effects , Aged, 80 and over , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/blood , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/blood
9.
J Cancer Res Clin Oncol ; 150(6): 306, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879666

ABSTRACT

BACKGROUND: Metastasis is a main cause of death from ovarian cancer (OC). Identifying key markers involved in OC metastasis can aid in the effective detection of early postoperative metastasis. However, the role of FCGR1A in OC metastasis has yet to be fully established. A genome-wide CRISPR/Cas9-based screening system was used to identify regulatory factors involved in metastasis. METHODS: The expression of FCGR1A and LSP1 in ovarian cancer cell lines was examined by quantitative real-time polymerase chain reaction (qRT‒PCR). The functions of FCGR1A and LSP1 in OC cell migration, invasion and proliferation were determined using wound healing, Transwell invasion and CKK-8 assays. A transcription-activated library was used to identify the potential downstream genes of FCGR1A. FCGR1A expression was detected by immunohistochemistry and the immunity risk score (IRS) scores were calculated. RESULTS: FCGR1A was upregulated in OC cells compared with normal ovarian cells. Downregulation of FCGR1A inhibited metastasis, proliferation and epithelial-mesenchymal transition (EMT) progression in OC cells in vitro and intraperitoneal metastasis in vivo. Moreover, downregulation of FCGR1A was accompanied by decreased LSP1 expression. Overexpression of LSP1 partially reversed the tumor suppressive effect of FCGR1A downregulation. Higher FCGR1A expression was related to metastasis, higher grade, higher stage, and lymph node metastasis in OC. Survival analysis suggested that the group with higher FCGR1A expression had a lower tumor-free survival rate and a lower overall survival rate than did the group with low FCGR1A expression. CONCLUSIONS: FCGR1A enhances OC metastasis by regulating LSP1, and FCGR1A is associated with poor prognosis, suggesting that FCGR1A is a potential predictive factor for detecting early postoperative metastasis.


Subject(s)
CRISPR-Cas Systems , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Mice , Animals , Cell Line, Tumor , Receptors, IgG/genetics , Receptors, IgG/metabolism , Cell Proliferation/genetics , Neoplasm Metastasis , Mice, Nude , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Mice, Inbred BALB C , Microfilament Proteins
10.
PLoS One ; 19(6): e0304666, 2024.
Article in English | MEDLINE | ID: mdl-38935747

ABSTRACT

Colorectal cancer (CRC) is the third most common malignancy cause of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) promotes cancer metastasis and a tumour-based Glasgow EMT score was associated with adverse clinical features and poor prognosis. In this study, the impact of using the established five tumour-based EMT markers consisting of E-cadherin (E-cad), ß-catenin (ß-cat), Snail, Zeb-1, and Fascin in combination with the stromal periostin (PN) on the prediction of CRC patients' prognosis were invesigated. Formalin-fixed paraffin-embedded tissues of 202 CRC patients were studies the expressions of E-cad, ß-cat, Snail, Zeb-1, Fascin, and PN by immunohistochemistry. Individually, cytoplasmic Fascin (Fc), cytoplasmic Snail (Sc), nuclear Snail (Sn), stromal Snail (Ss), and stromal PN (Ps) were significantly associated with reduced survival. A combination of Ps with Fc, Fs, and Sn was observed in 2 patterns including combined Fc, Fs, and Ps (FcFsPs) and Fc, Sn, and Ps (FcSnPs). These combinations enhanced the prognostic power compared to individual EMT markers and were independent prognostic markers. As the previously established scoring method required five markers and stringent criteria, its clinical use might be limited. Therefore, using these novel combined prognostic markers, either FcFsPs or FcSnPs, may be useful in predicting CRC patient outcomes.


Subject(s)
Biomarkers, Tumor , Carrier Proteins , Cell Adhesion Molecules , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Microfilament Proteins , Snail Family Transcription Factors , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Snail Family Transcription Factors/metabolism , Cell Adhesion Molecules/metabolism , Prognosis , Female , Male , Middle Aged , Carrier Proteins/metabolism , Microfilament Proteins/metabolism , Aged , Biomarkers, Tumor/metabolism , Adult , Cadherins/metabolism , Transcription Factors/metabolism , beta Catenin/metabolism , Aged, 80 and over , Periostin
11.
Cancer Genomics Proteomics ; 21(4): 405-413, 2024.
Article in English | MEDLINE | ID: mdl-38944419

ABSTRACT

BACKGROUND/AIM: Metastatic prostate cancer (mPCa) results in high morbidity and mortality. Visceral metastases in particular are associated with a shortened survival. Our aim was to unravel the molecular mechanisms that underly pulmonary spread in mPCa. MATERIALS AND METHODS: We performed a comprehensive transcriptomic analysis of PCa lung metastases, followed by functional validation of candidate genes. Digital gene expression analysis utilizing the NanoString technology was performed on mRNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissue from PCa lung metastases. The gene expression data from primary PCa and PCa lung metastases were compared, and several publicly available bioinformatic analysis tools were used to annotate and validate the data. RESULTS: In PCa lung metastases, 234 genes were considerably up-regulated, and 78 genes were significantly down-regulated when compared to primary PCa. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) was identified as suitable candidate gene for further functional validation. CEACAM6 as a cell adhesion molecule has been implicated in promoting metastatic disease in several solid tumors, such as colorectal or gastric cancer. We showed that siRNA knockdown of CEACAM6 in PC-3 and LNCaP cells resulted in decreased cell viability and migration as well as enhanced apoptosis. Comprehensive transcriptomic analyses identified several genes of interest that might promote metastatic spread to the lung. CONCLUSION: Functional validation revealed that CEACAM6 might play an important role in fostering metastatic spread to the lung of PCa patients via enhancing proliferation, migration and suppressing apoptosis in PC-3 and LNCaP cells. CEACAM6 might pose an attractive therapeutic target to prevent metastatic disease.


Subject(s)
Antigens, CD , Apoptosis , Cell Adhesion Molecules , Cell Movement , Cell Proliferation , GPI-Linked Proteins , Lung Neoplasms , Prostatic Neoplasms , Humans , Male , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
12.
Anal Chem ; 96(26): 10601-10611, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889444

ABSTRACT

Aptamers are single-stranded RNA or DNA molecules that can specifically bind to targets and have found broad applications in cancer early-stage detection, accurate drug delivery, and precise treatment. Although various aptamer screening methods have been developed over the past several decades, the accurate binding site between the target and the aptamer cannot be characterized during a typical aptamer screening process. In this research, we chose a widely used aptamer screened by our group, sgc8c, and its target protein tyrosine kinase 7 (PTK7) as the model aptamer and target and tried to determine the binding site between aptamer sgc8c and PTK7. Through sequential protein truncation, we confirmed that the exact binding site of sgc8c was within the region of Ig 3 to Ig 4 in the extracellular domain of PTK7. Using in vitro expressed Ig (3-4), we successfully acquired the crystal of an sgc8c-Ig (3-4) binding complex. The possible sgc8c-binding amino acid residues on PTK7 and PTK7-binding nucleotide residues on sgc8c were further identified and simulated by mass spectrometry and molecular dynamics simulation and finally verified by aptamer/protein truncation and mutation.


Subject(s)
Aptamers, Nucleotide , Cell Adhesion Molecules , Receptor Protein-Tyrosine Kinases , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Binding Sites , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/chemistry , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/chemistry , Molecular Dynamics Simulation
13.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928206

ABSTRACT

Substance P (SP), encoded by the Tac1 gene, has been shown to promote leukocyte infiltration and organ impairment in mice with sepsis. Neurokinin-1 receptor (NK1R) is the major receptor that mediates the detrimental impact of SP on sepsis. This investigation studied whether SP affects the expression of adhesion molecules, including intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) on vascular endothelial cells in the liver and lungs, contributing to leukocyte infiltration in these tissues of mice with sepsis. Sepsis was induced by caecal ligation and puncture (CLP) surgery in mice. The actions of SP were inhibited by deleting the Tac1 gene, blocking NK1R, or combining these two methods. The activity of myeloperoxidase and the concentrations of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, were measured. The activity of myeloperoxidase and the concentration of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, increased in mice with CLP surgery-induced sepsis. Suppressing the biosynthesis of SP and its interactions with NK1R attenuated CLP surgery-induced alterations in the liver and lungs of mice. Our findings indicate that SP upregulates the expression of ICAM1 and VCAM1 on vascular endothelial cells in the liver and lungs, thereby increasing leukocyte infiltration in these tissues of mice with CLP surgery-induced sepsis by activating NK1R.


Subject(s)
Endothelial Cells , Intercellular Adhesion Molecule-1 , Liver , Lung , Receptors, Neurokinin-1 , Sepsis , Substance P , Vascular Cell Adhesion Molecule-1 , Animals , Sepsis/metabolism , Sepsis/pathology , Mice , Substance P/metabolism , Lung/metabolism , Lung/pathology , Liver/metabolism , Liver/pathology , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Endothelial Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Receptors, Neurokinin-1/metabolism , Receptors, Neurokinin-1/genetics , Male , Leukocytes/metabolism , Mice, Inbred C57BL , Peroxidase/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Disease Models, Animal
14.
Sci Rep ; 14(1): 13227, 2024 06 09.
Article in English | MEDLINE | ID: mdl-38851782

ABSTRACT

There are hundreds of genes typically overexpressed in breast cancer cells and it's often assumed that their overexpression contributes to cancer progression. However, the precise proportion of these overexpressed genes contributing to tumorigenicity remains unclear. To address this gap, we undertook a comprehensive screening of a diverse set of seventy-two genes overexpressed in breast cancer. This systematic screening evaluated their potential for inducing malignant transformation and, concurrently, assessed their impact on breast cancer cell proliferation and viability. Select genes including ALDH3B1, CEACAM5, IL8, PYGO2, and WWTR1, exhibited pronounced activity in promoting tumor formation and establishing gene dependencies critical for tumorigenicity. Subsequent investigations revealed that CEACAM5 overexpression triggered the activation of signaling pathways involving ß-catenin, Cdk4, and mTOR. Additionally, it conferred a growth advantage independent of exogenous insulin in defined medium and facilitated spheroid expansion by inducing multiple layers of epithelial cells while preserving a hollow lumen. Furthermore, the silencing of CEACAM5 expression synergized with tamoxifen-induced growth inhibition in breast cancer cells. These findings underscore the potential of screening overexpressed genes for both oncogenic drivers and tumor dependencies to expand the repertoire of therapeutic targets for breast cancer treatment.


Subject(s)
Breast Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Proliferation/genetics , Cell Line, Tumor , Signal Transduction , Oncogenes , beta Catenin/metabolism , beta Catenin/genetics , Tamoxifen/pharmacology , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cell Transformation, Neoplastic/genetics
15.
World J Gastroenterol ; 30(20): 2624-2628, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855151

ABSTRACT

In this editorial we provide commentary on the article published by Wang et al, featured in the recent issue of the World Journal of Gastroenterology in 2024. We focus on the metadherin (MTDH), also known as astrocyte elevated gene-1 or lysine rich CEACAM1, and its effects on cancer stem cells (CSCs) and immunity in hepatocellular carcinoma (HCC). HCC is the most common primary liver cancer and one of the leading causes of cancer-related deaths worldwide. Most HCC cases develop in the context of liver cirrhosis. Among the pivotal mechanisms of carcinogenesis are gene mutations, dysregulation of diverse signaling pathways, epigenetic alterations, hepatitis B virus-induced hepatocarcinogenesis, chronic inflammation, impact of tumor microenvironment, oxidative stress. Over the years, extensive research has been conducted on the MTDH role in various tumor pathologies, such as lung, breast, ovarian, gastric, hepatocellular, colorectal, renal carcinoma, neuroblastoma, melanoma, and leukemias. Specifically, its involvement in tumor development processes including transformation, apoptosis evasion, angiogenesis, invasion, and metastasis via multiple signaling pathways. It has been demonstrated that knockdown or knockout of MTDH disrupt tumor development and metastasis. In addition, numerous reports have been carried out regarding the MTDH influence on HCC, demonstrating its role as a predictor of poor prognosis, aggressive tumor phenotypes prone to metastasis and recurrence, and exhibiting significant potential for therapy resistance. Finally, more studies finely investigated the influence of MTDH on CSCs. The CSCs are a small subpopulation of tumor cells that sharing traits with normal stem cells like self-renewal and differentiation abilities, alongside a high plasticity that alters their phenotype. Beyond their presumed role in tumor initiation, they can drive also disease relapse, metastasis, and resistance to chemo and radiotherapy.


Subject(s)
Carcinoma, Hepatocellular , Cell Adhesion Molecules , Liver Neoplasms , Membrane Proteins , Neoplastic Stem Cells , Phenotype , RNA-Binding Proteins , Tumor Microenvironment , Humans , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Adhesion Molecules/metabolism , Tumor Microenvironment/immunology , Signal Transduction , Prognosis
16.
PLoS Pathog ; 20(6): e1012267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857290

ABSTRACT

HSV infects keratinocytes in the epidermis of skin via nectin-1. We established a human foreskin explant infection model to investigate HSV entry and spread. HSV1 entry could only be achieved by the topical application of virus via high density microarray projections (HD-MAPs) to the epidermis, which penetrated beyond one third of its thickness, simulating in vivo microtrauma. Rapid lateral spread of HSV1 to a mean of 13 keratinocytes wide occurred after 24 hours and free virus particles were observed between keratinocytes, consistent with an intercellular route of spread. Nectin-1 staining was markedly decreased in foci of infection in the epidermis and in the human keratinocyte HaCaT cell line. Nectin-1 was redistributed, at the protein level, in adjacent uninfected cells surrounding infection, inducible by CCL3, IL-8 (or CXCL8), and possibly CXCL10 and IL-6, thus facilitating spread. These findings provide the first insights into HSV1 entry and spread in human inner foreskin in situ.


Subject(s)
Chemokines , Foreskin , Herpes Simplex , Herpesvirus 1, Human , Keratinocytes , Nectins , Humans , Male , Keratinocytes/virology , Keratinocytes/metabolism , Foreskin/virology , Foreskin/cytology , Nectins/metabolism , Herpes Simplex/virology , Herpes Simplex/metabolism , Chemokines/metabolism , Herpesvirus 1, Human/physiology , Cell Adhesion Molecules/metabolism , Virus Internalization
17.
Biomed Pharmacother ; 176: 116907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38865849

ABSTRACT

The plant alkaloid homoharringtonine (HHT) is a Food and Drug Administration (FDA)-approved drug for the treatment of hematologic malignancies. In addition to its well-established antitumor activity, accumulating evidence attributes anti-inflammatory effects to HHT, which have mainly been studied in leukocytes to date. However, a potential influence of HHT on inflammatory activation processes in endothelial cells, which are a key feature of inflammation and a prerequisite for the leukocyte-endothelial cell interaction and leukocyte extravasation, remains poorly understood. In this study, the anti-inflammatory potential of HHT and its derivative harringtonine (HT) on the TNF-induced leukocyte-endothelial cell interaction was assessed, and the underlying mechanistic basis of these effects was elucidated. HHT affected inflammation in vivo in a murine peritonitis model by reducing leukocyte infiltration and proinflammatory cytokine expression as well as ameliorating abdominal pain behavior. In vitro, HT and HHT impaired the leukocyte-endothelial cell interaction by decreasing the expression of the endothelial cell adhesion molecules intracellular adhesion molecule -1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was mediated by a bipartite mechanism. While HHT did not affect the prominent TNF-induced pro-inflammatory NF-ĸB signaling cascade, the compound downregulated the VCAM1 mRNA expression in an IRF-1-dependent manner and diminished active ICAM1 mRNA translation as determined by polysome profiling. This study highlights HHT as an anti-inflammatory compound that efficiently hampers the leukocyte-endothelial cell interaction by targeting endothelial activation processes.


Subject(s)
Down-Regulation , Homoharringtonine , Inflammation , Interferon Regulatory Factor-1 , RNA, Messenger , Vascular Cell Adhesion Molecule-1 , Animals , Down-Regulation/drug effects , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice , Homoharringtonine/pharmacology , Male , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Anti-Inflammatory Agents/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Mice, Inbred C57BL , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Leukocytes/drug effects , Leukocytes/metabolism
18.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923643

ABSTRACT

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Subject(s)
Antigens, CD , Exosomes , GPI-Linked Proteins , Matrix Metalloproteinase 9 , Neuroendocrine Tumors , Pancreatic Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Exosomes/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Animals , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Matrix Metalloproteinase 9/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Mice , Cell Line, Tumor , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules/metabolism , Cell Movement , Neoplasm Metastasis , Mice, Nude , Hypoxia/metabolism , Cell Hypoxia/physiology , Carcinoembryonic Antigen
19.
Cell Biochem Funct ; 42(4): e4066, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822669

ABSTRACT

Collagen crosslinking, mediated by lysyl oxidase, is an adaptive mechanism of the cardiac repair process initiated by cardiac fibroblasts postmyocardial injury. However, excessive crosslinking leads to cardiac wall stiffening, which impairs the contractile properties of the left ventricle and leads to heart failure. In this study, we investigated the role of periostin, a matricellular protein, in the regulation of lysyl oxidase in cardiac fibroblasts in response to angiotensin II and TGFß1. Our results indicated that periostin silencing abolished the angiotensin II and TGFß1-mediated upregulation of lysyl oxidase. Furthermore, the attenuation of periostin expression resulted in a notable reduction in the activity of lysyl oxidase. Downstream of periostin, ERK1/2 MAPK signaling was found to be activated, which in turn transcriptionally upregulates the serum response factor to facilitate the enhanced expression of lysyl oxidase. The periostin-lysyl oxidase association was also positively correlated in an in vivo rat model of myocardial infarction. The expression of periostin and lysyl oxidase was upregulated in the collagen-rich fibrotic scar tissue of the left ventricle. Remarkably, echocardiography data showed a reduction in the left ventricular wall movement, ejection fraction, and fractional shortening, indicative of enhanced stiffening of the cardiac wall. These findings shed light on the mechanistic role of periostin in the collagen crosslinking initiated by activated cardiac fibroblasts. Our findings signify periostin as a possible therapeutic target to reduce excessive collagen crosslinking that contributes to the structural remodeling associated with heart failure.


Subject(s)
Cell Adhesion Molecules , Fibroblasts , Protein-Lysine 6-Oxidase , Rats, Sprague-Dawley , Animals , Protein-Lysine 6-Oxidase/metabolism , Fibroblasts/metabolism , Rats , Cell Adhesion Molecules/metabolism , Male , MAP Kinase Signaling System , Myocardium/metabolism , Myocardium/cytology , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Transforming Growth Factor beta1/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Cells, Cultured , Disease Models, Animal , Periostin
20.
Curr Gene Ther ; 24(4): 307-320, 2024.
Article in English | MEDLINE | ID: mdl-38783530

ABSTRACT

BACKGROUND: Astrocyte elevated gene-1 (AEG-1) is overexpressed in various malignancies. Exostosin-1 (EXT-1), a tumor suppressor, is an intermediate for malignant tumors. Understanding the mechanism behind the interaction between AEG-1 and EXT-1 may provide insights into colon cancer metastasis. METHODS: AOM/DSS was used to induce tumor in BALB/c mice. Using an in vivo-jetPEI transfection reagent, transient transfection of AEG-1 and EXT-1 siRNAs were achieved. Histological scoring, immunohistochemical staining, and gene expression studies were performed from excised tissues. Data from the Cancer Genomic Atlas and GEO databases were obtained to identify the expression status of AEG-1 and itsassociation with the survival. RESULTS: In BALB/c mice, the AOM+DSS treated mice developed necrotic, inflammatory and dysplastic changes in the colon with definite clinical symptoms such as loss of goblet cells, colon shortening, and collagen deposition. Administration of AEG-1 siRNA resulted in a substantial decrease in the disease activity index. Mice treated with EXT-1 siRNA showed diffusely reduced goblet cells. In vivo investigations revealed that PTCH-1 activity was influenced by upstream gene AEG-1, which in turn may affect EXT-1 activity. Data from The Cancer Genomic Atlas and GEO databases confirmed the upregulation of AEG-1 and downregulation of EXT-1 in cancer patients. CONCLUSIONS: This study revealed that AEG-1 silencing might alter EXT-1 expression indirectly through PTCH-1, influencing cell-ECM interactions, and decreasing dysplastic changes, proliferation and invasion.


Subject(s)
Colonic Neoplasms , Membrane Proteins , Mice, Inbred BALB C , RNA, Small Interfering , RNA-Binding Proteins , Animals , Humans , Mice , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Gene Silencing , Membrane Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...