Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85.834
Filter
1.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930989

ABSTRACT

The crystal structures of two newly synthesized nitrilotriacetate oxidovanadium(IV) salts, namely [QH][VO(nta)(H2O)](H2O)2 (I) and [(acr)H][VO(nta)(H2O)](H2O)2 (II), were determined. Additionally, the cytotoxic effects of four N-heterocyclic nitrilotriacetate oxidovanadium(IV) salts-1,10-phenanthrolinium, [(phen)H][VO(nta)(H2O)](H2O)0.5 (III), 2,2'-bipyridinium [(bpy)H][VO(nta)(H2O)](H2O) (IV), and two newly synthesized compounds (I) and (II)-were evaluated against prostate cancer (PC3) and breast cancer (MCF-7) cells. All the compounds exhibited strong cytotoxic effects on cancer cells and normal cells (HaCaT human keratinocytes). The structure-activity relationship analysis revealed that the number and arrangement of conjugated aromatic rings in the counterion had an impact on the antitumor effect. The compound (III), the 1,10-phenanthrolinium analogue, exhibited the greatest activity, whereas the acridinium salt (II), with a different arrangement of three conjugated aromatic rings, showed the lowest toxicity. The increased concentrations of the compounds resulted in alterations to the cell cycle distribution with different effects in MCF-7 and PC3 cells. In MCF-7 cells, compounds I and II were observed to block the G2/M phase, while compounds III and IV were found to arrest the cell cycle in the G0/G1 phase. In PC3 cells, all compounds increased the rates of cells in the G0/G1 phase.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Male , Female , MCF-7 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Nitrilotriacetic Acid/chemistry , Nitrilotriacetic Acid/analogs & derivatives , Structure-Activity Relationship , Cell Line, Tumor , Cell Proliferation/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Vanadium/chemistry , Vanadium/pharmacology , PC-3 Cells , Cell Cycle/drug effects , Molecular Structure , Salts/chemistry , Salts/pharmacology , Cell Survival/drug effects , Apoptosis/drug effects
2.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38940353

ABSTRACT

The prognosis of patients with human papillomavirus (HPV)­negative cervical cancer is significantly worse than that of patients with HPV­positive cervical cancer. Understanding the mechanisms of this is crucial for preventing disease evolution. In the present study, the GV367­snail family transcriptional repressor 2 (SNAI2) lentiviral vector was constructed and transduced into C­33A cells. Subsequently, the proliferation of tumor cells was detected using the Cell Counting Kit (CCK)­8 method. Flow cytometry was used to analyze the cell cycle progression of tumor cells. The glucose consumption of tumor cells was detected using an oxidase assay, and the senescence of tumor cells was detected using beta­galactosidase staining. The gene expression and the activity of p38 and ERK1/2 were detected using reverse transcription­quantitative PCR and western blotting, respectively. The C­33A­SNAI2 cell line was successfully established. Compared with HeLa and C­33A­Wild cells, the proliferation and percentage of G0/G1­phase cells in the C­33A­SNAI2 group were decreased, as detected by the CCK­8 assay (100±0 vs. 239.1±58.3 vs. 39.7±20.1, P<0.01) and flow cytometry (34.0±7.1% vs. 46.2±10.6% vs. 61.3±5.3%, P<0.05). Compared with the HeLa group, the glucose consumption of the C­33A­Wild and C­33A­SNAI2 groups was significantly decreased (P<0.01). The results of beta­galactosidase staining showed that the proportion of beta­galactosidase­positive cells in the C­33A­SNAI2 group was significantly decreased compared with the C­33A­Wild group (P<0.01). Upregulation of SNAI2 enhanced the increase in p21 expression, and the decrease in CDK1, urokinase plasminogen activator receptor (u­PAR) and cyclin D1 expression in C­33A cells compared with C­33A­Wild cells (P<0.05). In addition, the activities of p38, ERK1/2 and the phosphorylated (p)­ERK1/2/p­p38 ratio were decreased in the C­33A­SNAI2 group compared with the C­33A­Wild and HeLa groups (P<0.05). In conclusion, SNAI2 enhanced HPV­negative cervical cancer C­33A cell dormancy, which was characterized by G0/G1 arrest, by the downregulation of u­PAR expression, and a decrease in the activity of the p­ERK1/2 and p­p38MAPK signaling pathways in vitro. Cancer recurrence and metastases are responsible for most cancer­related deaths. Given that SNAI2 is required for enhancing HPV­negative cervical cancer cell dormancy, regulating this process may promote cervical tumor cells to enter a continuous dormant state, which could be a potential approach for tumor therapy.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Snail Family Transcription Factors , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/metabolism , Female , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , MAP Kinase Signaling System , HeLa Cells , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Cell Line, Tumor , Papillomaviridae/genetics , Cellular Senescence , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Cycle
3.
In Vivo ; 38(4): 1579-1593, 2024.
Article in English | MEDLINE | ID: mdl-38936891

ABSTRACT

BACKGROUND/AIM: Melanoma, a variant of skin cancer, presents the highest mortality rates among all skin cancers. Despite advancements in targeted therapies, immunotherapies, and tissue culture techniques, the absence of an effective early treatment model remains a challenge. This study investigated the impact of dabrafenib on both 2D and 3D cell culture models with distinct molecular profiles. MATERIALS AND METHODS: We developed a high-throughput workflow enabling drug screening on spheroids. Our approach involved cultivating 2D and 3D cultures derived from normal melanocytes and metastatic melanoma cells, treating them with dabrafenib and conducting viability, aggregation, migration, cell cycle, and apoptosis assays. RESULTS: Dabrafenib exerted multifaceted influences, particularly on migration at concentrations of 10 and 25 µM. It induced a decrease in cell viability, impeded cellular adhesion to the matrix, inhibited cellular aggregation and spheroid formation, arrested the cell cycle in the G1 phase, and induced apoptosis. CONCLUSION: These results confirm the therapeutic potential of dabrafenib in treating melanoma with the BRAF V600E mutation and that 3D models are validated models to study the potential of new molecules for therapeutic purposes. Furthermore, our study underscores the relevance of 3D models in simulating physiological in vivo microenvironments, providing insights into varied treatment responses between normal and tumor cells.


Subject(s)
Apoptosis , Cell Movement , Cell Survival , Imidazoles , Melanoma , Oximes , Proto-Oncogene Proteins B-raf , Spheroids, Cellular , Oximes/pharmacology , Humans , Imidazoles/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Cell Line, Tumor , Apoptosis/drug effects , Cell Movement/drug effects , Spheroids, Cellular/drug effects , Cell Survival/drug effects , Cell Culture Techniques , Protein Kinase Inhibitors/pharmacology , Cell Cycle/drug effects , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Culture Techniques, Three Dimensional/methods , Drug Screening Assays, Antitumor/methods
4.
PLoS One ; 19(6): e0305491, 2024.
Article in English | MEDLINE | ID: mdl-38924026

ABSTRACT

Understanding mechanisms underlying various physiological and pathological processes often requires accurate and fully automated analysis of dense cell populations that collectively migrate. In such multicellular systems, there is a rising interest in the relations between biophysical and cell cycle progression aspects. A seminal tool that led to a leap in real-time study of cell cycle is the fluorescent ubiquitination-based cell cycle indicator (FUCCI). Here, we introduce ConfluentFUCCI, an open-source graphical user interface-based framework that is designed, unlike previous tools, for fully automated analysis of cell cycle progression, cellular dynamics, and cellular morphology, in highly dense migrating cell collectives. We integrated into ConfluentFUCCI's pipeline state-of-the-art tools such as Cellpose, TrackMate, and Napari, some of which incorporate deep learning, and we wrap the entire tool into an isolated computational environment termed container. This provides an easy installation and workflow that is independent of any specific operation system. ConfluentFUCCI offers accurate nuclear segmentation and tracking using FUCCI tags, enabling comprehensive investigation of cell cycle progression at both the tissue and single-cell levels. We compare ConfluentFUCCI to the most recent relevant tool, showcasing its accuracy and efficiency in handling large datasets. Furthermore, we demonstrate the ability of ConfluentFUCCI to monitor cell cycle transitions, dynamics, and morphology within densely packed epithelial cell populations, enabling insights into mechanotransductive regulation of cell cycle progression. The presented tool provides a robust approach for investigating cell cycle-related phenomena in complex biological systems, offering potential applications in cancer research and other fields.


Subject(s)
Cell Cycle , Cell Movement , Cell Cycle/physiology , Cell Movement/physiology , Humans , Software , Ubiquitination , Image Processing, Computer-Assisted/methods
5.
Curr Microbiol ; 81(7): 213, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847863

ABSTRACT

The antimalarial drug Mefloquine has demonstrated antifungal activity against growth and virulence factors of Candida albicans. The current study focused on the identification of Mefloquine's mode of action in C. albicans by performing cell susceptibility assay, biofilm assay, live and dead assay, propidium iodide uptake assay, ergosterol quantification assay, cell cycle study, and gene expression studies by RT-PCR. Mefloquine inhibited the virulence factors in C. albicans, such as germ tube formation and biofilm formation at 0.125 and 1 mg/ml, respectively. Mefloquine-treated cells showed a decrease in the quantity of ergosterol content of cell membrane in a concentration-dependent manner. Mefloquine (0.25 mg/ml) arrested C. albicans cells at the G2/M phase and S phase of the cell cycle thereby preventing the progression of the normal yeast cell cycle. ROS level was measured to find out oxidative stress in C. albicans in the presence of mefloquine. The study revealed that, mefloquine was found to enhance the ROS level and subsequently oxidative stress. Gene expression studies revealed that mefloquine treatment upregulates the expressions of SOD1, SOD2, and CAT1 genes in C. albicans. In vivo, the antifungal efficacy of mefloquine was confirmed in mice for systemic candidiasis and it was found that there was a decrease in the pathogenesis of C. albicans after the treatment of mefloquine in mice. In conclusion, mefloquine can be used as a repurposed drug as an alternative drug against Candidiasis.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis , Mefloquine , Virulence Factors , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/pathogenicity , Candida albicans/growth & development , Animals , Mefloquine/pharmacology , Mice , Virulence Factors/genetics , Virulence Factors/metabolism , Candidiasis/microbiology , Candidiasis/drug therapy , Biofilms/drug effects , Biofilms/growth & development , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Oxidative Stress/drug effects , Cell Cycle/drug effects , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Ergosterol/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
6.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38874019

ABSTRACT

2',3',4'­trihydroxyflavone (2­D08), a SUMO E2 inhibitor, has several biological functions, including anticancer activity, but its effects on uterine leiomyosarcoma (Ut­LMS) are unknown. The anticancer activity of 2­D08 was explored in an in vitro model using SK­LMS­1 and SK­UT­1B cells (human Ut­LMS cells). Treatment with 2­D08 inhibited cell viability in a dose­ and time­dependent manner and significantly inhibited the colony­forming ability of Ut­LMS cells. In SK­UT­1B cells treated with 2­D08, flow cytometric analysis revealed a slight increase in apoptotic rates, while cell cycle progression remained unaffected. Western blotting revealed elevated levels of RIP1, indicating induction of necrosis, but LC3B levels remained unchanged, suggesting no effect on autophagy. A lactate dehydrogenase (LDH) assay confirmed increased LDH release, further supporting the induction of apoptosis and necrosis by 2­D08 in SK­UT­1B cells. 2­D08­induced production of reactive oxygen species and apoptosis progression were observed in SK­LMS­1 cells. Using Ki67 staining and bromodeoxyuridine assays, it was found that 2­D08 suppressed proliferation in SK­LMS­1 cells, while treatment for 48 h led to cell­cycle arrest. 2­D08 upregulated p21 protein expression in SK­LMS­1 cells and promoted apoptosis through caspase­3. Evaluation of α­SM­actin, calponin 1 and TAGLN expression indicated that 2­D08 did not directly initiate smooth muscle phenotypic switching in SK­LMS­1 cells. Transcriptome analysis on 2­D08­treated SK­LMS­1 cells identified significant differences in gene expression and suggested that 2­D08 modulates cell­cycle­ and apoptosis­related pathways. The analysis identified several differentially expressed genes and significant enrichment for biological processes related to DNA replication and molecular functions associated with the apoptotic process. It was concluded that 2­D08 exerts antitumor effects in Ut­LMS cells by modulating multiple signaling pathways and that 2­D08 may be a promising candidate for the treatment of human Ut­LMS. The present study expanded and developed knowledge regarding Ut­LMS management and indicated that 2­D08 represents a notable finding in the exploration of fresh treatment options for such cancerous tumors.


Subject(s)
Apoptosis , Cell Proliferation , Leiomyosarcoma , Uterine Neoplasms , Humans , Leiomyosarcoma/drug therapy , Leiomyosarcoma/pathology , Leiomyosarcoma/metabolism , Female , Uterine Neoplasms/drug therapy , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Flavones/pharmacology , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Autophagy/drug effects
7.
Exp Dermatol ; 33(6): e15092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888196

ABSTRACT

Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression. To evaluate the clinical significance of SPOCK2 expression in patients with melanoma, we analysed the association between SPOCK2 expression and its prognostic value for patients with melanoma using systematic multiomic analysis. Subsequently, to investigate the roles of Spock2 in melanoma progression in vitro and in vivo, we knocked down Spock2 in the B16F10 melanoma cell line. High SPOCK2 levels were positively associated with good prognosis and long survival rate of patients with melanoma. Spock2 knockdown promoted melanoma cell proliferation by inducing the cell cycle and inhibiting apoptosis. Moreover, Spock2 downregulation significantly increased cell migration and invasion by upregulating MMP2 and MT1-MMP. The increased cell proliferation and migration were inhibited by MAPK inhibitor, and ERK phosphorylation was considerably enhanced in Spock2 knockdown cells. Therefore, Spock2 could function as a tumour suppressor gene to regulate melanoma progression by regulating the MAPK/ERK signalling pathway. Additionally, Spock2 knockdown cell injection induced considerable tumour growth and lung metastasis in C57BL6 mice compared to that in the control group. Our findings suggest that SPOCK2 plays crucial roles in malignant progression of melanoma and functions as a novel therapeutic target of melanoma.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Disease Progression , Melanoma , Skin Neoplasms , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Cycle , Cell Line, Tumor , Gene Knockdown Techniques , MAP Kinase Signaling System , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Neoplasm Invasiveness , Prognosis , Proteoglycans/metabolism , Proteoglycans/genetics , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
8.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892280

ABSTRACT

Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.


Subject(s)
Neoplasms , RNA, Circular , RNA, Circular/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Cycle/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction
9.
Sci Adv ; 10(25): eadl6153, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896608

ABSTRACT

Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.


Subject(s)
Blood Platelets , Cell Cycle , Centrosome , Kinesins , Megakaryocytes , Centrosome/metabolism , Animals , Megakaryocytes/metabolism , Megakaryocytes/cytology , Mice , Blood Platelets/metabolism , Kinesins/metabolism , Kinesins/genetics , Mice, Knockout , Humans , Mitosis
10.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928190

ABSTRACT

The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects both the whole organism and individual cells. We have previously demonstrated that simulated microgravity inhibits proliferation, induces apoptosis, changes morphology, and alters the surface marker expression of megakaryoblast cell line MEG-01. In the present work, we investigate the expression of cell cycle cyclins in MEG-01 cells. We performed several experiments for 24 h, 72 h, 96 h and 168 h. Flow cytometry and Western blot analysis demonstrated that the main change in the levels of cyclins expression occurs under conditions of simulated microgravity after 96 h. Thus, the level of cyclin A expression showed an increase in the RPM group during the first 4 days, followed by a decrease, which, together with the peak of cyclin D, may indicate inhibition of the cell cycle in the G2 phase, before mitosis. In addition, based on the data obtained by PCR analysis, we were also able to see that both cyclin A and cyclin B expression showed a peak at 72 h, followed by a gradual decrease at 96 h. STED microscopy data also confirmed that the main change in cyclin expression of MEG-01 cells occurs at 96 h, under simulated microgravity conditions, compared to static control. These results suggested that the cell cycle disruption induced by RPM-simulated microgravity in MEG-01 cells may be associated with the altered expression of the main regulators of the cell cycle. Thus, these data implicate the development of cellular stress in MEG-01 cells, which may be important for proliferating human cells exposed to microgravity in real space.


Subject(s)
Cell Cycle , Cyclins , Weightlessness Simulation , Humans , Cell Line , Cyclins/metabolism , Cyclins/genetics , Megakaryocyte Progenitor Cells/metabolism , Megakaryocyte Progenitor Cells/cytology , Cyclin A/metabolism , Cyclin A/genetics , Cell Proliferation , Cyclin B/metabolism , Cyclin B/genetics
11.
Biomolecules ; 14(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927066

ABSTRACT

The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition.


Subject(s)
Cell Cycle , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Cell Cycle/genetics , Batch Cell Culture Techniques , Gene Expression Regulation, Fungal , DNA/metabolism , Glucose/metabolism
12.
Genes (Basel) ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927683

ABSTRACT

Grapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed.


Subject(s)
Kaolin , Plant Leaves , Vitis , Vitis/genetics , Vitis/drug effects , Vitis/growth & development , Vitis/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Kaolin/pharmacology , Seasons , Stress, Physiological/drug effects , Cell Cycle/drug effects , Antioxidants/pharmacology
13.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928012

ABSTRACT

In yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 (Sup45) and eRF3 (Sup35), which are essential for viability. Previous studies have revealed that presence of nonsense mutations in these genes leads to amplification of mutant alleles (sup35-n and sup45-n), which appears to be necessary for the viability of such cells. However, the mechanism of this phenomenon remained unclear. In this study, we used RNA-Seq and proteome analysis to reveal the complete set of gene expression changes that occur during cellular adaptation to the introduction of the sup35-218 nonsense allele. Our analysis demonstrated significant changes in the transcription of genes that control the cell cycle: decreases in the expression of genes of the anaphase promoting complex APC/C (APC9, CDC23) and their activator CDC20, and increases in the expression of the transcription factor FKH1, the main cell cycle kinase CDC28, and cyclins that induce DNA biosynthesis. We propose a model according to which yeast adaptation to nonsense mutations in the translation termination factor genes occurs as a result of a delayed cell cycle progression beyond the G2-M stage, which leads to an extension of the S and G2 phases and an increase in the number of copies of the mutant sup35-n allele.


Subject(s)
Codon, Nonsense , Gene Expression Regulation, Fungal , Peptide Termination Factors , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Codon, Nonsense/genetics , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Adaptation, Physiological/genetics , Cell Cycle/genetics
14.
Sci Rep ; 14(1): 13497, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866982

ABSTRACT

Antimicrobial peptides (AMPs) have sparked significant interest as potential anti-cancer agents, thereby becoming a focal point in pursuing novel cancer-fighting strategies. These peptides possess distinctive properties, underscoring the importance of developing more potent and selectively targeted versions with diverse mechanisms of action against human cancer cells. Such advancements would offer notable advantages compared to existing cancer therapies. This research aimed to examine the toxicity and selectivity of the nrCap18 peptide in both cancer and normal cell lines. Furthermore, the rate of cellular death was assessed using apoptosis and acridine orange/ethidium bromide (AO/EB) double staining at three distinct incubation times. Additionally, the impact of this peptide on the cancer cell cycle and migration was evaluated, and ultimately, the expression of cyclin-dependent kinase 4/6 (CDK4/6) genes was investigated. The results obtained from the study demonstrated significant toxicity and selectivity in cancer cells compared to normal cells. Moreover, a strong progressive increase in cell death was observed over time. Furthermore, the peptide exhibited the ability to halt the progression of cancer cells in the G1 phase of the cell cycle and impede their migration by suppressing the expression of CDK4/6 genes.


Subject(s)
Apoptosis , Breast Neoplasms , Cathelicidins , Cyclin-Dependent Kinase 4 , Humans , Animals , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Apoptosis/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Female , Rabbits , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cyclin-Dependent Kinase 6/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Peptides/pharmacology , Peptides/chemistry , Gene Expression Regulation, Neoplastic/drug effects
15.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855871

ABSTRACT

Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.


Subject(s)
Cell Cycle , Cerebellum , Cytomegalovirus Infections , Disease Models, Animal , Animals , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/pathology , Mice , Cerebellum/virology , Cerebellum/pathology , Cerebellum/growth & development , Cerebellum/abnormalities , Female , Cytomegalovirus , Neural Stem Cells/virology , Muromegalovirus/physiology , Animals, Newborn , Humans , Neurons/virology , Tumor Necrosis Factor-alpha/metabolism , Developmental Disabilities , Nervous System Malformations
16.
J Comp Neurol ; 532(6): e25630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852043

ABSTRACT

Mitochondria play critical roles in neural stem/progenitor cell proliferation and fate decisions. The subcellular localization of mitochondria in neural stem/progenitor cells during mitosis potentially influences the distribution of mitochondria to the daughter cells and thus their fates. Therefore, understanding the spatial dynamics of mitochondria provides important knowledge about brain development. In this study, we analyzed the subcellular localization of mitochondria in the fetal human neocortex with a particular focus on the basal radial glial cells (bRGCs), a neural stem/progenitor cell subtype attributed to the evolutionary expansion of the human neocortex. During interphase, bRGCs exhibit a polarized localization of mitochondria that is localized at the base of the process or the proximal part of the process. Thereafter, mitochondria in bRGCs at metaphase show unpolarized distribution in which the mitochondria are randomly localized in the cytoplasm. During anaphase and telophase, mitochondria are still localized evenly, but mainly in the periphery of the cytoplasm. Mitochondria start to accumulate at the cleavage furrow during cytokinesis. These results suggest that the mitochondrial localization in bRGCs is tightly regulated during the cell cycle, which may ensure the proper distribution of mitochondria to the daughter cells and, thus in turn, influence their fates.


Subject(s)
Cell Cycle , Ependymoglial Cells , Mitochondria , Neocortex , Humans , Neocortex/cytology , Neocortex/metabolism , Mitochondria/metabolism , Cell Cycle/physiology , Ependymoglial Cells/metabolism , Ependymoglial Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/cytology
17.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822457

ABSTRACT

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Subject(s)
Adenocarcinoma of Lung , Citric Acid Cycle , Homologous Recombination , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Cell Proliferation , Tumor Microenvironment , Cell Line, Tumor , Cell Cycle/genetics , Cellular Reprogramming/genetics , Female , A549 Cells , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Movement , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/genetics , Male , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
18.
Cancer Discov ; 14(6): 903-905, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38826100

ABSTRACT

SUMMARY: In this issue, a study by Kazansky and colleagues explored resistance mechanisms after EZH2 inhibition in malignant rhabdoid tumors (MRT) and epithelioid sarcomas (ES). The study identified genetic alterations in EZH2 itself, along with alterations that converge on RB1-E2F-mediated cell-cycle control, and demonstrated that inhibition of cell-cycle kinases, such as Aurora Kinase B (AURKB) could bypass EZH2 inhibitor resistance to enhance treatment efficacy. See related article by Kazansky et al., p. 965 (6).


Subject(s)
Cell Cycle , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein , Humans , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Drug Resistance, Neoplasm/genetics , Molecular Targeted Therapy , Aurora Kinase B/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/antagonists & inhibitors
19.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38832821

ABSTRACT

LncRNA is a group of transcripts with a length exceeding 200 nucleotides that contribute to tumour development. Our research group found that LINC00052 expression was repressed during the formation of breast cancer (BC) multicellular spheroids. Intriguingly, LINC00052 precise role in BC remains uncertain. We explored LINC00052 expression in BC patients` RNA samples (TCGA) in silico, as well as in an in-house patient cohort, and inferred its cellular and molecular mechanisms. In vitro studies evaluated LINC00052 relevance in BC cells viability, cell cycle and DNA damage. Results. Bioinformatic RNAseq analysis of BC patients showed that LINC00052 is overexpressed in samples from all BC molecular subtypes. A similar LINC00052 expression pattern was observed in an in-house patient cohort. In addition, higher LINC00052 levels are related to better BC patient´s overall survival. Remarkably, MCF-7 and ZR-75-1 cells treated with estradiol showed increased LINC00052 expression compared to control, while these changes were not observed in MDA-MB-231 cells. In parallel, bioinformatic analyses indicated that LINC00052 influences DNA damage and cell cycle. MCF-7 cells with low LINC00052 levels exhibited increased cellular protection against DNA damage and diminished growth capacity. Furthermore, in cisplatin-resistant MCF-7 cells, LINC00052 expression was downregulated. Conclusion. This work shows that LINC00052 expression is associated with better BC patient survival. Remarkably, LINC00052 expression can be regulated by Estradiol. Additionally, assays suggest that LINC00052 could modulate MCF-7 cells growth and DNA damage repair. Overall, this study highlights the need for further research to unravel LINC00052 molecular mechanisms and potential clinical applications in BC.


Subject(s)
Breast Neoplasms , Computational Biology , DNA Damage , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Computational Biology/methods , RNA, Long Noncoding/genetics , Female , Cell Cycle/genetics , Cell Proliferation , Cell Line, Tumor , MCF-7 Cells , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm/genetics , Cell Survival/genetics , Prognosis , Gene Expression Profiling
20.
J Obstet Gynaecol ; 44(1): 2363515, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38864487

ABSTRACT

BACKGROUND: Cystatin SA (CST2) plays multiple roles in different types of malignant tumours; however, its role in serous ovarian cancer (SOC) remains unclear. Therefore, we aimed to investigate the expression levels, survival outcomes, immune cell infiltration, proliferation, cell cycle, and underlying molecular mechanisms associated with the CST2 signature in SOC. METHODS: The Cancer Genome Atlas database was used to acquire clinical information and CST2 expression profiles from patients with SOC. Wilcoxon rank-sum tests were used to compare CST2 expression levels between SOC and normal ovarian tissues. A prognostic assessment of CST2 was conducted using Cox regression analysis and the Kaplan-Meier method. Differentially expressed genes were identified using functional enrichment analysis. Immune cell infiltration was examined using a single-sample gene set enrichment analysis. Cell cycle characteristics and proliferation were assessed using a colony formation assay, flow cytometry, and a cell counting kit-8 assay. Western blots and quantitative reverse transcription PCR analyses were employed to examine CST2 expressions and related genes involved in the cell cycle and the Wnt-ß-catenin signalling pathway. RESULTS: Our findings revealed significant upregulation of CST2 in SOC, and elevated CST2 expression was correlated with advanced clinicopathological characteristics and unfavourable prognoses. Pathway enrichment analysis highlighted the association between the cell cycle and the Wnt signalling pathway. Moreover, increased CST2 levels were positively correlated with immune cell infiltration. Functionally, CST2 played vital roles in promoting cell proliferation, orchestrating the G1-to-S phase transition, and driving malignant SOC progression through activating the Wnt-ß-catenin signalling pathway. CONCLUSIONS: The elevated expression of CST2 may be related to the occurrence and progression of SOC by activating the Wnt-ß-catenin pathway. Additionally, our findings suggest that CST2 is a promising novel biomarker with potential applications in therapeutic, prognostic, and diagnostic strategies for SOC.


Serous ovarian cancer is a type of gynecological malignant tumour with high mortality rates. Understanding this disease is crucial for improving treatments and enhancing patient survival. In our study, we investigated a protein called CST2 and its role in serous ovarian cancer. We found that CST2 levels vary among patients and are associated with the progression of cancer and the prognosis of the patient, which could be valuable for future diagnosis and treatment strategies. However, further research is needed to validate these findings. Despite its limitations, our findings suggest that CST2 holds promise as a potential biomarker for detecting serous ovarian cancer and as a therapeutic target in the management of patients with this type of cancer.


Subject(s)
Cell Cycle , Cell Proliferation , Ovarian Neoplasms , Wnt Signaling Pathway , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Wnt Signaling Pathway/genetics , Cell Proliferation/genetics , Cell Cycle/genetics , Middle Aged , Prognosis , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...