Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.836
Filter
1.
PLoS One ; 19(9): e0307954, 2024.
Article in English | MEDLINE | ID: mdl-39236027

ABSTRACT

BACKGROUND: Rapid proliferation and outgrowth of tumor cells frequently result in localized hypoxia, which has been implicated in the progression of lung cancer. The present study aimed to identify key long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in hypoxia-induced A549 lung cancer cells, and to investigate their potential underlying mechanisms of action. METHODS: High-throughput sequencing was utilized to obtain the expression profiles of lncRNA and mRNA in both hypoxia-induced and normoxia A549 lung cancer cells. Subsequently, a bioinformatics analysis was conducted on the differentially expressed molecules, encompassing functional enrichment analysis, protein-protein interaction (PPI) network analysis, and competitive endogenous RNA (ceRNA) analysis. Finally, the alterations in the expression of key lncRNAs and mRNAs were validated using real-time quantitative PCR (qPCR). RESULTS: In the study, 1155 mRNAs and 215 lncRNAs were identified as differentially expressed between the hypoxia group and the normoxia group. Functional enrichment analysis revealed that the differentially expressed mRNAs were significantly enriched in various pathways, including the p53 signaling pathway, DNA replication, and the cell cycle. Additionally, key lncRNA-miRNA-mRNA relationships, such as RP11-58O9.2-hsa-miR-6749-3p-XRCC2 and SNAP25-AS1-hsa-miR-6749-3p-TENM4, were identified. Notably, the qPCR assay demonstrated that the expression of SNAP25-AS1, RP11-58O9.2, TENM4, and XRCC2 was downregulated in the hypoxia group compared to the normoxia group. Conversely, the expression of LINC01164, VLDLR-AS1, RP11-14I17.2, and CDKN1A was upregulated. CONCLUSION: Our findings suggest a potential involvement of SNAP25-AS1, RP11-58O9.2, TENM4, XRCC2, LINC01164, VLDLR-AS1, RP11-14I17.2, and CDKN1A in the development of hypoxia-induced lung cancer. These key lncRNAs and mRNAs exert their functions through diverse mechanisms, including the competitive endogenous RNA (ceRNA) pathway.


Subject(s)
Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Lung Neoplasms , RNA, Long Noncoding , RNA, Messenger , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , A549 Cells , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Gene Regulatory Networks , Gene Expression Profiling , Protein Interaction Maps/genetics , Computational Biology/methods , Cell Hypoxia/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Sci Rep ; 14(1): 20482, 2024 09 03.
Article in English | MEDLINE | ID: mdl-39227650

ABSTRACT

Lung cancer is the leading cause of cancer-related death globally. Metastasis is the most common reason of mortality in which hypoxia is suggested to have a pivotal role. However, the effect of hypoxia on the metastatic potential and migratory activity of cancer cells is largely unexplored and warrants detailed scientific investigations. Accordingly, we analyzed changes on cell proliferation and migratory activity both in single-cell migration and invasion under normoxic and hypoxic conditions in lung adenocarcinoma cell lines. Alterations in crucial genes and proteins associated with cellular response to hypoxia, epithelial-mesenchymal transition, proliferation and apoptosis were also analyzed. Generally, we observed no change in proliferation upon hypoxic conditions and no detectable induction of apoptosis. Interestingly, we observed that single-cell motility was generally reduced while invasion under confluent conditions using scratch assay was enhanced by hypoxia in most of the cell lines. Furthermore, we detected changes in the expression of EMT markers that are consistent with enhanced motility and metastasis-promoting effect of hypoxia. In summary, our study indicated cell line-, time of exposure- and migrational type-dependent effects of hypoxia in cellular proliferation, motility and gene expression. Our results contribute to better understanding and tackling cancer metastasis.


Subject(s)
Adenocarcinoma of Lung , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Lung Neoplasms , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Cell Line, Tumor , Apoptosis , Cell Hypoxia , Gene Expression Regulation, Neoplastic , A549 Cells
3.
Luminescence ; 39(8): e4854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39103184

ABSTRACT

In this work, a benzofuranone-derived fluorescent probe BFSF was developed for imaging the sulphite level in living hypoxia pulmonary cells. Under the excitation of 510 nm, BFSF showed a strong fluorescence response at 570 nm when reacted with sulphite. In the solution system, the constructed hypercapnia and serious hypercapnia conditions did not affect the fluorescence response. In comparison with the recently reported probes, BFSF suggested the advantages including rapid response, steady signal reporting, high specificity and low cytotoxicity upon living lung cells. Under a normal incubation atmosphere, BFSF realized the imaging of both exogenous and endogenous sulphite in living pulmonary cells. In particular, BFSF achieved imaging the decrease of the sulphite level under severe hypoxia as well as the recovery of the sulphite level with urgent oxygen supplement. With the imaging capability for the sulphite level in living pulmonary cells under hypoxia conditions, BFSF together with the information herein was meaningful for investigating the anaesthesia-related biological indexes.


Subject(s)
Benzofurans , Fluorescent Dyes , Lung , Sulfites , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Benzofurans/chemistry , Benzofurans/chemical synthesis , Sulfites/analysis , Sulfites/chemistry , Lung/diagnostic imaging , Lung/cytology , Humans , Cell Hypoxia , Optical Imaging , Molecular Structure
4.
J Transl Med ; 22(1): 738, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103838

ABSTRACT

BACKGROUND: High levels of lactate are positively associated with prognosis and mortality in pulmonary hypertension (PH). Lactate dehydrogenase A (LDHA) is a key enzyme for the production of lactate. This study is undertaken to investigate the role and molecular mechanisms of lactate and LDHA in PH. METHODS: Lactate levels were measured by a lactate assay kit. LDHA expression and localization were detected by western blot and Immunofluorescence. Proliferation and migration were determined by CCK8, western blot, EdU assay and scratch-wound assay. The right heart catheterization and right heart ultrasound were measured to evaluate cardiopulmonary function. RESULTS: In vitro, we found that lactate promoted proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) in an LDHA-dependent manner. In vivo, we found that LDHA knockdown reduced lactate overaccumulation in the lungs of mice exposed to hypoxia. Furthermore, LDHA knockdown ameliorated hypoxia-induced vascular remodeling and right ventricular dysfunction. In addition, the activation of Akt signaling by hypoxia was suppressed by LDHA knockdown both in vivo and in vitro. The overexpression of Akt reversed the inhibitory effect of LDHA knockdown on proliferation in PASMCs under hypoxia. Finally, LDHA inhibitor attenuated vascular remodeling and right ventricular dysfunction in Sugen/hypoxia mouse PH model, Monocrotaline (MCT)-induced rat PH model and chronic hypoxia-induced mouse PH model. CONCLUSIONS: Thus, LDHA-mediated lactate production promotes pulmonary vascular remodeling in PH by activating Akt signaling pathway, suggesting the potential role of LDHA in regulating the metabolic reprogramming and vascular remodeling in PH.


Subject(s)
Cell Proliferation , Hypertension, Pulmonary , L-Lactate Dehydrogenase , Lactate Dehydrogenase 5 , Lactic Acid , Mice, Inbred C57BL , Pulmonary Artery , Vascular Remodeling , Animals , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Lactate Dehydrogenase 5/metabolism , Male , Lactic Acid/metabolism , L-Lactate Dehydrogenase/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Hypoxia/complications , Hypoxia/metabolism , Signal Transduction , Gene Knockdown Techniques , Mice , Cell Hypoxia , Rats, Sprague-Dawley , Rats , Humans , Lung/pathology , Lung/blood supply
5.
BMC Cardiovasc Disord ; 24(1): 406, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098896

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is a major disease with high morbidity and mortality worldwide. However, existing treatments are far from satisfactory, making the exploration of potent molecular targets more imperative. The E3 ubiquitin ligase RING finger protein 5 (RNF5) has been previously reported to be involved in several diseases by regulating ubiquitination-mediated protein degradation. Nevertheless, few reports have focused on its function in cardiovascular diseases, including MI. METHODS: In this study, we established RNF5 knockout mice through precise CRISPR-mediated genome editing and utilized left anterior descending coronary artery ligation in 9-11-week-old male C57BL/6 mice. Subsequently, serum biochemical analysis and histopathological examination of heart tissues were performed. Furthermore, we engineered adenoviruses for modulating RNF5 expression and subjected neonatal rat cardiomyocytes to oxygen-glucose deprivation (OGD) to mimic ischemic conditions, demonstrating the impact of RNF5 manipulation on cellular viability. Gene and protein expression analysis provided insights into the molecular mechanisms. Statistical methods were rigorously employed to assess the significance of experimental findings. RESULTS: We found RNF5 was downregulated in infarcted heart tissue of mice and NRCMs subjected to OGD treatment. RNF5 knockout in mice resulted in exacerbated heart dysfunction, more severe inflammatory responses, and increased apoptosis after MI surgery. In vitro, RNF5 knockdown exacerbated the OGD-induced decline in cell activity, increased apoptosis, while RNF5 overexpression had the opposite effect. Mechanistically, it was proven that the kinase cascade initiated by apoptosis signal-regulating kinase 1 (ASK1) activation was closely regulated by RNF5 and mediated RNF5's protective function during MI. CONCLUSIONS: We demonstrated the protective effect of RNF5 on myocardial infarction and its function was dependent on inhibiting the activation of ASK1, which adds a new regulatory component to the myocardial infarction associated network and promises to enable new therapeutic strategy.


Subject(s)
Apoptosis , Disease Models, Animal , MAP Kinase Kinase Kinase 5 , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction , Myocytes, Cardiac , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinase 5/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cells, Cultured , Mice , Ventricular Function, Left , Cell Hypoxia , Rats
6.
Anal Cell Pathol (Amst) ; 2024: 8753898, 2024.
Article in English | MEDLINE | ID: mdl-39170930

ABSTRACT

Shock wave therapy (SWT) is a new alternative therapy for patients with severe coronary artery disease that improves myocardial ischemic symptoms by delivering low-energy shock wave stimulation to ischaemic myocardium with low-energy pulsed waves. However, the specific mechanism of its protective effect is not fully understood, especially for the protective mechanism in cardiomyocytes after hypoxia/reoxygenation (H/R). We selected a rat H9c2 cardiomyocyte cell line to establish a stable H/R cardiomyocyte injury model by hypoxia/reoxygenation, and then used SWT for therapeutic intervention to explore its cardiomyocyte protective mechanisms. The results showed that SWT significantly increased cell viability and GSH levels while decreasing LDH levels, ROS levels, and MDA levels. SWT also improved mitochondrial morphology and function of cells after H/R. Meanwhile, we found that SWT could increase the expression of GPX4, xCT, and Bcl-2, while decreasing the expression of Bax and cleaved caspase-3, and inhibiting cardiomyocyte apoptosis and ferroptosis. Moreover, this protective effect of SWT on cardiomyocytes could be significantly reversed by knockdown of xCT, a key regulator protein of ferroptosis. In conclusion, our study shows that SWT can attenuate hypoxia-reoxygenation-induced myocardial injury and protect cardiomyocyte function by inhibiting H/R-induced apoptosis and ferroptosis, and this therapy may have important applications in the treatment of clinical myocardial ischemic diseases.


Subject(s)
Apoptosis , Cell Hypoxia , Ferroptosis , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Animals , Cell Line , Cell Survival/radiation effects , Reactive Oxygen Species/metabolism , Oxygen/metabolism , Extracorporeal Shockwave Therapy/methods , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/therapy , Myocardial Reperfusion Injury/pathology , Mitochondria/metabolism
7.
J Mater Chem B ; 12(33): 8067-8075, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39129477

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is a promising target in cancer therapy. However, poor cellular uptake and off-target toxicity have impeded the clinical translation of a canonical G6PD inhibitor (6-aminonicotinamide/6AN). Here, we report a prodrug strategy to address this issue. The tailored 6AN prodrug contains an azo-bearing protection moiety. The hydrophobic prodrug showed increased cellular uptake than 6AN and was vulnerable to hypoxia, resulting in NAD(P)H quinone dehydrogenase 1 (NQO1)-triggered cleavage of azo bonds. Intriguingly, the prodrug showed configuration-dependent anti-cancer potency. Despite the lower thermodynamic stability, the cis isomer showed enhanced cellular uptake compared to the trans counterpart due to the increased aqueous solubility. Moreover, the boosted potency of the cis isomer compared to the trans isomer arose from the enhancement of NOQ1-catalyzed 6AN release under hypoxia, a hallmark of solid tumors. The discovery of hypoxia-responsive 6AN prodrugs in the current work opens up new avenues for G6PD-targeting cancer medicines.


Subject(s)
6-Aminonicotinamide , Antineoplastic Agents , NADP , Oxidation-Reduction , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Humans , 6-Aminonicotinamide/pharmacology , 6-Aminonicotinamide/chemistry , NADP/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Cell Hypoxia/drug effects , Drug Screening Assays, Antitumor
8.
Nat Commun ; 15(1): 6915, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134530

ABSTRACT

Protein post-translational modifications (PTMs) are crucial for cancer cells to adapt to hypoxia; however, the functional significance of lysine crotonylation (Kcr) in hypoxia remains unclear. Herein we report a quantitative proteomics analysis of global crotonylome under normoxia and hypoxia, and demonstrate 128 Kcr site alterations across 101 proteins in MDA-MB231 cells. Specifically, we observe a significant decrease in K131cr, K156cr and K220cr of phosphoglycerate kinase 1 (PGK1) upon hypoxia. Enoyl-CoA hydratase 1 (ECHS1) is upregulated and interacts with PGK1, leading to the downregulation of PGK1 Kcr under hypoxia. Abolishment of PGK1 Kcr promotes glycolysis and suppresses mitochondrial pyruvate metabolism by activating pyruvate dehydrogenase kinase 1 (PDHK1). A low PGK1 K131cr level is correlated with malignancy and poor prognosis of breast cancer. Our findings show that PGK1 Kcr is a signal in coordinating glycolysis and the tricarboxylic acid (TCA) cycle and may serve as a diagnostic indicator for breast cancer.


Subject(s)
Breast Neoplasms , Citric Acid Cycle , Glycolysis , Phosphoglycerate Kinase , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Humans , Glycolysis/genetics , Cell Line, Tumor , Female , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lysine/metabolism , Protein Processing, Post-Translational , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Down-Regulation , Mice , Proteomics/methods , Mice, Nude , Gene Expression Regulation, Neoplastic , Mitochondria/metabolism , Cell Hypoxia , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
9.
Neuromolecular Med ; 26(1): 35, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179680

ABSTRACT

Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 µM and 1.0 µM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors.


Subject(s)
Cell Hypoxia , Cell Survival , Glucose , Hippocampus , Membrane Potential, Mitochondrial , Vesicular Glutamate Transport Protein 1 , Animals , Glucose/metabolism , Glucose/deficiency , Mice , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 1/biosynthesis , Membrane Potential, Mitochondrial/drug effects , Hippocampus/metabolism , Hippocampus/cytology , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , L-Lactate Dehydrogenase/metabolism , Neurons/metabolism , Neurons/drug effects , Oxygen/metabolism , Cell Line , Glutamic Acid/metabolism , Vesicular Glutamate Transport Protein 2
10.
Sci Rep ; 14(1): 19635, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179631

ABSTRACT

L-type amino acid transporter 1 (LAT1) is upregulated in various cancer types and contributes to disease progression. Previous studies have demonstrated or suggested that hypoxia-inducible factors (HIFs), the key transcription factors in hypoxic responses, control the expression of LAT1 gene in several types of cancer cells. However, this regulatory relationship has not been investigated yet in colorectal cancer (CRC), one of the cancer types in which the increased LAT1 expression holds prognostic significance. In this study, we found that neither LAT1 mRNA nor protein is induced under hypoxic condition (1% O2) in CRC HT-29 cells in vitro, regardless of the prominent HIF-1/2α accumulation and HIFs-dependent upregulation of glucose transporter 1. The hypoxic treatment generally did not increase either the mRNA or protein expression of LAT1 in eight CRC cell lines tested, in contrast to the pronounced upregulation by amino acid restriction. Interestingly, knockdown of von Hippel-Lindau ubiquitin ligase to inhibit the proteasomal degradation of HIFs caused an accumulation of HIF-2α and increased the LAT1 expression in certain CRC cell lines. This study contributes to delineating the molecular mechanisms responsible for the pathological expression of LAT1 in CRC cells, emphasizing the ambiguity of HIFs-dependent transcriptional upregulation of LAT1 across cancer cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit , Large Neutral Amino Acid-Transporter 1 , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , HT29 Cells , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Cell Hypoxia , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
11.
PLoS Comput Biol ; 20(8): e1012357, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39137218

ABSTRACT

The experimental study and transplantation of pancreatic islets requires their isolation from the surrounding tissue, and therefore, from the vasculature. Under these conditions, avascular islets rely on the diffusion of peripheral oxygen and nutrients to comply with the requirements of islet cells while responding to changes in body glucose. As a complement to the experimental work, computational models have been widely used to estimate how avascular islets would be affected by the hypoxic conditions found both in culture and transplant sites. However, previous models have been based on simplified representations of pancreatic islets which has limited the reach of the simulations performed. Aiming to contribute with a more realistic model of avascular human islets, in this work we used architectures of human islets reconstructed from experimental data to simulate the availability of oxygen for α, ß and δ-cells, emulating culture and transplant conditions at different glucose concentrations. The modeling approach proposed allowed us to quantitatively estimate how the loss of cells due to severe hypoxia would impact interactions between islet cells, ultimately segregating the islet into disconnected subnetworks. According to the simulations performed, islet encapsulation, by reducing the oxygen available within the islets, could severely compromise cell viability. Moreover, our model suggests that even without encapsulation, only microislets composed of less than 100 cells would remain viable in oxygenation conditions found in transplant sites. Overall, in this article we delineate a novel modeling methodology to simulate detailed avascular islets in experimental and transplant conditions with potential applications in the field of islet encapsulation.


Subject(s)
Cell Survival , Computer Simulation , Glucose , Islets of Langerhans , Models, Biological , Oxygen , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/blood supply , Oxygen/metabolism , Glucose/metabolism , Cell Survival/physiology , Computational Biology , Islets of Langerhans Transplantation/methods , Cell Hypoxia/physiology
12.
Cell Signal ; 122: 111328, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094672

ABSTRACT

Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.


Subject(s)
Ferroptosis , Signal Transduction , Humans , Animals , Hypoxia/metabolism , Iron/metabolism , Cell Hypoxia
13.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126028

ABSTRACT

Experimental evidence, both in vitro and in vivo, has indicated cardioprotective effects of extracellular vesicles (EVs) derived from various cell types, including induced pluripotent stem cell-derived cardiomyocytes. The biological effects of EV secretion, particularly in the context of ischemia and cardiac electrophysiology, remain to be fully explored. Therefore, the goal of this study was to unveil the effects of exosome (EXO)-mediated cell-cell signaling during hypoxia by employing a simulated preconditioning approach on human-induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs). Electrophysiological activity of hIPSC-CMs was measured using a multielectrode array (MEA) system. A total of 16 h of hypoxic stress drastically increased the beat period. Moreover, hIPSC-CMs preconditioned with EXOs displayed significantly longer beat periods compared with non-treated cells after 16 h of hypoxia (+15.7%, p < 0.05). Furthermore, preconditioning with hypoxic EXOs resulted in faster excitation-contraction (EC) coupling compared with non-treated hIPSC-CMs after 16 h of hypoxia (-25.3%, p < 0.05). Additionally, microRNA (miR) sequencing and gene target prediction analysis of the non-treated and pre-conditioned hIPSC-CMs identified 10 differentially regulated miRs and 44 gene targets. These results shed light on the intricate involvement of miRs, emphasizing gene targets associated with cell survival, contraction, apoptosis, reactive oxygen species (ROS) regulation, and ion channel modulation. Overall, this study demonstrates that EXOs secreted by hIPSC-CM during hypoxia beneficially alter electrophysiological properties in recipient cells exposed to hypoxic stress, which could play a crucial role in the development of targeted interventions to improve outcomes in ischemic heart conditions.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , MicroRNAs , Myocytes, Cardiac , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Hypoxia , Gene Expression Regulation , Electrophysiological Phenomena , Cells, Cultured
14.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126109

ABSTRACT

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have a variety of cardiovascular and renoprotective effects and have been developed as novel agents for the treatment of heart failure. However, the beneficial mechanisms of SGLT2i on cardiac tissue need to be investigated further. In this study, we established a mouse model of acute myocardial infarction (AMI) using coronary artery constriction surgery and investigated the role of dapagliflozin (DAPA) in protecting cardiomyocytes from hypoxic injury induced by AMI. In vitro experiments were done using hypoxic cultured H9c2 ventricular cells to verify this potential mechanism. Expression of the SIRT family and related genes and proteins was verified by qPCR, Western blotting and immunofluorescence staining, and the intrinsic potential mechanism of cardiomyocyte death due to AMI and hypoxia was comprehensively investigated by RNA sequencing. The RNA sequencing results of cardiomyocytes from AMI mice showed that the SIRT family may be mainly involved in the mechanisms of hypoxia-induced cardiomyocyte death. In vitro hypoxia-induced ventricular cells showed the role of dapagliflozin in conferring resistance to hypoxic injury in cardiomyocytes. It showed that SIRT1/3/6 were downregulated in H9c2 cells in a hypoxic environment, and the addition of dapagliflozin significantly increased the gene and protein expression of SIRT1, 3 and 6. We then verified the underlying mechanisms induced by dapagliflozin in hypoxic cardiomyocytes using RNA-seq, and found that dapagliflozin upregulated the hypoxia-induced gene downregulation, which includes ESRRA, EPAS1, AGTRAP, etc., that associated with SIRTs-related and apoptosis-related signaling to prevent H9c2 cell death. This study provides laboratory data for SGLT2i dapagliflozin treatment of AMI and confirms that dapagliflozin can be used to treat hypoxia-induced cellular necrosis in cardiomyocytes, in which SIRT1 and SIRT3 may play an important role. This opens up further opportunities for SGLT2i in the treatment of heart disease.


Subject(s)
Benzhydryl Compounds , Glucosides , Myocardial Infarction , Myocytes, Cardiac , Signal Transduction , Sirtuin 1 , Sodium-Glucose Transporter 2 Inhibitors , Glucosides/pharmacology , Glucosides/therapeutic use , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Signal Transduction/drug effects , Male , Sirtuin 3/metabolism , Sirtuin 3/genetics , Sirtuins/metabolism , Sirtuins/genetics , Cell Line , Mice, Inbred C57BL , Disease Models, Animal , Cell Hypoxia/drug effects , Rats , Apoptosis/drug effects
15.
Eur J Pharmacol ; 981: 176883, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39128809

ABSTRACT

Glaucine is an aporphine alkaloid with anti-inflammatory, bronchodilator and anti-cancer activities. However, the effects of glaucine in the regulation of age-related macular degeneration (AMD) remain unclear. Herein, we aimed to investigate the anti-angiogenetic and anti-inflammatory effects of glaucine in ARPE-19 cells. ARPE-19 cells were treated with N-(methoxyoxoacetyl)-glycine, methyl ester (DMOG) and cobalt chloride (CoCl2) for induction of hypoxia, while lipopolysaccharide (LPS) treatment was used for elicitation of inflammatory response. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The expression of hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by Western blot. The secretion of VEGF, interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was detected using enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were used for tube formation analysis. Expression of HIF-1α and secretion of VEGF were significantly increased under DMOG and CoCl2 induction, whereas glaucine significantly attenuated both HIF-1α expression and VEGF secretion by DMOG- and CoCl2-induced ARPE-19 cells. In addition, glaucine suppressed the tube formation by DMOG- and CoCl2-induced HUVEC cells. Moreover, glaucine also attenuated the production of IL-6 and MCP-1 by LPS-induced ARPE-19 cells. This study indicated that glaucine exhibited anti-angiogenic and anti-inflammatory effects, suggesting that glaucine might have benefits for the treatment of AMD.


Subject(s)
Aporphines , Cell Survival , Hypoxia-Inducible Factor 1, alpha Subunit , Lipopolysaccharides , Retinal Pigment Epithelium , Vascular Endothelial Growth Factor A , Humans , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/pathology , Vascular Endothelial Growth Factor A/metabolism , Cell Line , Cell Survival/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Aporphines/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Cell Hypoxia/drug effects , Neovascularization, Pathologic/drug therapy , Anti-Inflammatory Agents/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis Inhibitors/pharmacology , Cobalt/toxicity , Cobalt/pharmacology , Chemokine CCL2/metabolism , Angiogenesis
16.
J Cell Mol Med ; 28(16): e70008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39153195

ABSTRACT

Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 µM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.


Subject(s)
Brain , Cell Survival , Endothelial Cells , Glucose , Oxygen , Reactive Oxygen Species , Stilbenes , Stilbenes/pharmacology , Animals , Glucose/metabolism , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Reactive Oxygen Species/metabolism , Oxygen/metabolism , Cell Line , Brain/metabolism , Brain/drug effects , Brain/pathology , Cell Survival/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Oxidative Stress/drug effects , Cytokines/metabolism , Signal Transduction/drug effects , Cell Hypoxia/drug effects
17.
Int J Nanomedicine ; 19: 8211-8236, 2024.
Article in English | MEDLINE | ID: mdl-39157736

ABSTRACT

Hypoxia, as a prominent feature of the tumor microenvironment, has a profound impact on the multicomponent changes within this environment. Under hypoxic conditions, the malignant phenotype of tumor cells, the variety of cell types within the tumor microenvironment, as well as intercellular communication and material exchange, undergo complex alterations. These changes provide significant prospects for exploring the mechanisms of tumor development under different microenvironmental conditions and for devising therapeutic strategies. Exosomes secreted by tumor cells and stromal cells are integral components of the tumor microenvironment, serving as crucial mediators of intercellular communication and material exchange, and have consequently garnered increasing attention from researchers. This review focuses on the mechanisms by which hypoxic conditions promote the release of exosomes by tumor cells and alter their encapsulated contents. It also examines the effects of exosomes derived from tumor cells, immune cells, and other cell types under hypoxic conditions on the tumor microenvironment. Additionally, we summarize current research progress on the potential clinical applications of exosomes under hypoxic conditions and propose future research directions in this field.


Subject(s)
Cell Communication , Exosomes , Neoplasms , Tumor Microenvironment , Exosomes/metabolism , Humans , Cell Communication/physiology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Cell Hypoxia/physiology , Tumor Hypoxia , Hypoxia/metabolism
18.
Sci Rep ; 14(1): 20124, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209907

ABSTRACT

Tibetan pigs are a unique swine strain adapted to the hypoxic environment of the plateau regions in China. The unique mechanisms underlying the adaption by Tibetan pigs, however, are still elusive. Only few studies have investigated hypoxia-associated molecular regulation in the lung tissues of animals living in the plateau region of China. Our previous study reported that ssc-miR-101-3p expression significantly differed in the lung tissues of Tibetan pigs at different altitudes, suggesting that ssc-miR-101-3p plays an important role in the adaptation of Tibetan pigs to high altitude. To understand the underlying molecular mechanism, in this study, the target genes of ssc-miR-101-3p and their functions were analyzed via various methods including qRT-PCR and GO and KEGG pathway enrichment analyses. The action of ssc-miR-101-3p was investigated by culturing alveolar type-II epithelial cells (ATII) of Tibetan pigs under hypoxic conditions and transfecting ATII cells with vectors overexpressing or inhibiting ssc-miR-101-3p. Overexpression of ssc-miR-101-3p significantly increased the proliferation of ATII cells and decreased the expression of inflammatory and apoptotic factors. The target genes of ssc-miR-101-3p were significantly enriched in FOXO and PI3K-AKT signaling pathways required to mitigate lung injury. Further, FOXO3 was identified as a direct target of ssc-miR-101-3p. Interestingly, ssc-miR-101-3p overexpression reversed the damaging effect of FOXO3 in the ATII cells. In conclusion, ssc-miR-101-3p targeting FOXO3 could inhibit hypoxia-induced apoptosis and inflammatory response in ATII cells of Tibetan pigs. These results provided new insights into the molecular mechanisms elucidating the response of lung tissues of Tibetan pigs to hypoxic stress.


Subject(s)
Alveolar Epithelial Cells , Apoptosis , Forkhead Box Protein O3 , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Swine , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Alveolar Epithelial Cells/metabolism , Hypoxia/metabolism , Hypoxia/genetics , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Tibet , Cell Hypoxia , Signal Transduction , Gene Expression Regulation , Cell Proliferation
19.
Biomolecules ; 14(8)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39199411

ABSTRACT

M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.


Subject(s)
Liver Neoplasms , Macrophages , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Humans , Macrophages/metabolism , Macrophages/immunology , Hep G2 Cells , Cell Hypoxia , Glucose/metabolism , Culture Media, Conditioned/pharmacology , Cell Line, Tumor , Hydrogen-Ion Concentration , Arginase/metabolism , Cell Survival
20.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39201485

ABSTRACT

Oxygen conditions in the lung determine downstream organ functionality by setting the partial pressure of oxygen, regulating the redox homeostasis and by activating mediators in the lung that can be propagated in the blood stream. Examples for such mediators are secreted soluble or vesicle-bound molecules (proteins and nucleic acids) that can be taken up by remote target cells impacting their metabolism and signaling pathways. MicroRNAs (miRNAs) have gained significant interest as intercellular communicators, biomarkers and therapeutic targets in this context. Due to their high stability in the blood stream, they have also been attributed a role as "memory molecules" that are able to modulate gene expression upon repeated (stress) exposures. In this study, we aimed to identify and quantify released miRNAs from lung microvascular endothelial cells in response to different oxygen conditions. We combined next-generation sequencing (NGS) of secreted miRNAs and cellular mRNA sequencing with bioinformatic analyses in order to delineate molecular events on the cellular and extracellular level and their putative interdependence. We show that the identified miRNA networks have the potential to co-mediate some of the molecular events, that have been observed in the context of hypoxia, hyperoxia, intermittent hypoxia and intermittent hypoxia/hyperoxia.


Subject(s)
Endothelial Cells , Lung , MicroRNAs , Oxygen , Humans , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxygen/metabolism , Lung/metabolism , Lung/blood supply , Pilot Projects , High-Throughput Nucleotide Sequencing , Microvessels/metabolism , Microvessels/cytology , Cell Hypoxia/genetics , Gene Expression Profiling/methods , Gene Expression Regulation
SELECTION OF CITATIONS
SEARCH DETAIL