Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.312
Filter
1.
Commun Biol ; 7(1): 773, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937521

ABSTRACT

Distinct Natural Killer (NK)-like CD57+ and PD-1+ CD8+ exhausted-like T cell populations (Tex) have both been linked to beneficial immunotherapy response in autoimmune type 1 diabetes (T1D) patients. The origins and relationships between these cell types are poorly understood. Here we show that while PD-1+ and CD57+ Tex populations are epigenetically similar, CD57+ Tex cells display unique increased chromatin accessibility of inhibitory Killer Cell Immunoglobulin-like Receptor (iKIR) and other NK cell genes. PD-1+ and CD57+ Tex also show reciprocal expression of Inhibitory Receptors (IRs) and iKIRs accompanied by chromatin accessibility of Tcf1 and Tbet transcription factor target sites, respectively. CD57+ Tex show unappreciated gene expression heterogeneity and share clonal relationships with PD-1+ Tex, with these cells differentiating along four interconnected lineage trajectories: Tex-PD-1+, Tex-CD57+, Tex-Branching, and Tex-Fluid. Our findings demonstrate new relationships between Tex-like populations in human autoimmune disease and suggest that modulating common precursor populations may enhance response to autoimmune disease treatment.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Killer Cells, Natural , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , CD57 Antigens/metabolism , Cell Lineage/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Female , Male , Adult
2.
Bioinformatics ; 40(Supplement_1): i218-i227, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940122

ABSTRACT

MOTIVATION: Eukaryotic cells contain organelles called mitochondria that have their own genome. Most cells contain thousands of mitochondria which replicate, even in nondividing cells, by means of a relatively error-prone process resulting in somatic mutations in their genome. Because of the higher mutation rate compared to the nuclear genome, mitochondrial mutations have been used to track cellular lineage, particularly using single-cell sequencing that measures mitochondrial mutations in individual cells. However, existing methods to infer the cell lineage tree from mitochondrial mutations do not model "heteroplasmy," which is the presence of multiple mitochondrial clones with distinct sets of mutations in an individual cell. Single-cell sequencing data thus provide a mixture of the mitochondrial clones in individual cells, with the ancestral relationships between these clones described by a mitochondrial clone tree. While deconvolution of somatic mutations from a mixture of evolutionarily related genomes has been extensively studied in the context of bulk sequencing of cancer tumor samples, the problem of mitochondrial deconvolution has the additional constraint that the mitochondrial clone tree must be concordant with the cell lineage tree. RESULTS: We formalize the problem of inferring a concordant pair of a mitochondrial clone tree and a cell lineage tree from single-cell sequencing data as the Nested Perfect Phylogeny Mixture (NPPM) problem. We derive a combinatorial characterization of the solutions to the NPPM problem, and formulate an algorithm, MERLIN, to solve this problem exactly using a mixed integer linear program. We show on simulated data that MERLIN outperforms existing methods that do not model mitochondrial heteroplasmy nor the concordance between the mitochondrial clone tree and the cell lineage tree. We use MERLIN to analyze single-cell whole-genome sequencing data of 5220 cells of a gastric cancer cell line and show that MERLIN infers a more biologically plausible cell lineage tree and mitochondrial clone tree compared to existing methods. AVAILABILITY AND IMPLEMENTATION: https://github.com/raphael-group/MERLIN.


Subject(s)
Cell Lineage , Mitochondria , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Cell Lineage/genetics , Mitochondria/genetics , Mutation , Genome, Mitochondrial , Algorithms , Evolution, Molecular
3.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920678

ABSTRACT

Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.


Subject(s)
Cell Differentiation , Heart , Homeostasis , Myocytes, Cardiac , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Heart/embryology , Heart/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Gene Expression Regulation, Developmental , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cell Lineage/genetics , Organogenesis/genetics
4.
Cells ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38920701

ABSTRACT

While the transcription factor GATA-3 is well-established for its crucial role in T cell development, its specific influence on invariant natural killer T (iNKT) cells remains relatively unexplored. Using flow cytometry and single-cell transcriptomic analysis, we demonstrated that GATA-3 deficiency in mice leads to the absence of iNKT2 and iNKT17 cell subsets, as well as an altered distribution of iNKT1 cells. Thymic iNKT cells lacking GATA-3 exhibited diminished expression of PLZF and T-bet, key transcription factors involved in iNKT cell differentiation, and reduced production of Th2, Th17, and cytotoxic effector molecules. Single-cell transcriptomics revealed a comprehensive absence of iNKT17 cells, a substantial reduction in iNKT2 cells, and an increase in iNKT1 cells in GATA-3-deficient thymi. Differential expression analysis highlighted the regulatory role of GATA-3 in T cell activation signaling and altered expression of genes critical for iNKT cell differentiation, such as Icos, Cd127, Eomes, and Zbtb16. Notably, restoration of Icos, but not Cd127, expression could rescue iNKT cell development in GATA-3-deficient mice. In conclusion, our study demonstrates the pivotal role of GATA-3 in orchestrating iNKT cell effector lineage differentiation through the regulation of T cell activation pathways and Icos expression, providing insights into the molecular mechanisms governing iNKT cell development and function.


Subject(s)
Cell Differentiation , Cell Lineage , GATA3 Transcription Factor , Natural Killer T-Cells , Animals , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Cell Differentiation/genetics , Mice , Cell Lineage/genetics , Mice, Inbred C57BL , RNA-Seq , Single-Cell Analysis , Mice, Knockout , Single-Cell Gene Expression Analysis
5.
PLoS Genet ; 20(6): e1010935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875306

ABSTRACT

Gene regulatory networks that act upstream of skeletal muscle fate determinants are distinct in different anatomical locations. Despite recent efforts, a clear understanding of the cascade of events underlying the emergence and maintenance of the stem cell pool in specific muscle groups remains unresolved and debated. Here, we invalidated Pitx2 with multiple Cre-driver mice prenatally, postnatally, and during lineage progression. We showed that this gene becomes progressively dispensable for specification and maintenance of the muscle stem (MuSC) cell pool in extraocular muscles (EOMs) despite being, together with Myf5, a major upstream regulator during early development. Moreover, constitutive inactivation of Pax7 postnatally led to a greater loss of MuSCs in the EOMs compared to the limb. Thus, we propose a relay between Pitx2, Myf5 and Pax7 for EOM stem cell maintenance. We demonstrate also that MuSCs in the EOMs adopt a quiescent state earlier that those in limb muscles and do not spontaneously proliferate in the adult, yet EOMs have a significantly higher content of Pax7+ MuSCs per area pre- and post-natally. Finally, while limb MuSCs proliferate in the mdx mouse model for Duchenne muscular dystrophy, significantly less MuSCs were present in the EOMs of the mdx mouse model compared to controls, and they were not proliferative. Overall, our study provides a comprehensive in vivo characterisation of MuSC heterogeneity along the body axis and brings further insights into the unusual sparing of EOMs during muscular dystrophy.


Subject(s)
Homeobox Protein PITX2 , Homeodomain Proteins , Myogenic Regulatory Factor 5 , Oculomotor Muscles , PAX7 Transcription Factor , Transcription Factors , Animals , Humans , Mice , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice, Inbred mdx , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Oculomotor Muscles/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Cell Mol Life Sci ; 81(1): 270, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886218

ABSTRACT

Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.


Subject(s)
Cell Differentiation , DNA Methylation , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Trophoblasts , Female , Humans , Pregnancy , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/cytology
7.
Cell Rep ; 43(6): 114309, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38848215

ABSTRACT

Glioblastomas are the most common malignant brain tumors in adults; they are highly aggressive and heterogeneous and show a high degree of plasticity. Here, we show that methyltransferase-like 7B (METTL7B) is an essential regulator of lineage specification in glioblastoma, with an impact on both tumor size and invasiveness. Single-cell transcriptomic analysis of these tumors and of cerebral organoids derived from expanded potential stem cells overexpressing METTL7B reveal a regulatory role for the gene in the neural stem cell-to-astrocyte differentiation trajectory. Mechanistically, METTL7B downregulates the expression of key neuronal differentiation players, including SALL2, via post-translational modifications of histone marks.


Subject(s)
Cell Differentiation , Cell Lineage , Glioblastoma , Methyltransferases , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Cell Lineage/genetics , Animals , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Cell Line, Tumor , Astrocytes/metabolism , Astrocytes/pathology , Organoids/metabolism , Organoids/pathology
8.
Nat Commun ; 15(1): 4914, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851846

ABSTRACT

FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.


Subject(s)
Cell Lineage , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-beta , Prostatic Neoplasms , Transcription Factor AP-1 , Male , Humans , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Cell Line, Tumor , Cell Lineage/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , Chromatin/metabolism , Chromatin/genetics , Cell Plasticity/genetics , Cellular Reprogramming/genetics , Mice , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-jun/genetics , Enhancer Elements, Genetic/genetics , Transcription, Genetic
9.
Sci Adv ; 10(25): eado1583, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905335

ABSTRACT

Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Neuroblastoma , Zebrafish , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Animals , Humans , Mice , Zebrafish/genetics , Cell Line, Tumor , Cell Lineage/genetics , Neural Crest/metabolism , Neural Crest/pathology , Schwann Cells/metabolism , Schwann Cells/pathology
10.
Adv Exp Med Biol ; 1441: 103-124, 2024.
Article in English | MEDLINE | ID: mdl-38884707

ABSTRACT

The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.


Subject(s)
Cell Lineage , Animals , Humans , Cell Differentiation/genetics , Cell Lineage/genetics , Heart/physiology , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Signal Transduction , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/physiology
11.
Nat Commun ; 15(1): 4963, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862535

ABSTRACT

Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.


Subject(s)
Luminescent Proteins , Mice, Knockout , Red Fluorescent Protein , SOXB1 Transcription Factors , Animals , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Mice , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mosaicism , Cell Differentiation , Cell Proliferation/genetics , Esophagus/metabolism , Esophagus/pathology , Cell Lineage/genetics , Introns/genetics , Female , Male
12.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838155

ABSTRACT

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
13.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691188

ABSTRACT

Analysis of single cell transcriptomics (scRNA-seq) data is typically performed after subsetting to highly variable genes (HVGs). Here, we show that Entropy Sorting provides an alternative mathematical framework for feature selection. On synthetic datasets, continuous Entropy Sort Feature Weighting (cESFW) outperforms HVG selection in distinguishing cell-state-specific genes. We apply cESFW to six merged scRNA-seq datasets spanning human early embryo development. Without smoothing or augmenting the raw counts matrices, cESFW generates a high-resolution embedding displaying coherent developmental progression from eight-cell to post-implantation stages and delineating 15 distinct cell states. The embedding highlights sequential lineage decisions during blastocyst development, while unsupervised clustering identifies branch point populations obscured in previous analyses. The first branching region, where morula cells become specified for inner cell mass or trophectoderm, includes cells previously asserted to lack a developmental trajectory. We quantify the relatedness of different pluripotent stem cell cultures to distinct embryo cell types and identify marker genes of naïve and primed pluripotency. Finally, by revealing genes with dynamic lineage-specific expression, we provide markers for staging progression from morula to blastocyst.


Subject(s)
Cell Lineage , Embryo, Mammalian , Embryonic Development , Entropy , Single-Cell Analysis , Transcriptome , Humans , Transcriptome/genetics , Single-Cell Analysis/methods , Embryonic Development/genetics , Embryo, Mammalian/metabolism , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Blastocyst/metabolism , Blastocyst/cytology , Gene Expression Profiling , Morula/metabolism , Morula/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
14.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38804879

ABSTRACT

Dorsal interneurons (dIs) in the spinal cord encode the perception of touch, pain, heat, itchiness and proprioception. Previous studies using genetic strategies in animal models have revealed important insights into dI development, but the molecular details of how dIs arise as distinct populations of neurons remain incomplete. We have developed a resource to investigate dI fate specification by combining a single-cell RNA-Seq atlas of mouse embryonic stem cell-derived dIs with pseudotime analyses. To validate this in silico resource as a useful tool, we used it to first identify genes that are candidates for directing the transition states that lead to distinct dI lineage trajectories, and then validated them using in situ hybridization analyses in the developing mouse spinal cord in vivo. We have also identified an endpoint of the dI5 lineage trajectory and found that dIs become more transcriptionally homogeneous during terminal differentiation. This study introduces a valuable tool for further discovery about the timing of gene expression during dI differentiation and demonstrates its utility in clarifying dI lineage relationships.


Subject(s)
Cell Differentiation , Cell Lineage , Gene Expression Regulation, Developmental , Interneurons , Spinal Cord , Animals , Mice , Spinal Cord/metabolism , Spinal Cord/embryology , Cell Lineage/genetics , Interneurons/metabolism , Interneurons/cytology , Cell Differentiation/genetics , Single-Cell Analysis , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , RNA-Seq
15.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722217

ABSTRACT

Animal evolution is influenced by the emergence of new cell types, yet our understanding of this process remains elusive. This prompts the need for a broader exploration across diverse research organisms, facilitated by recent breakthroughs, such as gene editing tools and single-cell genomics. Essential to our understanding of cell type evolution is the accurate identification of homologous cells. We delve into the significance of considering developmental ontogeny and potential pitfalls when drawing conclusions about cell type homology. Additionally, we highlight recent discoveries in the study of cell type evolution through the application of single-cell transcriptomics and pinpoint areas ripe for further exploration.


Subject(s)
Biological Evolution , Single-Cell Analysis , Animals , Single-Cell Analysis/methods , Humans , Cell Lineage/genetics , Transcriptome/genetics , Genomics , Gene Editing
16.
Nat Commun ; 15(1): 4200, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760342

ABSTRACT

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Differentiation , Extracellular Matrix , Germ Cells , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Extracellular Matrix/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Cell Differentiation/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Signal Transduction , Cell Lineage/genetics , Oocytes/metabolism , Oocytes/cytology
17.
BMC Genomics ; 25(1): 464, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741085

ABSTRACT

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Subject(s)
Cell Lineage , Chromatin , Gonads , SOX9 Transcription Factor , Single-Cell Analysis , Animals , Chromatin/metabolism , Chromatin/genetics , Mice , Cell Lineage/genetics , Female , Male , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Gonads/metabolism , Gonads/cytology , Gonads/embryology , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Testis/metabolism , Testis/cytology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Ovary/metabolism , Ovary/cytology
18.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38804528

ABSTRACT

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Subject(s)
Cell Lineage , Cell Polarity , Ear, Inner , Homeodomain Proteins , Mice, Transgenic , Transcription Factors , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice , Cell Lineage/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Ear, Inner/metabolism , Ear, Inner/embryology , Ear, Inner/cytology , Cell Polarity/genetics , Saccule and Utricle/cytology , Saccule and Utricle/metabolism , Saccule and Utricle/embryology , Gene Expression Regulation, Developmental , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/cytology
19.
Sci Rep ; 14(1): 11688, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778150

ABSTRACT

Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.


Subject(s)
Data Mining , Prostatic Neoplasms , Signal Transduction , Transcription Factors , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , ras Proteins/genetics , ras Proteins/metabolism , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Gene Regulatory Networks , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Cell Lineage/genetics
20.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731966

ABSTRACT

Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.


Subject(s)
Cell Proliferation , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , K562 Cells , Apoptosis , Secretome/metabolism , Middle Aged , Female , Male , Bone Marrow Cells/metabolism , Cell Lineage/genetics , Cell Survival , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...