Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.114
Filter
1.
Methods Mol Biol ; 2848: 105-116, 2025.
Article in English | MEDLINE | ID: mdl-39240519

ABSTRACT

The generation of quality data from a single-nucleus profiling experiment requires nuclei to be isolated from tissues in a gentle and efficient manner. Nuclei isolation must be carefully optimized across tissue types to preserve nuclear architecture, prevent nucleic acid degradation, and remove unwanted contaminants. Here, we present an optimized workflow for generating a single-nucleus suspension from ocular tissues of the embryonic chicken that is compatible with various downstream workflows. The described protocol enables the rapid isolation of a high yield of aggregate-free nuclei from the embryonic chicken eye without compromising nucleic acid integrity, and the nuclei suspension is compatible with single-nucleus RNA and ATAC sequencing. We detail several stopping points, either via cryopreservation or fixation, to enhance workflow adaptability. Further, we provide a guide through multiple QC points and demonstrate proof-of-principle using two commercially available kits. Finally, we demonstrate that existing in silico genotyping methods can be adopted to computationally derive biological replicates from a single pool of chicken nuclei, greatly reducing the cost of biological replication and allowing researchers to consider sex as a variable during analysis. Together, this tutorial represents a cost-effective, simple, and effective approach to single-nucleus profiling of embryonic chicken eye tissues and is likely to be easily modified to be compatible with similar tissue types.


Subject(s)
Cell Nucleus , Chickens , Single-Cell Analysis , Animals , Cell Nucleus/metabolism , Cell Nucleus/genetics , Chick Embryo , Single-Cell Analysis/methods , Eye/embryology , Eye/metabolism , Cryopreservation/methods , Chromatin Immunoprecipitation Sequencing/methods
2.
Nucleus ; 15(1): 2400525, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39377317

ABSTRACT

Cytogenetic bands reflect genomic organization in large blocks of DNA with similar properties. Because banding patterns are invariant, this organization may often be assumed unimportant for genome regulation. Results here challenge that view. Findings here suggest cytogenetic bands reflect a visible framework upon which regulated genome architecture is built. Given Alu and L1 densities differ in cytogenetic bands, we examined their distribution after X-chromosome inactivation or formation of senescent-associated heterochromatin foci (SAHFs). Alu-rich regions remain outside both SAHFs and the Barr Body (BB), affirming that the BB is not the whole chromosome but a condensed, L1-rich core. Hi-C analysis of senescent cells demonstrates large (~10 Mb) G-bands remodel as a contiguous unit, gaining distal intrachromosomal interactions as syntenic G-bands coalesce into SAHFs. Striking peaks of Alu within R-bands strongly resist condensation. Thus, large-scale segmental genome architectur relates to dark versus light cytogenetic bands and Alu-peaks, implicating both in chromatin regulation.


Subject(s)
Alu Elements , Alu Elements/genetics , Humans , Heterochromatin/metabolism , Heterochromatin/genetics , Genome, Human/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism
3.
Mol Cell ; 84(19): 3572-3573, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39366343

ABSTRACT

In this issue of Molecular Cell, Tang et al. suggest that m6A deposition is predominantly post-transcriptional.1 They further propose that nuclear dwell time dictates the post-transcriptional accumulation of m6A. These findings have important implications for m6A biogenesis and function.


Subject(s)
Adenosine , Humans , Adenosine/metabolism , Adenosine/analogs & derivatives , Cell Nucleus/metabolism , Cell Nucleus/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA, Messenger/genetics , Animals , Time Factors
4.
Mol Cell ; 84(19): 3644-3655, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39366352

ABSTRACT

Mammalian genomes produce an abundance of short RNA. This is, to a large extent, due to the genome-wide and spurious activity of RNA polymerase II (RNAPII). However, it is also because the vast majority of initiating RNAPII, regardless of the transcribed DNA unit, terminates within a ∼3-kb early "pausing zone." Given that the resultant RNAs constitute both functional and non-functional species, their proper sorting is critical. One way to think about such quality control (QC) is that transcripts, from their first emergence, are relentlessly targeted by decay factors, which may only be avoided by engaging protective processing pathways. In a molecular materialization of this concept, recent progress has found that both "destructive" and "productive" RNA effectors assemble at the 5' end of capped RNA, orchestrated by the essential arsenite resistance protein 2 (ARS2) protein. Based on this principle, we here discuss early QC mechanisms and how these might sort short RNAs to their final fates.


Subject(s)
RNA Polymerase II , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Humans , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Transcription, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability , Active Transport, Cell Nucleus , RNA Caps/metabolism , RNA Caps/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Nuclear Proteins
5.
Mol Cell ; 84(19): 3681-3691, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39366354

ABSTRACT

Nuclear messenger RNA (mRNA) export is vital for cell survival under both physiological and stress conditions. To cope with stress, cells block bulk mRNA export while selectively exporting stress-specific mRNAs. Under physiological conditions, nuclear adaptor proteins recruit the mRNA exporter to the mRNA for export. By contrast, during stress conditions, the mRNA exporter is likely directly recruited to stress-specific mRNAs at their transcription sites to facilitate selective mRNA export. In this review, we summarize our current understanding of nuclear mRNA export. Importantly, we explore insights into the mechanisms that block bulk mRNA export and facilitate transcript-specific mRNA export under stress, highlighting the gaps that still need to be filled.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleus , RNA Transport , RNA, Messenger , Stress, Physiological , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans , Cell Nucleus/metabolism , Cell Nucleus/genetics , Animals , Nucleocytoplasmic Transport Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Cell Survival
6.
Plant Cell Rep ; 43(11): 255, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375198

ABSTRACT

KEY MESSAGE: Fluorescence in situ hybridization with frozen sections of root tips showed difference of chromosome territories distribution between autosome and sex-chromosome homologous pairs in Populus trichocarpa. The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biologic processes. Three-dimensional fluorescence in situ hybridization (3D-FISH) is a powerful tool for analyzing CTs, but its application in plants is limited. In this study, we established a 3D-FISH technique using frozen sections of Populus trichocarpa root tips, which was an improvement over the use of paraffin sections and enabled us to acquire good FISH signals. Using chromosome-specific oligo probes, we were able to analyze CTs in interphase nuclei in three dimensions. The distribution of chromosome pairs 17 and 19 in the 3D-preserved nuclei of P. trichocarpa root tip cells were analyzed and showed that the autosome pair 17 associated more often than sex chromosome 19. This research lays a foundation for further study of the spatial position of chromosomes in the nucleus and the relationship between gene expression and spatial localization of chromosomes in poplar.


Subject(s)
Chromosomes, Plant , In Situ Hybridization, Fluorescence , Populus , Populus/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence/methods , Frozen Sections , Cell Nucleus/genetics , Meristem/genetics , Interphase/genetics
7.
Genet Sel Evol ; 56(1): 64, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285356

ABSTRACT

BACKGROUND: The integration of nuclear mitochondrial DNA (mtDNA) into the mammalian genomes is an ongoing, yet rare evolutionary process that produces nuclear sequences of mitochondrial origin (NUMT). In this study, we identified and analysed NUMT inserted into the pig (Sus scrofa) genome and in the genomes of a few other Suinae species. First, we constructed a comparative distribution map of NUMT in the Sscrofa11.1 reference genome and in 22 other assembled S. scrofa genomes (from Asian and European pig breeds and populations), as well as the assembled genomes of the Visayan warty pig (Sus cebifrons) and warthog (Phacochoerus africanus). We then analysed a total of 485 whole genome sequencing datasets, from different breeds, populations, or Sus species, to discover polymorphic NUMT (inserted/deleted in the pig genome). The insertion age was inferred based on the presence or absence of orthologous NUMT in the genomes of different species, taking into account their evolutionary divergence. Additionally, the age of the NUMT was calculated based on sequence degradation compared to the authentic mtDNA sequence. We also validated a selected set of representative NUMT via PCR amplification. RESULTS: We have constructed an atlas of 418 NUMT regions, 70 of which were not present in any assembled genomes. We identified ancient NUMT regions (older than 55 million years ago, Mya) and NUMT that appeared at different time points along the Suinae evolutionary lineage. We identified very recent polymorphic NUMT (private to S. scrofa, with < 1 Mya), and more ancient polymorphic NUMT (3.5-10 Mya) present in various Sus species. These latest polymorphic NUMT regions, which segregate in European and Asian pig breeds and populations, are likely the results of interspecies admixture within the Sus genus. CONCLUSIONS: This study provided a first comprehensive analysis of NUMT present in the Sus scrofa genome, comparing them to NUMT found in other species within the order Cetartiodactyla. The NUMT-based evolutionary window that we reconstructed from NUMT integration ages could be useful to better understand the micro-evolutionary events that shaped the modern pig genome and enriched the genetic diversity of this species.


Subject(s)
DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Sus scrofa/genetics , Genome , Cell Nucleus/genetics , Evolution, Molecular , Phylogeny , Swine/genetics
8.
RNA Biol ; 21(1): 1-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39257052

ABSTRACT

CircRNAs are an important class of RNAs with diverse cellular functions in human physiology and disease. A thorough knowledge of circRNAs including their biogenesis and subcellular distribution is important to understand their roles in a wide variety of processes. However, the analysis of circRNAs from total RNA sequencing data remains challenging. Therefore, we developed Calcifer, a versatile workflow for circRNA annotation. Using Calcifer, we analysed APEX-Seq data to compare circRNA occurrence between whole cells, nucleus and subnuclear compartments. We generally find that circRNAs show higher abundance in whole cells compared to nuclear samples, consistent with their accumulation in the cytoplasm. The notable exception is the single-exon circRNA circCANX(9), which is unexpectedly enriched in the nucleus. In addition, we observe that circFIRRE prevails over the linear lncRNA FIRRE in both the cytoplasm and the nucleus. Zooming in on the subnuclear compartments, we show that circRNAs are strongly depleted from nuclear speckles, indicating that excess splicing factors in this compartment counteract back-splicing. Our results thereby provide valuable insights into the subnuclear distribution of circRNAs. Regarding circRNA function, we surprisingly find that the majority of all detected circRNAs possess complete open reading frames with potential for cap-independent translation. Overall, we show that Calcifer is an easy-to-use, versatile and sustainable workflow for the annotation of circRNAs which expands the repertoire of circRNA tools and allows to gain new insights into circRNA distribution and function.


Subject(s)
Cell Nucleus , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Cell Nucleus/metabolism , Cell Nucleus/genetics , Cytoplasm/metabolism , Cytoplasm/genetics , Open Reading Frames , Molecular Sequence Annotation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA Splicing , Computational Biology/methods , Sequence Analysis, RNA
9.
Nat Commun ; 15(1): 7653, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227600

ABSTRACT

In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA ( >10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.


Subject(s)
DNA, Mitochondrial , Genomic Instability , Retroelements , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Retroelements/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , DNA End-Joining Repair , DNA Breaks, Double-Stranded , Meiosis/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics
10.
BMC Res Notes ; 17(1): 267, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285281

ABSTRACT

Thus far, multiple techniques for single cell analysis have been developed, yet we lack a relatively simple tool to assess DNA and RNA from the same cell at whole-transcriptome and whole-genome depths. Here we present an updated method for physical separation of cytoplasmic RNA from the nuclei, which allows for simultaneous studies of DNA and RNA from the same single cell. The method consists of three steps-(1) immobilization of a single cell on solid substrate, (2) hypotonic lysis of immobilized single cell, and (3) separation of cytosol containing aqueous phase and immobilized nucleus. We found that DNA and RNA extracted from single cell using our approach is suitable for downstream sequencing-based applications. We demonstrated that the coverage of transcriptome and genome sequencing data obtained after DNA/RNA separation is similar to that observed without separation. We also showed that the separation procedure does not create any noticeable bias in observed mutational load or mutation spectra. Thus, our method can serve as a tool for simultaneous complex analysis of the genome and transcriptome, providing necessary information on the relationship between somatic mutations and the regulation of gene expression.


Subject(s)
Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Transcriptome/genetics , Humans , RNA/genetics , DNA/genetics , Mutation , Genome, Human , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Expression Profiling/methods
11.
PLoS One ; 19(9): e0309397, 2024.
Article in English | MEDLINE | ID: mdl-39325796

ABSTRACT

The catfish industry is the largest sector of U.S. aquaculture production. Given its role in food production, the catfish immune response to industry-relevant pathogens has been extensively studied and has provided crucial information on innate and adaptive immune function during disease progression. To further examine the channel catfish immune system, we performed single-cell RNA sequencing on nuclei isolated from whole spleens, a major lymphoid organ in teleost fish. Libraries were prepared using the 10X Genomics Chromium X with the Next GEM Single Cell 3' reagents and sequenced on an Illumina sequencer. Each demultiplexed sample was aligned to the Coco_2.0 channel catfish reference assembly, filtered, and counted to generate feature-barcode matrices. From whole spleen samples, outputs were analyzed both individually and as an integrated dataset. The three splenic transcriptome libraries generated an average of 278,717,872 reads from a mean 8,157 cells. The integrated data included 19,613 cells, counts for 20,121 genes, with a median 665 genes/cell. Cluster analysis of all cells identified 17 clusters which were classified as erythroid, hematopoietic stem cells, B cells, T cells, myeloid cells, and endothelial cells. Subcluster analysis was carried out on the immune cell populations. Here, distinct subclusters such as immature B cells, mature B cells, plasma cells, γδ T cells, dendritic cells, and macrophages were further identified. Differential gene expression analyses allowed for the identification of the most highly expressed genes for each cluster and subcluster. This dataset is a rich cellular gene expression resource for investigation of the channel catfish and teleost splenic immunome.


Subject(s)
Aquaculture , Gene Expression Profiling , Ictaluridae , Spleen , Transcriptome , Animals , Spleen/metabolism , Spleen/immunology , Ictaluridae/genetics , Ictaluridae/immunology , Single-Cell Analysis , Cell Nucleus/genetics , Cell Nucleus/metabolism
12.
PLoS Genet ; 20(9): e1011411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39312574

ABSTRACT

Pathological disruption of Nucleocytoplasmic Transport (NCT), such as the mis-localization of nuclear pore complex proteins (Nups), nuclear transport receptors, Ran-GTPase, and RanGAP1, are seen in both animal models and in familial and sporadic forms of amyotrophic lateral sclerosis (ALS), frontal temporal dementia and frontal temporal lobar degeneration (FTD\FTLD), and Alzheimer's and Alzheimer's Related Dementias (AD/ADRD). However, the question of whether these alterations represent a primary cause, or a downstream consequence of disease is unclear, and what upstream factors may account for these defects are unknown. Here, we report four key findings that shed light on the upstream causal role of Importin-ß-specific nuclear transport defects in disease onset. First, taking advantage of two novel mouse models of NEMF neurodegeneration (NemfR86S and NemfR487G) that recapitulate many cellular and biochemical aspects of neurodegenerative diseases, we find an Importin-ß-specific nuclear import block. Second, we observe cytoplasmic mis-localization and aggregation of multiple proteins implicated in the pathogenesis of ALS/FTD and AD/ADRD, including TDP43, Importin-ß, RanGap1, and Ran. These findings are further supported by a pathological interaction between Importin-ß and the mutant NEMFR86S protein in cytoplasmic accumulations. Third, we identify similar transcriptional dysregulation in key genes associated with neurodegenerative disease. Lastly, we show that even transient pharmaceutical inhibition of Importin-ß in both mouse and human neuronal and non-neuronal cells induces key proteinopathies and transcriptional alterations seen in our mouse models and in neurodegeneration. Our convergent results between mouse and human neuronal and non-neuronal cellular biology provide mechanistic evidence that many of the mis-localized proteins and dysregulated transcriptional events seen in multiple neurodegenerative diseases may in fact arise primarily from a primary upstream defect in Importin- ß nuclear import. These findings have critical implications for investigating how sporadic forms of neurodegeneration may arise from presently unidentified genetic and environmental perturbations in Importin-ß function.


Subject(s)
Active Transport, Cell Nucleus , Disease Models, Animal , Neurodegenerative Diseases , beta Karyopherins , Animals , beta Karyopherins/metabolism , beta Karyopherins/genetics , Active Transport, Cell Nucleus/genetics , Mice , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Mutation , ran GTP-Binding Protein/metabolism , ran GTP-Binding Protein/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Cell Nucleus/metabolism , Cell Nucleus/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology
13.
Nat Neurosci ; 27(10): 2021-2032, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39227716

ABSTRACT

Aging is a complex biological process and represents the largest risk factor for neurodegenerative disorders. The risk for neurodegenerative disorders is also increased in individuals with psychiatric disorders. Here, we characterized age-related transcriptomic changes in the brain by profiling ~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and without psychiatric diagnoses and replicated findings in an independent cohort with 32 individuals. Aging affects all cell types, with LAMP5+LHX6+ interneurons, a cell-type abundant in primates, by far the most affected. Disrupted synaptic transmission emerged as a convergently affected pathway in aged tissue. Age-related transcriptomic changes overlapped with changes observed in Alzheimer's disease across multiple cell types. We find evidence for accelerated transcriptomic aging in individuals with psychiatric disorders and demonstrate a converging signature of aging and psychopathology across multiple cell types. Our findings shed light on cell-type-specific effects and biological pathways underlying age-related changes and their convergence with effects driven by psychiatric diagnosis.


Subject(s)
Aging , Mental Disorders , Prefrontal Cortex , Transcriptome , Humans , Aging/genetics , Prefrontal Cortex/metabolism , Aged , Mental Disorders/genetics , Middle Aged , Female , Male , Adult , Gene Expression Profiling/methods , Aged, 80 and over , Interneurons/metabolism , Young Adult , Cell Nucleus/metabolism , Cell Nucleus/genetics
14.
Proc Natl Acad Sci U S A ; 121(39): e2400503121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39298487

ABSTRACT

Most eukaryotes have one nucleus and nuclear genome per cell. Ciliates have instead evolved distinct nuclei that coexist in each cell: a silent germline vs. transcriptionally active somatic nuclei. In the best-studied model species, both nuclei can divide asexually, but only germline nuclei undergo meiosis and karyogamy during sex. Thereafter, thousands of DNA segments, called internally eliminated sequences (IESs), are excised from copies of the germline genomes to produce the streamlined somatic genome. In Loxodes, however, somatic nuclei cannot divide but instead develop from germline copies even during asexual cell division, which would incur a huge overhead cost if genome editing was required. Here, we purified and sequenced both genomes in Loxodes magnus to see whether their nondividing somatic nuclei are associated with differences in genome architecture. Unlike in other ciliates studied to date, we did not find canonical germline-limited IESs, implying Loxodes does not extensively edit its genomes. Instead, both genomes appear large and equivalent, replete with retrotransposons and repetitive sequences, unlike the compact, gene-rich somatic genomes of other ciliates. Two other hallmarks of nuclear development in ciliates-domesticated DDE-family transposases and editing-associated small RNAs-were also not found. Thus, among the ciliates, Loxodes genomes most resemble those of conventional eukaryotes. Nonetheless, base modifications, histone marks, and nucleosome positioning of vegetative Loxodes nuclei are consistent with functional differentiation between actively transcribed somatic vs. inactive germline nuclei. Given their phylogenetic position, it is likely that editing was present in the ancestral ciliate but secondarily lost in the Loxodes lineage.


Subject(s)
Cell Nucleus , Ciliophora , Cell Nucleus/genetics , Cell Nucleus/metabolism , Ciliophora/genetics , Genome, Protozoan , DNA, Protozoan/genetics
15.
Mol Genet Genomics ; 299(1): 83, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212752

ABSTRACT

The INO80D protein, a component of the INO80 chromatin remodeling complex, plays a pivotal role in chromatin remodeling, gene expression, and DNA repair within mammalian sperm. In contrast to the condensed nuclear structure of mammalian sperm, Chinese mitten crab, Eriocheir sinensis, exhibits a distinctively decondensed sperm nucleus. The distribution and function of INO80D during the E. sinensis spermatogenesis were previously enigmatic. Our research endeavored to elucidate the distribution and function of INO80D, thereby enhancing our comprehension of sperm decondensation and the process of spermatogenesis in this species. Employing transcriptome sequencing, RT-qPCR, western blot analysis, and immunofluorescence techniques, we observed a pronounced upregulation of INO80D in the adult E. sinensis in comparison to the juvenile. The protein predominantly resides in the cellular nucleus, with high levels in spermatogonia and spermatocytes, less in stage I and III spermatids, and lowest in mature sperm. The results indicated that INO80D is initially instrumental in chromatin decondensation to facilitate gene accessibility and DNA repair during the early phases of spermatogenesis. Its role subsequently shifts to maintaining decondensed chromatin stability and genetic integrity during spermiogenesis. The sustained presence of INO80D during spermiogenesis is essential for the ultimate maturation of the decondensed sperm nucleus, imperative for preserving the unique decondensed state and the protection of genetic material in E. sinensis. Our study concludes that INO80D exerts a multifaceted influence on the spermatogenesis of E. sinensis, impacting chromatin decondensation, genetic integrity, and the regulation of early gene expression. This understanding could potentially improve crab breeding in aquaculture.


Subject(s)
Brachyura , Chromatin Assembly and Disassembly , Spermatogenesis , Animals , Spermatogenesis/genetics , Male , Brachyura/genetics , Spermatozoa/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , Arthropod Proteins/genetics , Arthropod Proteins/metabolism
16.
Sci Rep ; 14(1): 18258, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107568

ABSTRACT

Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.


Subject(s)
Nucleus Accumbens , Transcriptome , Animals , Humans , Mice , Rats , Cell Nucleus/metabolism , Cell Nucleus/genetics , Gene Expression Profiling , Genome-Wide Association Study , Medium Spiny Neurons/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/cytology , Single-Cell Analysis
17.
Sci Rep ; 14(1): 18426, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117696

ABSTRACT

High-throughput imaging (HTI) generates complex imaging datasets from a large number of experimental perturbations. Commercial HTI software programs for image analysis workflows typically do not allow full customization and adoption of new image processing algorithms in the analysis modules. While open-source HTI analysis platforms provide individual modules in the workflow, like nuclei segmentation, spot detection, or cell tracking, they are often limited in integrating novel analysis modules or algorithms. Here, we introduce the High-Throughput Image Processing Software (HiTIPS) to expand the range and customization of existing HTI analysis capabilities. HiTIPS incorporates advanced image processing and machine learning algorithms for automated cell and nuclei segmentation, spot signal detection, nucleus tracking, nucleus registration, spot tracking, and quantification of spot signal intensity. Furthermore, HiTIPS features a graphical user interface that is open to integration of new analysis modules for existing analysis pipelines and to adding new analysis modules. To demonstrate the utility of HiTIPS, we present three examples of image analysis workflows for high-throughput DNA FISH, immunofluorescence (IF), and live-cell imaging of transcription in single cells. Altogether, we demonstrate that HiTIPS is a user-friendly, flexible, and open-source HTI software platform for a variety of cell biology applications.


Subject(s)
Cell Nucleus , Image Processing, Computer-Assisted , Software , Cell Nucleus/genetics , Cell Nucleus/metabolism , Image Processing, Computer-Assisted/methods , Humans , Algorithms , In Situ Hybridization, Fluorescence/methods , Gene Expression , Machine Learning
18.
Methods Mol Biol ; 2846: 181-189, 2024.
Article in English | MEDLINE | ID: mdl-39141237

ABSTRACT

Cleavage Under Targets and Tagmentation (CUT&Tag) provides high-resolution sequencing libraries for profiling diverse chromatin components. This protocol details the steps to generate CUT&Tag libraries from fresh or frozen tissues. This CUT&Tag workflow has nine main steps: isolation of nuclei from tissues, binding of nuclei to Concanavalin A-coated beads, binding of the primary antibody, binding of the secondary antibody, binding pA-Tn5 adapter complex, tagmentation, DNA extraction, PCR, and post-PCR cleanup and size selection. This protocol enabled us to generate and sequence CUT&Tag libraries across a broad range of fresh and frozen tissue types.


Subject(s)
Epigenomics , Epigenomics/methods , Humans , Gene Library , Chromatin/genetics , Chromatin/metabolism , Animals , High-Throughput Nucleotide Sequencing/methods , Cell Nucleus/genetics , Cell Nucleus/metabolism , Freezing , Polymerase Chain Reaction/methods
19.
Nat Commun ; 15(1): 6792, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39117640

ABSTRACT

The development of the retina is under tight temporal and spatial control. To gain insights into the molecular basis of this process, we generate a single-nuclei dual-omic atlas of the human developing retina with approximately 220,000 nuclei from 14 human embryos and fetuses aged between 8 and 23-weeks post-conception with matched macular and peripheral tissues. This atlas captures all major cell classes in the retina, along with a large proportion of progenitors and cell-type-specific precursors. Cell trajectory analysis reveals a transition from continuous progression in early progenitors to a hierarchical development during the later stages of cell type specification. Both known and unrecorded candidate transcription factors, along with gene regulatory networks that drive the transitions of various cell fates, are identified. Comparisons between the macular and peripheral retinae indicate a largely consistent yet distinct developmental pattern. This atlas offers unparalleled resolution into the transcriptional and chromatin accessibility landscapes during development, providing an invaluable resource for deeper insights into retinal development and associated diseases.


Subject(s)
Gene Expression Regulation, Developmental , Retina , Single-Cell Analysis , Humans , Retina/embryology , Retina/metabolism , Retina/cytology , Retina/growth & development , Gene Regulatory Networks , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Fetus , Cell Nucleus/metabolism , Cell Nucleus/genetics , Atlases as Topic
20.
Sci Rep ; 14(1): 19342, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164316

ABSTRACT

Environmental gradients in the sea may coincide with phenotypic or genetic gradients resulting from an evolutionary balance between selection and dispersal. The population differentiation of the swimming crab, Liocarcinus depurator, an important by-catch species in the Mediterranean Sea and North-East Atlantic, was assessed using both genetic and morphometric approaches. A total of 472 specimens were collected along its distribution area, and 17 morphometric landmarks, one mitochondrial gene (COI) and 11 polymorphic microsatellite markers were scored in 350, 287 and 280 individuals, respectively. Morphometric data lacked significant differences, but genetic analyses showed significant genetic differentiation between Atlantic and Mediterranean populations, with a steeper gradient in COI compared to microsatellite markers. Interestingly, nuclear differentiation was due to an outlier locus with a gradient in the Atlantic-Mediterranean transition area overlapping with the mtDNA gradient. Such overlapping clines are likely to be maintained by natural selection. Our results suggest a scenario of past isolation with local adaptation and secondary contact between the two basins. Local adaptation during the process of vicariance may reinforce genetic differentiation at loci maintained by environmental selection even after secondary contact.


Subject(s)
Brachyura , DNA, Mitochondrial , Microsatellite Repeats , Animals , Brachyura/genetics , Mediterranean Sea , Microsatellite Repeats/genetics , DNA, Mitochondrial/genetics , Atlantic Ocean , Mitochondria/genetics , Genetic Variation , Genetics, Population , Cell Nucleus/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL