Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.216
1.
Reprod Biol ; 24(2): 100860, 2024 Jun.
Article En | MEDLINE | ID: mdl-38762967

The current understanding of the role of circular RNAs (circRNAs) in regulating ovarian functions is inadequate. To assess the impact of ciR-00596 and ciR-00646 on the regulation of basic porcine ovarian granulosa cell functions, we conducted upregulation (utilizing overexpressing vectors) and downregulation (utilizing shRNA vectors) of these circRNAs. The relative expression of both circRNAs, cell viability and proliferation (accumulation of PCNA, cyclin B1, and XTT-positive cells), cytoplasmic (accumulation of bax and caspase-3) and nuclear (DNA fragmentation) apoptosis, and the release of progesterone, testosterone, estradiol, IGF-I, and oxytocin were evaluated. Transfection of cells with the ciR-00596 overexpression vector resulted in increases in cell viability and proliferation and the release of progesterone and IGF-I, while it decreased the cytoplasmic and nuclear apoptosis, testosterone, estradiol, and oxytocin output. CiR-00596 inhibition had the opposite effects. The overexpression of ciR-00646 decreased cell viability and proliferation, and the release of progesterone, IGF-I, and oxytocin, while increasing cytoplasmic and nuclear apoptosis and the output of testosterone and estradiol. Our findings are the first to show the stimulatory action of ciR-00596 and the inhibitory effect of ciR-00646 on ovarian cell functions, including the cell cycle, apoptosis, and secretory activity.


Apoptosis , Down-Regulation , Granulosa Cells , RNA, Circular , Up-Regulation , Animals , Female , RNA, Circular/metabolism , RNA, Circular/genetics , Swine , Granulosa Cells/metabolism , Granulosa Cells/physiology , Cell Proliferation/physiology , Cell Survival/physiology , Ovary/metabolism , Progesterone/metabolism , Estradiol/metabolism , Gene Expression Regulation/physiology
2.
Cell Mol Neurobiol ; 44(1): 42, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668880

Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. However, the impact of local pathology in the cortex is unknown. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1 to 2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow-up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.


Dendritic Spines , Mice, Transgenic , Prefrontal Cortex , alpha-Synuclein , Animals , Humans , Male , Mice , alpha-Synuclein/metabolism , Cell Survival/physiology , Dendritic Spines/metabolism , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology
3.
Brain Res ; 1836: 148936, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38649134

The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), ß-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, ß-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.


Cell Differentiation , Milk, Human , Humans , Cell Differentiation/physiology , Cells, Cultured , Tissue Scaffolds , Neural Stem Cells/physiology , Neurons/cytology , Neurons/physiology , Neurons/metabolism , Hydrogels , Cell Survival/physiology , Glial Fibrillary Acidic Protein/metabolism , Female , Microtubule-Associated Proteins/metabolism , Stem Cells/physiology , Stem Cells/cytology , Tissue Engineering/methods , Tubulin/metabolism , Cell Culture Techniques/methods , Extracellular Matrix/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Peptides , Antigens, Nuclear
4.
Neuroscience ; 547: 37-55, 2024 May 24.
Article En | MEDLINE | ID: mdl-38604526

The Aß hypothesis has long been central to Alzheimer's disease (AD) theory, with a recent surge in attention following drug approvals targeting Aß plaque clearance. Aß42 oligomers (AßO) are key neurotoxins. While ß-amyloid (Aß) buildup is a hallmark of AD, postmortem brain analyses have unveiled human islet amyloid polypeptide (hIAPP) deposition in AD patients, suggesting a potential role in Alzheimer's pathology. This study investigates the neurotoxic effects of co-aggregates of Aß42 and hIAPP, specifically focusing on their impact on cell survival, apoptosis, and AD-like pathology. We analyzed and compared the impact of AßO and Aß42-hIAPP on cell survival in SH-SY5Y cells, apoptosis and inducing AD-like pathology in glutamatergic neurons. Aß42-hIAPP co-oligomers exhibited significantly greater toxicity, causing 2.3-3.5 times higher cell death compared to AßO alone. Furthermore, apoptosis rates were significantly exacerbated in glutamatergic neurons when exposed to Aß42-hIAPP co-oligomers. The study also revealed that Aß42-hIAPP co-oligomers induced typical AD-like pathology in glutamatergic neurons, including the presence of Aß deposits (detected by 6E10 and 4G8 immunofluorescence) and alterations in tau protein (changes in total tau HT7, phosphorylated tau AT8, AT180). Notably, Aß42-hIAPP co-oligomers induced a more severe AD pathology compared to AßO alone. These findings provide compelling evidence for the heightened toxicity of Aß42-hIAPP co-oligomers on neurons and their role in exacerbating AD pathology. The study contributes novel insights into the pathogenesis of Alzheimer's disease, highlighting the potential involvement of hIAPP in AD pathology. Together, these findings offer novel insights into AD pathogenesis and routes for constructing animal models.


Alzheimer Disease , Amyloid beta-Peptides , Apoptosis , Cell Survival , Islet Amyloid Polypeptide , Neurons , Peptide Fragments , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Peptide Fragments/toxicity , Peptide Fragments/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/toxicity , Apoptosis/drug effects , Apoptosis/physiology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , tau Proteins/metabolism
5.
Biochem Pharmacol ; 224: 116208, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621423

Homeobox B9 (HOXB9) has been shown to play a critical role in several tumors. However, the precise biological mechanisms and functions of HOXB9 in osteosarcoma remain largely unknown. In this study, we found that HOXB9 was increased upon glucose starvation. Elevated HOXB9 suppressed osteosarcoma cell death and supported cell growth and migration under glucose starvation. Further mechanistic studies demonstrated that HOXB9 directly bound to the promoter of secreted phosphoprotein 1 (SPP1) and transcriptionally upregulated SPP1 expression which then led cell death decrease and cell growth increase under glucose deprivation environment. Clinically, HOXB9 was significantly upregulated in osteosarcoma compared with normal tissues and increase of HOXB9 expression was positively associated with the elevation of SPP1 in osteosarcoma. Overall, our study illustrates that HOXB9 contributes to malignancy in osteosarcoma and inhibits cell death through transcriptional upregulating SPP1 under glucose starvation.


Bone Neoplasms , Cell Survival , Glucose , Homeodomain Proteins , Osteopontin , Osteosarcoma , Up-Regulation , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Glucose/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Line, Tumor , Osteopontin/genetics , Osteopontin/metabolism , Cell Survival/physiology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Gene Expression Regulation, Neoplastic
6.
Neurochem Int ; 176: 105746, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641027

PURPOSE: Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS: Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS: Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION: We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.


Cell Survival , Computer Simulation , Epilepsy , Sirolimus , TOR Serine-Threonine Kinases , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Animals , Phosphorylation/drug effects , Mice , Cell Survival/drug effects , Cell Survival/physiology , Cell Line
7.
eNeuro ; 11(3)2024 Mar.
Article En | MEDLINE | ID: mdl-38548335

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Neurodegenerative Diseases , Optic Nerve Diseases , Optic Nerve Injuries , Mice , Animals , Retinal Ganglion Cells/metabolism , Optic Nerve Injuries/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Axons/metabolism , Neurodegenerative Diseases/metabolism , Nerve Regeneration/physiology , Optic Nerve Diseases/metabolism , Protein Isoforms/metabolism , Cell Survival/physiology
8.
Neurobiol Dis ; 195: 106489, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38552721

Obesity and neurometabolic diseases have been linked to neurodegenerative diseases. Our hypothesis is that the endogenous estrogenic component of human astrocytes plays a critical role in cell response during lipotoxic damage, given that obesity can disrupt hormonal homeostasis and cause brain inflammation. Our findings showed that high concentrations of palmitic acid (PA) significantly reduced cell viability more in male astrocytes, indicating sex-specific vulnerabilities. PA induced a greater increase in cytosolic reactive oxygen species (ROS) production in males, while female astrocytes exhibited higher superoxide ion levels in mitochondria. In addition, female astrocytes treated with PA showed increased expression of antioxidant proteins, including catalase, Gpx-1 and Nrf2 suggesting a stronger cellular defence mechanism. Interestingly, there was a difference in the expression of estrogenic components, such as estrogen, androgens, and progesterone receptors, as well as aromatase and 5α-reductase enzymes, between males and females. PA induced their expression mainly in females, indicating a potential protective mechanism mediated by endogenous hormones. In summary, our findings highlight the impact of sex on the response of human astrocytes to lipotoxicity. Male astrocytes appear to be more susceptible to cellular damage when exposed to high concentrations of fatty acids.


Astrocytes , Glutathione Peroxidase GPX1 , Palmitic Acid , Reactive Oxygen Species , Sex Characteristics , Humans , Astrocytes/metabolism , Astrocytes/drug effects , Palmitic Acid/pharmacology , Palmitic Acid/toxicity , Female , Male , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , NF-E2-Related Factor 2/metabolism , Glutathione Peroxidase/metabolism , Catalase/metabolism , Aromatase/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Mitochondria/metabolism , Mitochondria/drug effects
9.
Reprod Sci ; 31(6): 1586-1592, 2024 Jun.
Article En | MEDLINE | ID: mdl-38448740

The cryopreservation procedure decreases sperm quality, causing certain changes at structural and molecular levels affecting fertilizing ability. We aimed to investigate the impacts of human adipose-derived mesenchymal stem cells (HAd-MSCs) conditioned medium (CM) on the protection of human sperm from cryoinjury. Thirty normal semen specimens were evaluated in this study. Each specimen was separated into six groups and enhanced with varying concentrations of human Ad-MSCs-CM (0, 10, 30, 50, 70, and 100%). Sperm motility, viability, morphology, apoptosis, mitochondrial potential, and lipid peroxidation, and DNA fragmentation were evaluated before freezing and after thawing. The results showed that the total motility was preserved in 10% human Ad-MSCs-CM group. Also, DNA fragmentation was significantly lower in 10% compared to 0% human Ad-MSCs-CM (63.62 ± 17.72% vs.76.46 ± 4.87%, respectively, P < 0.004). Human Ad-MSCs-CM in groups of 10, 30, 50, and 70% reduced lipid peroxidation. The normal sperm morphology rate, mitochondrial membrane potential, and apoptosis showed no significant differences across various groups. It seems that human Ad-MSCs-CM can protect the sperm parameters during the cryopreservation by decreasing cryoinjury.


Cryopreservation , Mesenchymal Stem Cells , Semen Preservation , Sperm Motility , Spermatozoa , Humans , Cryopreservation/methods , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Spermatozoa/drug effects , Spermatozoa/metabolism , Sperm Motility/drug effects , Semen Preservation/methods , Membrane Potential, Mitochondrial/drug effects , Lipid Peroxidation/drug effects , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Survival/drug effects , Cell Survival/physiology , DNA Fragmentation/drug effects , Apoptosis/drug effects , Semen Analysis , Adult
10.
Neurochem Res ; 49(7): 1762-1781, 2024 Jul.
Article En | MEDLINE | ID: mdl-38551797

Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation.


Cell Survival , Glucose , Lactic Acid , Microglia , Neurons , Oxygen , Microglia/metabolism , Microglia/drug effects , Glucose/metabolism , Glucose/deficiency , Humans , Neurons/metabolism , Neurons/drug effects , Oxygen/metabolism , Lactic Acid/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Animals , Mice , Neuroprotective Agents/pharmacology , Cell Hypoxia/physiology , Cell Hypoxia/drug effects , Tumor Necrosis Factor-alpha/metabolism , Receptors, G-Protein-Coupled/metabolism , Cell Line, Tumor , Cell Line , Monocarboxylic Acid Transporters/metabolism
11.
J Appl Physiol (1985) ; 136(5): 1113-1121, 2024 May 01.
Article En | MEDLINE | ID: mdl-38511211

The number of motor neurons (MNs) declines precipitously during the final trimester before birth. Thereafter, the number of MNs remains relatively stable, with their connections to skeletal muscle dependent on neurotrophins, including brain-derived neurotrophic factor (BDNF) signaling through its high-affinity full-length tropomyosin-related kinase receptor subtype B (TrkB.FL) receptor. As a genetic knockout of BDNF leads to extensive MN loss and postnatal death within 1-2 days after birth, we tested the hypothesis that postnatal inhibition of BDNF/TrkB.FL signaling is important for postnatal phrenic MN (PhMN) survival. In the present study, we used a 1NMPP1-sensitive TrkBF616A mutant mouse to evaluate the effects of inhibition of TrkB kinase activity on phrenic MN (PhMN) numbers and diaphragm muscle (DIAm) fiber cross-sectional area (CSA). Pups were exposed to 1NMPP1 or vehicle (DMSO) from birth to 21 days old (weaning) via the mother's ingestion in the drinking water. Following weaning, the right phrenic nerve was exposed in the neck and the proximal end dipped in a rhodamine solution to retrogradely label PhMNs. After 24 h, the cervical spinal cord and DIAm were excised. Labeled PhMNs were imaged using confocal microscopy, whereas DIAm strips were frozen at ∼1.5× resting length, cryosectioned, and stained with hematoxylin and eosin to assess CSA. We observed an ∼34% reduction in PhMN numbers and increased primary dendrite numbers in 1NMPP1-treated TrkBF616A mice. The distribution of PhMN size (somal surface area) DIAm fiber cross-sectional areas did not differ. We conclude that survival of PhMNs during early postnatal development is sensitive to BDNF/TrkB.FL signaling.NEW & NOTEWORTHY During early postnatal development, BDNF/TrkB signaling promotes PhMN survival. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact PhMN size. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact the number or CSA of DIAm fibers.


Brain-Derived Neurotrophic Factor , Motor Neurons , Phrenic Nerve , Receptor, trkB , Signal Transduction , Animals , Female , Male , Mice , Animals, Newborn , Brain-Derived Neurotrophic Factor/metabolism , Cell Survival/physiology , Cell Survival/drug effects , Diaphragm/metabolism , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/physiology , Motor Neurons/drug effects , Phrenic Nerve/physiology , Phrenic Nerve/metabolism , Phrenic Nerve/drug effects , Pyrazoles , Pyrimidines , Receptor, trkB/metabolism , Signal Transduction/physiology
12.
Cornea ; 43(6): 771-776, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38391264

PURPOSE: The purpose of this study was to establish a validated method, consistent with Eye Bank Association of America medical standards, for evaluating endothelial cell loss (ECL) from an entire Descemet membrane endothelial keratoplasty (DMEK) graft using trypan blue dye as an alternative to specular microscopy. METHOD: Twenty-nine corneas were prepared for preloaded DMEK by a single technician, and the endothelium was stained with trypan blue dye for 30 seconds. The technician estimated total cell loss as a percentage of the graft and captured an image. Images were evaluated by a blinded technician using ImageJ software to determine ECL and compared with endothelial cell density from specular microscopy. Tissue processing intervals were analyzed for 4 months before and after implementation of this method. RESULTS: For the 29 grafts, there was no statistically significant difference ( t test, P = 0.285) between ECL estimated by a processor (mean = 5.8%) and ECL calculated using an ImageJ software (mean = 5.1%). The processor tended to estimate greater ECL than the actual ECL determined by ImageJ (paired t test, P = 0.022). Comparatively, postprocessing endothelial cell density measured by specular microscopy were higher compared with the preprocessing endothelial cell density (mean = 4.5% P = 0.0006). After implementation of this evaluation method, DMEK graft processing time intervals were reduced by 47.9% compared with specular microscopy evaluation ( P < 0.001). CONCLUSIONS: Our results show that visual ECL estimation using trypan blue staining by a DMEK graft processor is a reliable and efficient method for endothelial assessment. Unlike specular microscopy, this method achieves comprehensive visualization of the entire endothelium, reduces total time out of cold storage, and decreases total time required to prepare and evaluate DMEK grafts.


Coloring Agents , Corneal Endothelial Cell Loss , Descemet Stripping Endothelial Keratoplasty , Endothelium, Corneal , Tissue Donors , Trypan Blue , Humans , Trypan Blue/pharmacology , Descemet Stripping Endothelial Keratoplasty/methods , Endothelium, Corneal/cytology , Endothelium, Corneal/transplantation , Coloring Agents/pharmacology , Cell Count , Corneal Endothelial Cell Loss/diagnosis , Aged , Female , Cell Survival/physiology , Staining and Labeling/methods , Male , Middle Aged , Tissue and Organ Harvesting/methods , Aged, 80 and over
13.
Reprod Sci ; 31(5): 1420-1428, 2024 May.
Article En | MEDLINE | ID: mdl-38294668

Oocyte cryopreservation is offered to women of various age groups for both health and social reasons. Oocytes derived from either controlled ovarian stimulation or in vitro maturation (IVM) are cryopreserved via vitrification. As maternal age is a significant determinant of oocyte quality, there is limited data on the age-related susceptibility of oocytes to the vitrification-warming procedure alone or in conjunction with IVM. In the present study, metaphase II oocytes obtained from 2, 6, 9, and 12 month old Swiss albino mice either by superovulation or IVM were used. To understand the association between maternal age and oocyte cryotolerance, oocytes were subjected to vitrification-warming and compared to non vitrified sibling oocytes. Survived oocytes were evaluated for mitochondrial potential, spindle integrity, relative expression of spindle checkpoint protein transcripts, and DNA double-strand breaks. Maturation potential and vitrification-warming survival were significantly affected (p < 0.001 and p < 0.05, respectively) in ovulated oocytes from the advanced age group but not in IVM oocytes. Although vitrification-warming significantly increased spindle abnormalities in ovulated oocytes from advanced maternal age (p < 0.01), no significant changes were observed in IVM oocytes. Furthermore, Bub1 and Mad2 transcript levels were significantly higher in vitrified-warmed IVM oocytes (p < 0.05). In conclusion, advanced maternal age can have a negative impact on the cryosusceptibility of ovulated oocytes but not IVM oocytes in mice.


Cryopreservation , In Vitro Oocyte Maturation Techniques , Maternal Age , Oocytes , Vitrification , Animals , Oocytes/physiology , Female , Mice , Cryopreservation/methods , Mad2 Proteins/metabolism , Spindle Apparatus/physiology , Spindle Apparatus/metabolism , DNA Breaks, Double-Stranded , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Survival/physiology
14.
Neurochem Res ; 49(7): 1655-1664, 2024 Jul.
Article En | MEDLINE | ID: mdl-38217758

Studies have demonstrated that LIN28 is expressed in the CNS and may exert protective effects on neurons. However, it remains unknown whether LIN28 regulates ferroptosis in the context of epilepsy. In this study, we established an epilepsy model by culturing hippocampal neurons from rats in a magnesium-free (Mg2+-free) medium. In Mg2+-depleted conditions, hippocampal neurons exhibited reduced LIN28 expression, heightened miR-142-5p expression, decreased glutathione peroxidase (GPX) activity and expression, elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), resulting in a significant decline in cell viability and an increase in ferroptosis. Conversely, overexpression of LIN28 reversed these trends in the mentioned indices. Altogether, this study reveals that LIN28 may exert neuroprotective effects by inhibiting the miR-142-5p expression and suppressing ferroptosis in hippocampal neurons induced by Mg2+-free via increasing GPX4 expression.


Epilepsy , Ferroptosis , Hippocampus , Magnesium , Neurons , Rats, Sprague-Dawley , Animals , Ferroptosis/physiology , Ferroptosis/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Neurons/metabolism , Neurons/drug effects , Magnesium/metabolism , Rats , Epilepsy/metabolism , Epilepsy/pathology , Cells, Cultured , RNA-Binding Proteins/metabolism , Cell Survival/drug effects , Cell Survival/physiology , MicroRNAs/metabolism , MicroRNAs/genetics , Reactive Oxygen Species/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
15.
Biomed Mater ; 19(2)2024 Jan 12.
Article En | MEDLINE | ID: mdl-38181445

Ciliary neurotrophic factor (CNTF) promotes survival and/or differentiation of a variety of neuronal cells including retinal ganglion cells (RGCs). Delivery of CNTF requires a suitable medium capable of mediating diffusion and premature release of CNTF within the target tissue. Polymeric tissue-engineered scaffolds have been readily used as substrates for cell transplantation, expansion, and differentiation and, as carriers of cell growth factors. Their functions to CNTF release for RGC proliferation have remained so far unexplored, especially to CNTF affinity to the scaffold and subsequent RGC fate. Electrospunpoly(glycerol sebacate)/poly(ϵ-caprolactone) (PGS/PCL) biopolymer scaffolds have recently shown promising results in terms of supporting regeneration of RGC neurites. This work explores covalent immobilization of CNTF on PGS/PCL scaffold and the way immobilised CNTF mediates growth of RGC axons on the scaffold. Anex-vivothree-dimensional model of rodent optic nerve on PGS/PCL revealed that RGC explants cultured in CNTF mediated environment increased their neurite extensions after 20 d of cell culture employing neurite outgrowth measurements. The CNTF secretion on PGS/PCL scaffold was found bio-mimicking natural extracellular matrix of the cell target tissue and, consequently, has shown a potential to improve the overall efficacy of the RGC regeneration process.


Ciliary Neurotrophic Factor , Retinal Ganglion Cells , Retinal Ganglion Cells/metabolism , Ciliary Neurotrophic Factor/metabolism , Axons/physiology , Neurites/metabolism , Cell Proliferation , Nerve Regeneration/physiology , Cell Survival/physiology
16.
Exp Eye Res ; 239: 109787, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211683

Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 µg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.


Mesenchymal Stem Cells , Optic Nerve Injuries , Rats , Humans , Animals , Optic Nerve Injuries/therapy , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/metabolism , Osteogenesis , Tea/metabolism , Nerve Regeneration/physiology , Cell Survival/physiology , Axons/metabolism
17.
IEEE Trans Biomed Eng ; 71(5): 1577-1586, 2024 May.
Article En | MEDLINE | ID: mdl-38113160

The H-FIRE (high-frequency irreversible electroporation) protocol employs high-frequency bipolar pulses (HFBPs) with a width of ∼1 µs for tumor ablation with slight muscle contraction. However, H-FIRE pulses need a higher electric field to generate a sufficient ablation effect, which may cause undesirable thermal damage. OBJECTIVE: Recently, combining short high-voltage IRE monopolar pulses with long low-voltage IRE monopolar pulses was shown to enlarge the ablation region. This finding indicates that combining HFBPs with low-voltage bipolar pulses (LVBPs), which are called composited bipolar pulses (CBPs), may enhance the ablation effect. METHODS: This study designed a pulse generator by modifying a full-bridge inverter. The cell suspension and 3D tumor mimic experiments (U251 cells) were performed to examine the enhancement of the ablation effect. RESULTS: The generator outputs HFBPs with 0-±2.5 kV and LVBPs with 0-±0.3 kV in one period. The pulse parameters are adjustable by programming on a human-computer interface. The cell suspension experiments showed that CBPs could enhance cytotoxicity, as compared to HFBPs with no cell-killing effect. Even at lower electric energy, the cell viability by CBPs was significantly lower than that of the HFBPs protocol. The ablation experiments on the 3D tumor mimic showed that the CBPs could create a larger connected ablation area. In contrast, the HFBPs protocol with a similar dose generated a nonconnected ablation area. CONCLUSION: Results indicate that the CBPs protocol can enhance the ablation effect of HFBPs protocol. SIGNIFICANCE: This proposed generator that uses the CBPs principle may be a useful tool for tumor ablation.


Electroporation , Humans , Electroporation/methods , Cell Line, Tumor , Ablation Techniques/methods , Cell Survival/physiology , Equipment Design
18.
Biomed Pharmacother ; 169: 115889, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37984302

BACKGROUND: Excessive manganese (Mn) exposure has been linked to neurotoxicity, cognitive impairments. Neurotrophic Receptor Kinase 1 (NTRK1) encodes Tropomyosin kinase A (TrkA), a neurotrophic receptor, as a mediator of neuron differentiation and survival. Insulin-like growth factor 2 (IGF2), a pivotal member of the insulin gene family, plays a crucial role in brain development and neuroprotection. Despite this knowledge, the precise mechanisms through which NTRK1 and IGF2 influence cell responses to Mn-induced neuronal damage remain elusive. METHODS: Cell apoptosis was assessed using CCK8, TUNEL staining, and Western blot analysis of cleaved Caspase-3. Lentiviral vectors facilitated NTRK1 overexpression, while small interfering RNAs (siRNAs) facilitated IGF2 knockdown. Real-time Quantitative PCR (qPCR) determined gene expression levels, while Western blotting measured protein expression. RESULTS: The study reveals that NTRK1 inhibits MnCl2-induced apoptosis in SH-SY5Y cells. NTRK1 overexpression significantly upregulated IGF2 expression, and subsequent siRNA-IGF2 experiments confirmed IGF2's pivotal role in NTRK1-mediated neuroprotection. Notably, the study identifies that NTRK1 regulates the expression of IGF2 in the neuroprotective mechanism with the involvement of ER stress pathways. DISCUSSION: The study reveals NTRK1's neuroprotective role via IGF2 against Mn-induced neurotoxicity and ER stress modulation in SH-SY5Y cells. These findings offer insights into potential therapies for neurodegenerative disorders related to Mn exposure and NTRK1 dysfunction, driving future research in this domain.


Manganese Poisoning , Neuroblastoma , Humans , Manganese/toxicity , Cell Line, Tumor , Apoptosis/physiology , Cell Survival/physiology , Insulin-Like Growth Factor II/genetics
19.
Biomater Sci ; 11(23): 7639-7654, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37840476

Cell culture plays a critical role in biomedical discovery and drug development. Primary hepatocytes and hepatocyte-derived cell lines are especially important cellular models for drug discovery and development. To enable high-throughput screening and ensure consistent cell phenotypes, there is a need for practical and efficient cryopreservation methods for hepatocyte-derived cell lines and primary hepatocytes in an assay-ready format. Cryopreservation of cells as adherent monolayers in 96-well plates presents unique challenges due to low volumes being susceptible to supercooling, leading to low recovery and well-to-well variation. Primary cell cryopreservation is also particularly challenging due to the loss of cell viability and function. In this study, we demonstrate the use of soluble ice nucleator materials (IN) to cryopreserve a hepatic-derived cell line (HepG2) and primary mouse hepatocytes, as adherent monolayers. HepG2 cell recovery was near 100% and ∼75% of primary hepatocytes were recovered 24 hours post-thaw compared to just 10% and 50% with standard 10% DMSO, respectively. Post-thaw assessment showed that cryopreserved HepG2 cells retain membrane integrity, metabolic activity, proliferative capacity and differentiated hepatic functions including urea secretion, cytochrome P450 levels and lipid droplet accumulation. Cryopreserved primary hepatocytes exhibited reduced hepatic functions compared to fresh hepatocytes, but functional levels were similar to commercial suspension-cryopreserved hepatocytes, with the added benefit of being stored in an assay-ready format. In addition, normal cuboidal morphology and minimal membrane damage were observed 24 hours post-thaw. Cryopreserved HepG2 and mouse hepatocytes treated with a panel of pharmaceutically active compounds produced near-identical dose-response curves and EC50 values compared to fresh hepatocytes, confirming the utility of cryopreserved bankable cells in drug metabolism and hepatotoxicity studies. Cryopreserved adherent HepG2 cells and primary hepatocytes in 96 well plates can significantly reduce the time and resource burden associated with routine cell culture and increases the efficiency and productivity of high-throughput drug screening assays.


Chemical and Drug Induced Liver Injury , Ice , Mice , Animals , Hepatocytes , Cryopreservation/methods , Cell Survival/physiology , Cells, Cultured
20.
Melanoma Res ; 33(3): 173-183, 2023 06 01.
Article En | MEDLINE | ID: mdl-37053079

Cutaneous melanoma (CM) is a highly metastatic cancer whose incidence rate is heightening worldwide. B7H6, as one of the co-stimulatory ligands of the B7 family, is expressed in malignant cells, involved in tumorigenesis. This study aimed to investigate the significance of B7H6 in CM cell chemosensitivity and metastatic ability. A375 CM cells were transfected with B7H6-siRNA and treated with dacarbazine individually or combined. The MTT assay to estimate half-maximal inhibitory concentration of dacarbazine and cell viability, the apoptotic induction using Annexin V/PI, cell cycle progression via flow cytometry, and wound healing assay for determining the migration ability of cells and assessing the clonogenic potential of A375 cells were executed. Functional analyses were performed to evaluate changes in A375 cells. The results illustrated that B7H6 suppression significantly increased the chemosensitivity of A375 cells to dacarbazine. Apoptosis induction by dacarbazine was enhanced after B7H6 knockdown through modulating Caspase-3, Bax, and Bcl-2 mRNA levels. Western blotting indicated enhancement of cleaved caspase-3 protein expression in treatment groups. A375 cells were arrested at the sub-G1 and S phases when using B7H6-siRNA and dacarbazine. B7H6 suppression combined with dacarbazine restrained cell migration through suppression of matrix metalloproteinase (MMP) expression, including MMP2, MMP3, and MMP9. In addition, the clonogenic ability of A375 cells was decreased by downregulating Sox2, Nanog, and CD44 mRNA levels. A visible decrement in STAT3 protein expression was observed in the combination group. Hence, our findings revealed that B7H6 knockdown with dacarbazine could be a promising treatment approach for cutaneous melanoma.


Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Dacarbazine/pharmacology , Cell Survival/physiology , Caspase 3 , RNA, Messenger , RNA, Small Interfering , Cell Line, Tumor , Apoptosis , Cell Proliferation , Cell Movement , Melanoma, Cutaneous Malignant
...