Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.585
Filter
1.
Electromagn Biol Med ; 43(3): 187-203, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38990565

ABSTRACT

To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.


In our research, we've introduced an enhanced electrical model for living cells. This model simplifies cell behavior using only basic electrical components like resistors and capacitors. It's designed to mimic the real electrical properties of cells, particularly the cell membrane, which can change in response to electricity at different frequencies, ranging from 1 kHz to 100 MHz. This frequency range is essential for studying processes like electroporation, a technique used in various medical applications.Our model is represented in a two-dimensional structure, making it a handy tool for identifying transmembrane potential distributions, a critical factor in electroporation procedures. This means we can better understand how cells react to electrical impulses, which is crucial for improving electroporation techniques.Additionally, we've extended our model to include muscle cells by incorporating the Hodgkin-Huxley model, a well-established model for understanding electrical behavior in muscle cells. This allows us to study how muscles contract when exposed to different electrical pulses, a common side effect of electroporation procedures. By examining various pulse characteristics, we can determine which ones are best for minimizing muscle contractions during electroporation.In summary, our research has led to the development of a versatile electrical model for living cells. It not only helps us understand how cells respond to electricity in the context of electroporation but also provides insights into muscle contractions and how to optimize electrical pulses for medical treatments.


Subject(s)
Action Potentials , Models, Biological , Electroporation , Cell Survival/radiation effects , Electricity , Humans
2.
Int J Nanomedicine ; 19: 6677-6692, 2024.
Article in English | MEDLINE | ID: mdl-38975322

ABSTRACT

Background: The inadequate perfusion, frequently resulting from abnormal vascular configuration, gives rise to tumor hypoxia. The presence of this condition hinders the effective delivery of therapeutic drugs and the infiltration of immune cells into the tumor, thereby compromising the efficacy of treatments against tumors. The objective of this study is to exploit the thermal effect of ultrasound (US) in order to induce localized temperature elevation within the tumor, thereby facilitating vasodilation, augmenting drug delivery, and enhancing immune cell infiltration. Methods: The selection of US parameters was based on intratumor temperature elevation and their impact on cell viability. Vasodilation and hypoxia improvement were investigated using enzyme-linked immunosorbent assay (ELISA) and immunofluorescence examination. The distribution and accumulation of commercial pegylated liposomal doxorubicin (PLD) and PD-L1 antibody (anti-PD-L1) in the tumor were analyzed through frozen section analysis, ELISA, and in vivo fluorescence imaging. The evaluation of tumor immune microenvironment was conducted using flow cytometry (FCM). The efficacy of US-enhanced chemotherapy in combination with immunotherapy was investigated by monitoring tumor growth and survival rate after various treatments. Results: The US irradiation condition of 0.8 W/cm2 for 10 min effectively elevated the tumor temperature to approximately 40 °C without causing any cellular or tissue damage, and sufficiently induced vasodilation, thereby enhancing the distribution and delivery of PLD and anti-PD-L1 in US-treated tumors. Moreover, it effectively mitigated tumor hypoxia while significantly increasing M1-phenotype tumor-associated macrophages (TAMs) and CD8+ T cells, as well as decreasing M2-phenotype TAMs. By incorporating US irradiation, the therapeutic efficacy of PLD and anti-PD-L1 was substantially boosted, leading to effective suppression of tumor growth and prolonged survival in mice. Conclusion: The application of US (0.8 W/cm2 for 10 min) can effectively induce vasodilation and enhance the delivery of PLD and anti-PD-L1 into tumors, thereby reshaping the immunosuppressive tumor microenvironment and optimizing therapeutic outcomes.


Subject(s)
Doxorubicin , Immunotherapy , Polyethylene Glycols , Tumor Microenvironment , Animals , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Mice , Immunotherapy/methods , Cell Line, Tumor , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , B7-H1 Antigen , Female , Humans , Neoplasms/therapy , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Mice, Inbred BALB C , Cell Survival/drug effects , Cell Survival/radiation effects , Immune Checkpoint Inhibitors/pharmacology , Ultrasonic Waves , Combined Modality Therapy
3.
Anticancer Res ; 44(7): 2973-2979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925851

ABSTRACT

BACKGROUND/AIM: Pre-clinical studies have shown that irradiation with electrons at an ultra-high dose-rate (FLASH) spares normal tissue while maintaining tumor control. However, most in vitro experiments with protons have been conducted using a non-clinical irradiation system in normoxia alone. This study evaluated the biological response of non-tumor and tumor cells at different oxygen concentrations irradiated with ultra-high dose-rate protons using a clinical system and compared it with the conventional dose rate (CONV). MATERIALS AND METHODS: Non-tumor cells (V79) and tumor cells (U-251 and A549) were irradiated with 230 MeV protons at a dose rate of >50 Gy/s or 0.1 Gy/s under normoxic or hypoxic (<2%) conditions. The surviving fraction was analyzed using a clonogenic cell survival assay. RESULTS: No significant difference in the survival of non-tumor or tumor cells irradiated with FLASH was observed under normoxia or hypoxia compared to the CONV. CONCLUSION: Proton irradiation at a dose rate above 40 Gy/s, the FLASH dose rate, did not induce a sparing effect on either non-tumor or tumor cells under the conditions examined. Further studies are required on the influence of various factors on cell survival after FLASH irradiation.


Subject(s)
Cell Survival , Proton Therapy , Protons , Humans , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Cell Hypoxia/radiation effects , Animals , Cell Line, Tumor , Cricetulus , A549 Cells , Oxygen/metabolism
4.
Anticancer Res ; 44(7): 2837-2846, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925852

ABSTRACT

BACKGROUND/AIM: Pulsed electromagnetic field (PEMF) stimulation enhances the efficacy of several anticancer drugs. Doxorubicin is an anticancer drug used to treat various types of cancer, including breast cancer. However, the effect of PEMF stimulation on the efficacy of doxorubicin and the underlying mechanisms remain unclear. Thus, this study aimed to investigate the effect of PEMF stimulation on the anticancer activity of doxorubicin in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS: MDA-MB-231 cells were seeded and allowed to incubate for 48 h. The cells were treated with doxorubicin, cisplatin, 5-fluorouracil, or paclitaxel for 48 h. Subsequently, the cells were stimulated with a 60-min PEMF session thrice a day (with an interval of 4 h between each session) for 24 or 48 h. Cell viability was assessed by trypan blue dye exclusion assay and cell-cycle analysis was analyzed by flow cytometry. Molecular mechanisms involved in late G2 arrest were confirmed by a western blot assay and confocal microscopy. RESULTS: MDA-MB-231 cells treated with a combination of doxorubicin and PEMF had remarkably lower viability than those treated with doxorubicin alone. PEMF stimulation increased doxorubicin-induced cell-cycle arrest in the late G2 phase by suppressing cyclin-dependent kinase 1 (CDK1) activity through the enhancement of myelin transcription factor 1 (MYT1) expression, cell division cycle 25C (CDC25C) phosphorylation, and stratifin (14-3-3σ) expression. PEMF also increased doxorubicin-induced DNA damage by inhibiting DNA topoisomerase II alpha (TOP2A). CONCLUSION: These findings support the use of PEMF stimulation as an adjuvant to strengthen the antiproliferative effect of doxorubicin on breast cancer cells.


Subject(s)
Breast Neoplasms , Doxorubicin , Humans , Doxorubicin/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Electromagnetic Fields , DNA Topoisomerases, Type II/metabolism , Cell Proliferation/drug effects , Paclitaxel/pharmacology , Fluorouracil/pharmacology , Poly-ADP-Ribose Binding Proteins/metabolism , cdc25 Phosphatases/metabolism , Cyclin-Dependent Kinase 2/metabolism
5.
J Photochem Photobiol B ; 257: 112947, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851043

ABSTRACT

The cytotoxic of α-Ag2WO4 synthesized in different morphologies (cuboidal (AW-C), hexagonal rod-like (AW-HRL) and nanometric rod-like (AW-NRL) was analyzed to understand the impact of morphological modulation on the toxicity of 3 T3 cell lines in the dark and when photoactivated by visible light. Pathways of toxicity were examined, such as parameters and electrostatic interaction, uptake, ion release and ROS production. Cytotoxicity was observed for all samples after reaching concentrations exceeding 7.8 µg/mL. Uptake tests demonstrated that the samples were not internalized by cells, likely due to their negative surface charge. AW-NRL exhibited autophagy in the absence of light and during photoactivation, primarily attributed to its ability to generate singlet oxygen. Analyzing intercellular ROS and RNS production, AW-HRL induced an increase in NO through exposure to photo-generated hydroxyl radicals, while AW-NRL showed increases only at non-photoactivated concentrations and AW-C did not exhibit increases. Interestingly, in the dark, these cells showed a low propensity for apoptosis, with late apoptosis and necrosis being more pronounced. When photoactivated, this behavior changed, revealing predominantly apoptotic and late apoptotic cell death. There is a need for an understanding of how morphology can alter the biological properties of α-Ag2WO4 to predict and optimize its effects on cellular responses.


Subject(s)
Light , Mice , Animals , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Tungsten Compounds/chemistry , Tungsten Compounds/pharmacology , Silver/chemistry , Cell Line , Autophagy/drug effects , Cell Survival/drug effects , Cell Survival/radiation effects
6.
J Photochem Photobiol B ; 257: 112963, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908147

ABSTRACT

The therapeutic potential of blue light photobiomodulation in cancer treatment, particularly in inhibiting cell proliferation and promoting cell death, has attracted significant interest. Oral squamous cell carcinoma (OSCC) is a prevalent form of oral cancer, necessitating innovative treatment approaches to improve patient outcomes. In this study, we investigated the effects of 420 nm blue LED light on OSCC and explored the underlying mechanisms. Our results demonstrated that 420 nm blue light effectively reduced OSCC cell viability and migration, and induced G2/M arrest. Moreover, we observed that 420 nm blue light triggered endoplasmic reticulum (ER) stress and mitochondrial dysfunction in OSCC cells, leading to activation of the CHOP signal pathway and alterations in the levels of Bcl-2 and Bax proteins, ultimately promoting cell apoptosis. Additionally, blue light suppressed mitochondrial gene expression, likely due to its damage to mitochondrial DNA. This study highlights the distinct impact of 420 nm blue light on OSCC cells, providing valuable insights into its potential application as a clinical treatment for oral cancer.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Survival , Endoplasmic Reticulum Stress , Light , Mitochondria , Mouth Neoplasms , Humans , Endoplasmic Reticulum Stress/radiation effects , Mitochondria/radiation effects , Mitochondria/metabolism , Mouth Neoplasms/radiotherapy , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Apoptosis/radiation effects , Cell Survival/radiation effects , Cell Proliferation/radiation effects , Cell Movement/radiation effects , Signal Transduction/radiation effects , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Blue Light
7.
Arch Dermatol Res ; 316(7): 385, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874830

ABSTRACT

Ultraviolet-B (UV-B) radiation overexposure causes function impairment of epidermal stem cells (ESCs). We explored the mechanism of Annexin A1 (ANXA1) ameliorating UV-B-induced ESC mitochondrial dysfunction/cell injury. ESCs were cultured in vitro and irradiated with different doses of UV-B. Cell viability/ANXA1 protein level were assessed. After oe-ANXA1 transfection, ESCs were treated with oe-ANXA1/UV-B irradiation/CCCP/CCG-1423/3-methyladenine for 12 h. Cell viability/death, and adenosine triphosphate (ATP)/reactive oxygen species (ROS) levels were determined. Mitochondrial membrane potential (MMP) changes/DNA (mtDNA) content/oxygen consumption and RhoA activation were assessed. ROCK1/p-MYPT1/MYPT1/(LC3BII/I)/Beclin-1/p62 protein levels were determined. Mitochondrial morphology was observed. Mito-Tracker Green (MTG) and LC3B levels were determined. UV-B irradiation decreased cell viability/ANXA1 expression in a dose-dependent manner. UV-B-treated ESCs exhibited reduced cell viability/ATP content/MMP level/mitochondrial respiratory control ratio/mtDNA number/RhoA activity/MYPT1 phosphorylation/MTG+LC3B+ cells/(LC3BII/I) and Beclin-1 proteins, increased cell death/ROS/p62/IL-1ß/IL-6/TNF-α expression, contracted mitochondrial, disappeared mitochondrial cristae, and increased vacuolar mitochondria, which were averted by ANXA1 overexpression, suggesting that UV-B induced ESC mitochondrial dysfunction/cell injury/inflammation by repressing mitophagy, but ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thus repressing UV-B's effects. Mitophagy activation ameliorated UV-B-caused ESC mitochondrial dysfunction/cell injury/inflammation. Mitophagy inhibition partly diminished ANXA1-ameliorated UV-B's effects. Conjointly, ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thereby improving UV-B-induced ESC mitochondrial dysfunction/cell injury.


Subject(s)
Annexin A1 , Cell Survival , Membrane Potential, Mitochondrial , Mitochondria , Stem Cells , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Mitochondria/metabolism , Mitochondria/radiation effects , Annexin A1/metabolism , Cell Survival/radiation effects , Stem Cells/metabolism , Stem Cells/radiation effects , Humans , Membrane Potential, Mitochondrial/radiation effects , Reactive Oxygen Species/metabolism , Epidermal Cells/metabolism , Epidermal Cells/radiation effects , Cells, Cultured
8.
Sci Rep ; 14(1): 13299, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858410

ABSTRACT

Radiation therapy and phototherapy are commonly used cancer treatments that offer advantages such as a low risk of adverse effects and the ability to target cancer cells while sparing healthy tissue. A promising strategy for cancer treatment involves using nanoparticles (NPs) in combination with radiation and photothermal therapy to target cancer cells and improve treatment efficacy. The synthesis of gold NPs (AuNPs) for use in biomedical applications has traditionally involved toxic reducing agents. Here we harnessed dopamine (DA)-conjugated alginate (Alg) for the facile and green synthesis of Au NPs (Au@Alg-DA NPs). Alg-DA conjugate reduced Au ions, simultaneously stabilized the resulting AuNPs, and prevented aggregation, resulting in particles with a narrow size distribution and improved stability. Injectable Au@Alg-DA NPs significantly promoted ROS generation in 4T1 breast cancer cells when exposed to X-rays. In addition, their administration raised the temperature under a light excitation of 808 nm, thus helping to destroy cancer cells more effectively. Importantly, no substantial cytotoxicity was detected in our Au@Alg-DA NPs. Taken together, our work provides a promising route to obtain an injectable combined radio enhancer and photothermally active nanosystem for further potential clinic translation.


Subject(s)
Alginates , Breast Neoplasms , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Alginates/chemistry , Breast Neoplasms/radiotherapy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Animals , Mice , Photothermal Therapy/methods , Phototherapy/methods , Humans , Reactive Oxygen Species/metabolism , Dopamine/chemistry , Cell Survival/drug effects , Cell Survival/radiation effects
9.
Electromagn Biol Med ; 43(3): 135-144, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38708861

ABSTRACT

This paper presents the findings of a comprehensive study exploring the synergistic effects arising from the combination of microwave ablation and pulsed electromagnetic field (PEMF) therapy on prostate cancer cells. The research encompassed five distinct experimental groups, with continuous electric field measurements conducted during the entire treatment process. Group 1 and Group 2, subjected to microwave power below 350 W, exhibited specific electric field values of 72,800 V/m and 56,600 V/m, respectively. In contrast, Group 3 and Group 4, exposed to 80 W microwave power, displayed electric field levels of approximately 1450 V/m, while remaining free from any observable electrical discharges. The migratory and invasive capacities of PC3 cells were assessed through a scratch test in all groups. Notably, cells in Group 3 and Group 4, subjected to the combined treatment of microwave ablation and PEMF, demonstrated significantly accelerated migration in comparison to those in Groups 1 and 2. Additionally, Group 5 cells, receiving PEMF treatment in isolation, exhibited decreased migratory ability. These results strongly suggest that the combined approach of microwave ablation and PEMF holds promise as a potential therapeutic intervention for prostate cancer, as it effectively reduced cell viability, induced apoptosis, and impeded migration ability in PC3 cells. Moreover, the isolated use of PEMF demonstrated potential in limiting migratory capacity, which could hold critical implications in the fight against cancer metastasis.


In this study, a new approach to treat prostate cancer by combining microwave ablation (MWA) and pulsed electromagnetic field (PEMF) therapy is explored. We used specific devices like rectangular waveguides for MWA and circular coils for PEMF. The energy sources utilized in the study comprised a magnetron tube system, similar to the microwave source found in a microwave oven, for generating microwaves, and a signal generator for producing PEMF. We used specialized equipment for MWA and PEMF to maintain controlled conditions, ensuring precise and reliable results. The research included testing various groups of prostate cancer cells exposed to different intensities of microwave power and magnetic flux density. The movement of cancer cells in different groups was examined through a wound healing assay, where cancer cells were placed on a flat surface, and we observed whether they filled the gap created by their movement. Interestingly, cells treated with both MWA and PEMF demonstrated faster movement compared to cells treated with MWA alone or PEMF alone. This combined treatment not only effectively decreased cell movement but also showed the potential cell death. The results showed that the combination of MWA and PEMF suggest a promising therapeutic strategy. The findings contribute to the development of precise and effective therapies that could enhance patient outcomes and quality of life. However, further research and validation are essential before translating these findings into clinical applications.


Subject(s)
Cell Movement , Cell Survival , Electromagnetic Fields , Microwaves , Prostatic Neoplasms , Male , Microwaves/therapeutic use , Humans , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/radiotherapy , Cell Survival/radiation effects , Apoptosis/radiation effects , Ablation Techniques , PC-3 Cells , Cell Line, Tumor
10.
Anticancer Res ; 44(6): 2407-2415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821617

ABSTRACT

BACKGROUND/AIM: Caffeic acid phenethyl ester (CAPE) exerts anticancer effects against several cancer types, including breast cancer. Pulsed electromagnetic field (PEMF) improves the efficiency of some chemotherapeutic drugs. In this study, we examined the effects of PEMF stimulation on the anticancer activity of CAPE in MCF-7 breast cancer cells and the underlying signal transduction pathways. MATERIALS AND METHODS: MCF-7 cells were seeded and incubated for 24 h. Each of the drugs (5-fluorouracil, paclitaxel, gefitinib, or CAPE) was added to the cells on day 0. Then, cells were immediately stimulated with a 60-min PEMF session thrice a day (with 4-h interval between sessions) for 1-3 days. Cell death and viability were assessed by flow cytometry and trypan blue dye exclusion assay. Molecular mechanisms involved in cell death were confirmed by western blot assay. RESULTS: Compared with treatment with CAPE alone, co-treatment with CAPE and PEMF more strongly reduced the viability of MCF-7 cells, further increased the percentage of the sub-G1 population, poly (ADP-ribose) polymerase (PARP) cleavage, activation of apoptotic caspases, up-regulation of pro-apoptotic proteins, such as Fas cell surface death receptor (FAS) and BCL2 associated X, apoptosis regulator (BAX), and reduced the expression of anti-apoptotic proteins, such as BCL-2 apoptosis regulator (BCL-2), MCL-1 apoptosis regulator, BCL-2 family member (MCL-1), and survivin. PEMF stimulation also increased CAPE-induced phosphorylation of p53, and inhibition of p53 partially restored the PEMF-reduced viability of CAPE-treated MCF-7 cells. CONCLUSION: PEMF stimulation enhanced CAPE-induced cell death by activating p53, which regulates the expression of apoptosis-related molecules, subsequently activating the caspase-dependent apoptotic pathway in MCF-7 cells, suggesting that PEMF can be utilized as an adjuvant to enhance the effect of CAPE on breast cancer cells.


Subject(s)
Apoptosis , Breast Neoplasms , Caffeic Acids , Electromagnetic Fields , Phenylethyl Alcohol , Humans , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Signal Transduction/drug effects
11.
J Photochem Photobiol B ; 256: 112940, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776590

ABSTRACT

Photobiomodulation (PBM) is a well-established medical technology that employs diverse light sources like lasers or light-emitting diodes to generate diverse photochemical and photophysical reactions in cells, thereby producing beneficial clinical outcomes. In this study, we introduced an 830 nm near-infrared (NIR) laser irradiation system combined with a microscope objective to precisely and controllably investigate the impact of PBM on the migration and viability of human adipose mesenchymal stem cells (hADSCs). We observed a biphasic dose-response in hADSCs' viability and migration after PBM exposure (0-10 J/cm2), with the 5 J/cm2 group showing significantly higher cell viability and migration ability than other groups. Additionally, at the optimal dose of 5 J/cm2, we used nanoparticle tracking analysis (NTA) and found a 6.25-fold increase in the concentration of extracellular vesicles (EVs) derived from hADSCs (PBM/ADSC-EVs) compared to untreated cells (ADSC-EVs). Both PBM/ADSC-EVs and ADSC-EVs remained the same size, with an average diameter of 56 nm measured by the ExoView R200 system, which falls within the typical size range for exosomes. These findings demonstrate that PBM not only improves the viability and migration of hADSCs but also significantly increases the EV yield.


Subject(s)
Cell Movement , Cell Survival , Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Cell Survival/radiation effects , Cell Movement/radiation effects , Extracellular Vesicles/metabolism , Extracellular Vesicles/radiation effects , Adipose Tissue/cytology , Adipose Tissue/radiation effects , Low-Level Light Therapy , Dose-Response Relationship, Radiation , Cells, Cultured , Infrared Rays
12.
J Photochem Photobiol B ; 256: 112937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743989

ABSTRACT

As the outermost layer of the human body, the skin suffers from various external factors especially light damage, among which ultraviolet B (UVB) irradiation is common and possesses a relatively high biological damage capacity. Pyroptosis is a newly discovered type of programmed cell death, which can induce cell rupture and induce local inflammatory response. However, the molecular mechanisms of pyroptosis in photodamaged skin is poorly understood. Baicalin, a flavonoid extracted from the desiccated root of Scutellaria baicalensis Georgi (Huang Qin). Despite its antioxidant abilities, whether baicalin protects skin by attenuating UVB-induced pyroptosis remains unclear, which was the aim of this study. The UVB-induced acute skin damage model was established by using human immortalized keratinocytes (HaCaT cells) and Kunming (KM) strain mice. The protective dose selection for baicalin is 50 µM in vitro and 100 mg/kg in vivo. In in vitro study, UVB irradiation significantly decreased cell viability, increased cell death and oxidative stress in HaCaT cells, while pretreatment with baicalin improved these phenomena. Furthermore, the baicalin pretreatment notably suppressed nuclear factor kappa B (NF-κB) translocation, the NLRP3 inflammasome activation and gasdermin D (GSDMD) maturation, thus effectively attenuating UVB-induced pyroptosis. In in vivo study, the baicalin pretreatment mitigated epidermal hyperplasia, collagen fiber fragmentation, oxidative stress and pyroptosis in UVB-irradiated mouse skin. In a nutshell, this study suggests that baicalin could be a potential protective agent to attenuate acute skin damage induced by UVB irradiation through decreasing oxidative stress and suppressing NF-κB/NLRP3/GSDMD-involved pyroptosis.


Subject(s)
Flavonoids , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Skin , Ultraviolet Rays , Pyroptosis/drug effects , Pyroptosis/radiation effects , Flavonoids/pharmacology , Flavonoids/chemistry , Animals , Humans , Mice , Skin/radiation effects , Skin/drug effects , Skin/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Keratinocytes/metabolism , HaCaT Cells , Cell Survival/drug effects , Cell Survival/radiation effects , Phosphate-Binding Proteins/metabolism , Inflammasomes/metabolism , Cell Line
13.
Lasers Med Sci ; 39(1): 135, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787412

ABSTRACT

In this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.


Subject(s)
Breast Neoplasms , Cell Survival , Cytokines , Indoles , Organometallic Compounds , Photochemotherapy , Photosensitizing Agents , Humans , Photochemotherapy/methods , MCF-7 Cells , Cytokines/metabolism , Cell Survival/drug effects , Cell Survival/radiation effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Indoles/pharmacology , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Enzyme-Linked Immunosorbent Assay
14.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786104

ABSTRACT

Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells.


Subject(s)
Apoptosis , Biglycan , Decorin , Myocytes, Cardiac , Decorin/metabolism , Biglycan/metabolism , Apoptosis/radiation effects , Apoptosis/drug effects , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Humans
15.
J Dermatol Sci ; 114(3): 124-132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749796

ABSTRACT

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.


Subject(s)
Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Apoptosis , HaCaT Cells , Mice, Inbred BALB C , Mice, Nude , Skin Aging , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Apoptosis/radiation effects , Apoptosis/genetics , Humans , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Methylation/radiation effects , Skin Aging/radiation effects , Skin Aging/genetics , Skin/radiation effects , Skin/pathology , Skin/metabolism , Keratinocytes/radiation effects , Keratinocytes/metabolism , Cell Survival/radiation effects , Epigenesis, Genetic/radiation effects , Female
16.
Phys Med Biol ; 69(10)2024 May 03.
Article in English | MEDLINE | ID: mdl-38700988

ABSTRACT

Liew and Mairani commented on our paper 'Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation' (Shiraishiet al2024aPhys. Med. Biol.69015017), which proposed a biophysical model to predict the dose-response curve of surviving cell fractions after ultra-high dose rate irradiation following conventional dose rate irradiation by considering DNA damage yields. They suggested the need to consider oxygen concentration in our prediction model and possible issues related to the data selection process used for the benchmarking test in our paper. In this reply, we discuss the limitations of both the present model and the available experimental data for determining the model's parameters. We also demonstrate that our proposed model can reproduce the experimental survival data even when using only the experimental DNA damage data measured reliably under normoxic conditions.


Subject(s)
Cell Survival , DNA Damage , Dose-Response Relationship, Radiation , Models, Biological , Cell Survival/radiation effects , Radiation Dosage , Humans , Oxygen/metabolism
17.
Phys Med Biol ; 69(10)2024 May 03.
Article in English | MEDLINE | ID: mdl-38700989

ABSTRACT

We comment on the recently published study 'Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation' by Shiraishiet al. While the general approach of the study may be appropriate, we wish to comment on its limitations and point out issues concerning their choice of the benchmarking and fitting data. The approach by the authors could become viable in an extended form once more comprehensive data is available.


Subject(s)
Cell Survival , Models, Biological , Cell Survival/radiation effects , Humans , Dose-Response Relationship, Radiation
18.
Sci Rep ; 14(1): 10957, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740830

ABSTRACT

Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies. The ARES (accelerator research experiment at SINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate (PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability and uniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using the clonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first time using this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEE irradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival was fitted to the linear quadratic (LQ) model (R2 = 0.96-0.97). The damage from VHEE and X-ray irradiated cells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biological effectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photon radiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. The RBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival. Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5) and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeV electrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would be a viable radiotherapy modality. Several studies have shown that VHEE has characteristics that would offer significant improvements over conventional photon radiotherapy for example, electrons are relatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies have shown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicating that VHEE can offer improved and safer treatment plans with reduced side effects. The biological response of cancer cells to VHEE has not been sufficiently studied as of yet, however this initial study provides some initial insights into cell damage. VHEE offers significant benefits over photon radiotherapy and therefore more studies are required to fully understand the biological effectiveness of VHEE.


Subject(s)
Cell Survival , Lung Neoplasms , Prostatic Neoplasms , Relative Biological Effectiveness , Humans , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Male , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Cell Survival/radiation effects , Electrons/therapeutic use , Particle Accelerators , PC-3 Cells , Cell Line, Tumor , A549 Cells
19.
Sci Rep ; 14(1): 12160, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38802452

ABSTRACT

The knowledge on responses of human lens epithelial cells (HLECs) to ionizing radiation exposure is important to understand mechanisms of radiation cataracts that are of concern in the field of radiation protection and radiation therapy. However, biological effects in HLECs following protracted exposure have not yet fully been explored. Here, we investigated the temporal kinetics of γ-H2AX foci as a marker for DNA double-strand breaks (DSBs) and cell survival in HLECs after exposure to photon beams at various dose rates (i.e., 150 kVp X-rays at 1.82, 0.1, and 0.033 Gy/min, and 137Cs γ-rays at 0.00461 Gy/min (27.7 cGy/h) and 0.00081 Gy/min (4.9 cGy/h)), compared to those in human lung fibroblasts (WI-38). In parallel, we quantified the recovery for DSBs and cell survival using a biophysical model. The study revealed that HLECs have a lower DSB repair rate than WI-38 cells. There is no significant impact of dose rate on cell survival in both cell lines in the dose-rate range of 0.033-1.82 Gy/min. In contrast, the experimental residual γ-H2AX foci showed inverse dose rate effects (IDREs) compared to the model prediction, highlighting the importance of the IDREs in evaluating radiation effects on the ocular lens.


Subject(s)
Cell Survival , DNA Breaks, Double-Stranded , Dose-Response Relationship, Radiation , Epithelial Cells , Histones , Lens, Crystalline , Humans , Epithelial Cells/radiation effects , Epithelial Cells/metabolism , Lens, Crystalline/radiation effects , Lens, Crystalline/cytology , DNA Breaks, Double-Stranded/radiation effects , Histones/metabolism , Cell Survival/radiation effects , Radiation, Ionizing , Cell Line , DNA Repair/radiation effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , X-Rays , Gamma Rays/adverse effects
20.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724835

ABSTRACT

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Subject(s)
Docetaxel , Metal Nanoparticles , Prostatic Neoplasms , Radiation-Sensitizing Agents , Silver , Humans , Docetaxel/pharmacology , Male , Silver/pharmacology , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Caspase 3/metabolism , Caspase 3/genetics , Antineoplastic Agents/pharmacology , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Cadherins/metabolism , Cadherins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...