Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.436
Filter
1.
Food Chem ; 462: 141020, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39216377

ABSTRACT

The effects of preharvest methyl jasmonate (MeJA) spray application on the physicochemical quality, metabolism of phenolics, and cell wall components in raspberries were investigated during a 10-day cold storage period. MeJA spray reduced firmness loss, decay incidence, and weight loss, while maintained higher levels of soluble solids content, ascorbic acid, anthocyanins and flavonoids in raspberries. Furthermore, MeJA application resulted in increased total pectin and protopectin levels, as well as lowered water-soluble pectin, and activities of pectin methyl esterase, polygalacturonase and cellulase enzymes. Additionally, MeJA treatment upregulated the phenylpropanoid pathway, leading to higher endogenous phenolics and activities of phenylalanine-ammonia lyase and shikimate dehydrogenase. In conclusion, preharvest MeJA spray application could be adopted to enhance the storage potential of cold-stored raspberries for 10 days by maintaining higher firmness, assuring better physicochemical quality, and increasing phenolic metabolism, while reducing cell wall hydrolysis.


Subject(s)
Acetates , Antioxidants , Cell Wall , Cyclopentanes , Food Storage , Fruit , Oxylipins , Phenols , Rubus , Oxylipins/pharmacology , Oxylipins/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , Cell Wall/chemistry , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Phenols/metabolism , Antioxidants/metabolism , Acetates/pharmacology , Acetates/metabolism , Fruit/metabolism , Fruit/chemistry , Fruit/drug effects , Rubus/metabolism , Rubus/chemistry , Food Preservation/methods , Cold Temperature , Plant Proteins/metabolism
2.
Elife ; 132024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352247

ABSTRACT

The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces. Dynamic bacterial focal adhesion complexes (bFACs) convert proton motive force from the inner membrane into mechanical propulsion on the cell surface. It is unclear how the mechanical force transmits across the rigid peptidoglycan (PG) cell wall. Here, we show that AgmT, a highly abundant lytic PG transglycosylase homologous to Escherichia coli MltG, couples bFACs to PG. Coprecipitation assay and single-particle microscopy reveal that the gliding motors fail to connect to PG and thus are unable to assemble into bFACs in the absence of an active AgmT. Heterologous expression of E. coli MltG restores the connection between PG and bFACs and thus rescues gliding motility in the M. xanthus cells that lack AgmT. Our results indicate that bFACs anchor to AgmT-modified PG to transmit mechanical force across the PG cell wall.


Subject(s)
Cell Wall , Glycosyltransferases , Myxococcus xanthus , Peptidoglycan , Peptidoglycan/metabolism , Cell Wall/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/physiology , Myxococcus xanthus/metabolism , Myxococcus xanthus/enzymology , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Focal Adhesions/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Adhesion
3.
Sci Rep ; 14(1): 23366, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39375422

ABSTRACT

The oleaginous yeast species Rhodotorula toruloides is a promising candidate for applications in circular bioeconomy due to its ability to efficiently utilize diverse carbon sources being tolerant to cellular stress in bioprocessing. Previous studies including genome-wide analyses of the multi-stress tolerant strain IST536 MM15, derived through adaptive laboratory evolution from a promising IST536 strain for lipid production from sugar beet hydrolysates, suggested the occurrence of significant modifications in the cell wall. In this study, the cell wall integrity and carbohydrate composition of those strains was characterized to gain insights into the physicochemical changes associated to the remarkable multi-stress tolerance phenotype of the evolved strain. Compared to the original strain, the evolved strain exhibited a higher proportion of glucomannans, fucogalactomannans, and chitin relative to (1→4)-linked glucans, and an increased presence of glycoproteins with short glucosamine derived oligosaccharides, which have been found to be associated to ethanol stress tolerance and physical strength of the cell wall. Furthermore, the evolved strain cells were found to be significantly smaller than the original strain and more resistant to thermal and mechanical disruption, consistent with higher proportion of beta-linked polymers instead of glycogen, conferring a more rigid and robust cell wall. These findings provide further insights into the cell wall composition of this basidiomycetous red yeast species and into the alterations occurring in a multi-stress tolerant evolved strain. This new information can guide yeast genome engineering towards more robust strains of biotechnological relevance.


Subject(s)
Cell Wall , Rhodotorula , Stress, Physiological , Rhodotorula/genetics , Rhodotorula/metabolism , Cell Wall/metabolism
4.
Virulence ; 15(1): 2411540, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39359063

ABSTRACT

The ability to form robust biofilms and secrete a diverse array of virulence factors are key pathogenic determinants of Staphylococcus aureus, causing a wide range of infectious diseases. Here, we characterized cwrA as a VraR-regulated gene encoding a cell wall inhibition-responsive protein (CwrA) using electrophoretic mobility shift assays. We constructed cwrA deletion mutants in the genetic background of methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains. Phenotypic analyses indicated that deletion of cwrA led to impaired biofilm formation, which was correlated with polysaccharide intercellular adhesin (PIA). Besides, the results of real-time quantitative PCR (RT-qPCR) and ß-galactosidase activity assay revealed that CwrA promoted biofilm formation by influence the ica operon activity in S. aureus. Furthermore, cwrA deletion mutants released less extracellular DNA (eDNA) in the biofilm because of their reduced autolytic activity compared to the wild-type (WT) strains. We also found that cwrA deletion mutant more virulence than the parental strain because of its enhanced hemolytic activity. Mechanistically, this phenotypic alteration is related to activation of the SaeRS two-component system, which positively regulates the transcriptional levels of genes encoding membrane-damaging toxins. Overall, our results suggest that CwrA plays an important role in modulating biofilm formation and hemolytic activity in S. aureus.


Subject(s)
Bacterial Proteins , Biofilms , Cell Wall , Gene Expression Regulation, Bacterial , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Biofilms/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/genetics , Virulence , Cell Wall/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Staphylococcal Infections/microbiology , Animals , Mice , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Operon , Transcription Factors/genetics , Transcription Factors/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Gene Deletion , Female , Protein Kinases
5.
Nat Commun ; 15(1): 8499, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358320

ABSTRACT

Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.


Subject(s)
Cell Wall , Listeria monocytogenes , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/physiology , Animals , Cell Wall/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chick Embryo , Listeriosis/microbiology , Microbial Viability , Virulence , Listeria/genetics , Humans
6.
Elife ; 122024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360705

ABSTRACT

Peptidoglycan (PG) is a giant macromolecule that completely surrounds bacterial cells and prevents lysis in hypo-osmotic environments. This net-like macromolecule is made of glycan strands linked to each other by two types of transpeptidases that form either 4→3 (PBPs) or 3→3 (LDTs) cross-links. Previously, we devised a heavy isotope-based PG full labeling method coupled to mass spectrometry to determine the mode of insertion of new subunits into the expanding PG network (Atze et al., 2022). We showed that PG polymerization operates according to different modes for the formation of the septum and of the lateral cell walls, as well as for bacterial growth in the presence or absence of ß-lactams in engineered strains that can exclusively rely on LDTs for PG cross-linking when drugs are present. Here, we apply our method to the resolution of the kinetics of the reactions leading to the covalent tethering of the Braun lipoprotein (Lpp) to PG and the subsequent hydrolysis of that same covalent link. We find that Lpp and disaccharide-peptide subunits are independently incorporated into the expanding lateral cell walls. Newly synthesized septum PG appears to contain small amounts of tethered Lpp. LDTs did mediate intense shuffling of Lpp between PG stems leading to a dynamic equilibrium between the PG-tethered and free forms of Lpp.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Lipoproteins , Peptidoglycan , Peptidoglycan/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Lipoproteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Cell Wall/metabolism
7.
Elife ; 132024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360693

ABSTRACT

The extracellular matrix plays an integrative role in cellular responses in plants, but its contribution to the signalling of extracellular ligands largely remains to be explored. Rapid alkalinisation factors (RALFs) are extracellular peptide hormones that play pivotal roles in various physiological processes. Here, we address a crucial connection between the de-methylesterification machinery of the cell wall component pectin and RALF1 activity. Pectin is a polysaccharide, contributing to the structural integrity of the cell wall. Our data illustrate that the pharmacological and genetic interference with pectin methyl esterases (PMEs) abolishes RALF1-induced root growth repression. Our data suggest that positively charged RALF1 peptides bind negatively charged, de-methylesterified pectin with high avidity. We illustrate that the RALF1 association with de-methylesterified pectin is required for its FERONIA-dependent perception, contributing to the control of the extracellular matrix and the regulation of plasma membrane dynamics. Notably, this mode of action is independent of the FER-dependent extracellular matrix sensing mechanism provided by FER interaction with the leucine-rich repeat extensin (LRX) proteins. We propose that the methylation status of pectin acts as a contextualizing signalling scaffold for RALF peptides, linking extracellular matrix dynamics to peptide hormone-mediated responses.


Subject(s)
Arabidopsis , Carboxylic Ester Hydrolases , Pectins , Signal Transduction , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Pectins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Cell Wall/metabolism , Extracellular Matrix/metabolism
8.
Int J Syst Evol Microbiol ; 74(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39365649

ABSTRACT

A Gram-stain-positive, aerobic, moderate halophilic actinobacterium, designated strain YIM 96095T, was isolated from a saline soil sample collected from Aiding Lake, Xinjiang, North-western China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate belonged to the family Nocardiopsidaceae, formed a distinct subclade, and was most closely related to Lipingzhangella halophila DSM 102030T and Allosalinactinospora lopnorensis DSM 45697T with sequence identity values of 95.8 and 95.1%, respectively. Optimal growth occurred at 37 °C, pH 7.0-8.0 and with 5-16% (w/v) NaCl, with well-developed, non-fragmented substrate mycelia and single-, double-, or triple-wrinkled spore(s) on the mature aerial hyphae. The chemical analysis presented meso-diaminopimelic acid as the diagnostic diamino acid of the cell-wall peptidoglycan, and glucose, galactose and rhamnose as the major whole-cell sugars, and iso-C15 : 0 and anteiso-C15 : 0 as the major fatty acids. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, unidentified phospholipids and unidentified glycolipid. The menaquinones were MK-10(H8), MK-10(H6) and MK-9(H10). Its G+C content was 69.7 mol% in the determined genome sequence. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, a novel genus and species named Halostreptopolyspora alba gen. nov., sp. nov. is proposed for isolate YIM 96095T (=KCTC 49266T=CGMCC 4.7636T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , China , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Bacterial/genetics , Peptidoglycan , Phospholipids/analysis , Phospholipids/chemistry , Sodium Chloride/metabolism , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Diaminopimelic Acid/analysis , Lakes/microbiology , Cell Wall/chemistry
9.
World J Microbiol Biotechnol ; 40(11): 343, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39375274

ABSTRACT

Microalgae are susceptible to most pollutants in aquatic ecosystems and can be potentially damaged by silver nanoparticles (AgNPs). This study aims to clarify the potential consequences of Chlorella vulgaris internalizing AgNPs. The exposure of C. vulgaris to AgNPs stabilized with citrate led to the accumulation of NPs in the cell wall, increasing permeability, which allowed the entry of AgNPs and Ag + ions resulting from the dissolution of AgNPs. Ag + accumulated inside the cell could be converted into AgNPs (endogenous) due to the reducing potential of the cytoplasm. Both exogenous and endogenous AgNPs caused damage to all biological structures of the algae, as demonstrated by TEM images. This damage included the disorganization of chloroplasts, deposition of AgNPs on starch granules, and increased amounts of lipids, starch granules, exopolysaccharides, plastoglobuli, and cell diameters. These changes caused cell death by altering cell viability and interfering with organelle functions, possibly due to reactive oxygen species generated by nanoparticles, as shown in a lipid bilayer model. These findings highlight the importance of considering the exposure risks of AgNPs in a worldwide distributed chlorophyte.


Subject(s)
Chlorella vulgaris , Metal Nanoparticles , Microalgae , Reactive Oxygen Species , Silver , Silver/metabolism , Silver/pharmacology , Chlorella vulgaris/drug effects , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Metal Nanoparticles/chemistry , Microalgae/metabolism , Microalgae/drug effects , Reactive Oxygen Species/metabolism , Microscopy, Electron, Transmission , Cell Wall/drug effects , Cell Wall/metabolism , Chloroplasts/metabolism , Chloroplasts/drug effects
10.
Physiol Plant ; 176(5): e14520, 2024.
Article in English | MEDLINE | ID: mdl-39351613

ABSTRACT

Adhesion and consequent adoption of a sessile habit is a common feature of many green algae and was likely a key mechanism in terrestrialization by an ancient zygnematophyte (i.e., the Zygnematophyceae, the group of algae ancestral to land plants). Penium margaritaceum is a unicellular zygnematophyte that exhibits a multistep adhesion mechanism, which leads to the establishment of the sessile habit. Based on microscopic and immunological data, a dense aggregate of fibrils containing arabinogalactan-protein (AGP)-like components covers the cell surface and is responsible for initial adhesion. The AGP-like fibrils are 20 µm in diameter and possess chemical profiles similar to land plant AGPs. The fibrils attach to the inner cell wall layers and are very likely connected to the plasma membrane as glycophosphatidylinositol (GPI) lipid-anchored proteins, as they are susceptible to phospholipase C treatment. The presence of GPI-anchored AGPs in Penium is further supported by the identification of putative Penium homologs of land plant AGP genes responsible for GPI-anchor synthesis. After adhesion, cells secrete a complex heteropolysaccharide-containing extracellular polymeric substance (EPS) that facilitates gliding motility and the formation of cell aggregates. Fucoidan-like polymers, major components of brown algal CWs, are a major constituent of both the EPS and the adhesive layer of the CW and their role in the adhesion process is still to be examined.


Subject(s)
Cell Adhesion , Extracellular Matrix , Mucoproteins , Plant Proteins , Extracellular Matrix/metabolism , Mucoproteins/metabolism , Mucoproteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Adhesion/physiology , Cell Wall/metabolism , Chlorophyta/metabolism , Chlorophyta/genetics , Chlorophyta/physiology
11.
Molecules ; 29(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274911

ABSTRACT

The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.


Subject(s)
Anti-Bacterial Agents , Cell Wall , Gram-Positive Bacteria , Cell Wall/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria/drug effects , Humans , Bacteriocins/pharmacology , Bacteriocins/chemistry , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Bacteriophages
12.
BMC Biol ; 22(1): 191, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218874

ABSTRACT

BACKGROUND: Brassica napus L. (B. napus) is susceptible to waterlogging stress during different cultivation periods. Therefore, it is crucial to enhance the resistance to waterlogging stress to achieve a high and stable yield of B. napus. RESULTS: Here we observed significant differences in the responses of two B. napus varieties in root under waterlogging stress. The sensitive variety (23651) exhibited a more pronounced and rapid reduction in cell wall thickness and root integrity compared with the tolerant variety (Santana) under waterlogging stress. By module clustering analysis based on transcriptome data, we identified that cell wall polysaccharide metabolism responded to waterlogging stress in root. It was found that pectin content was significantly reduced in the sensitive variety compared with the tolerant variety. Furthermore, transcriptome analysis revealed that the expression of two homologous genes encoding polygalacturonase-inhibiting protein 2 (PGIP2), involved in polysaccharide metabolic pathways, was highly upregulated in root of the tolerant variety under waterlogging stress. BnaPGIP2s probably confer waterlogging resistance by inhibiting the activity of polygalacturonases (PGs), which in turn reduces the degradation of the pectin backbone polygalacturonic acid. CONCLUSIONS: Our findings demonstrate that cell wall polysaccharides in root plays a vital role in response to the waterlogging stress and provide a theoretical foundation for breeding waterlogging resistance in B. napus varieties.


Subject(s)
Brassica napus , Cell Wall , Plant Roots , Polysaccharides , Stress, Physiological , Brassica napus/physiology , Brassica napus/genetics , Cell Wall/metabolism , Polysaccharides/metabolism , Plant Roots/physiology , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Pectins/metabolism , Water/metabolism
13.
Molecules ; 29(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39274979

ABSTRACT

Dental caries (DC) is one of the most common oral diseases and is mainly caused by Streptococcus mutans (S. mutans). The use of antibiotics against S. mutans usually has side effects, including developing resistance. N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), a natural product, has great potential utility in antibacterial agents owing to its low toxicity and good biocompatibility. Thus, the purpose of the present study was to explore the antimicrobial activity of N-2-HACC against S. mutans through the permeability of the cell wall, integrity of cell membrane, protein and nucleic acid synthesis, respiratory metabolism, and biofilm formation. Our results confirmed that the MIC of N-2-HACC against S. mutans was 0.625 mg/mL with a 90.01 ± 1.54% inhibition rate. SEM observed the formation of cavities on the surface of S. mutans after 12 h N-2-HACC treatment. The level of alkaline phosphatase (AKP) activity was higher in the N-2-HACC treatment group than in the control group, indicating that N-2-HACC can improve the permeability of the cell wall. Also, N-2-HACC treatment can destroy the cell membrane of S. mutans by increasing conductivity and absorbance at 260 nm, decreasing cell metabolic activity, and enhancing the fluorescence at 488 nm. Respiratory metabolism revealed that the activities of the Na+-K+-ATP enzyme, pyruvate kinase (PK), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were decreased after N-2-HACC treatment, revealing that N-2-HACC can inhibit glycolysis and the tricarboxylic acid cycle (TCA cycle) of S. mutans. Moreover, N-2-HACC can also decrease the contents of the nucleic acid and solution protein of S. mutans, interfere with biofilm formation, and decrease the mRNA expression level of biofilm formation-related genes. Therefore, these results verify that N-2-HACC has strong antibacterial activity against S. mutans, acting via cell membrane integrity damage, increasing the permeability of cell walls, interfering with bacterial protein and nucleic acid synthesis, perturbing glycolysis and the TCA cycle, and inhibiting biofilm formation. It is suggested that N-2-HACC may represent a new potential synthetically modified antibacterial material against S. mutans.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Microbial Sensitivity Tests , Streptococcus mutans , Streptococcus mutans/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biofilms/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Dental Caries/microbiology , Dental Caries/drug therapy , Cell Wall/drug effects , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/chemical synthesis
14.
Molecules ; 29(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39275049

ABSTRACT

This study focused on developing an effective cell wall-breaking method for Phaffia rhodozyma, followed by utilizing subcritical fluid extraction to isolate, extract, and concentrate astaxanthin from the complex fermentation products of P. rhodozyma. A comprehensive comparison of seven distinct methods for disrupting cell walls, including dimethyl sulfoxide treatment, lactic acid treatment, sodium hydroxide treatment, ß-glucanase enzymatic digestion, ß-mannanase enzymatic digestion, and a combined enzymatic treatment involving both ß-mannanase and ß-glucanase was conducted. The results identified the lactic acid method as the most effective in disrupting the cell walls of P. rhodozyma. The software, Design Expert, was used in the process of extracting astaxanthin from cell lysates using a subcritical extraction method. Through fitting analysis and response surface optimization analysis by Design Expert, the optimal extraction conditions were determined as follows: an extraction temperature of 41 °C, extraction frequency of two times, and extraction time of 46 min. These parameters facilitated the efficient extraction, concentration, and enrichment of astaxanthin from P. rhodozyma, resulting in an astaxanthin concentration of 540.00 mg/L. This result can establish the foundation for its high-value applications.


Subject(s)
Basidiomycota , Cell Wall , Xanthophylls , Xanthophylls/isolation & purification , Xanthophylls/chemistry , Cell Wall/chemistry , Basidiomycota/chemistry , Fermentation
15.
Pestic Biochem Physiol ; 204: 106087, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277400

ABSTRACT

Anthracnose, a fungal disease, commonly infects tea plants and severely impacts the yield and quality of tea. One method for controlling anthracnose is the application of citronellol, a plant extract that exhibits broad-spectrum antimicrobial activity. Herein, the physiological and biochemical mechanism by which citronellol controls anthracnose caused by Colletotrichum camelliae was investigated. Citronellol exhibited excellent antifungal activity based on direct and indirect mycelial growth inhibition assays, with EC50 values of 76.88 mg/L and 29.79 µL/L air, respectively. Citronellol also exhibited good control effects on C. camelliae in semi-isolated leaf experiments. Optical and scanning electron microscopy revealed that citronellol caused C. camelliae mycelia to thin, fracture, fold and deform. Transmission electron microscopy revealed that the mycelial cell walls collapsed inward and separated, and the organelles became blurred after treatment with citronellol. The sensitivity of C. camelliae to calcofluor white staining was significantly enhanced by citronellol, while PI staining showed minimal fluorescence, and the relative conductivity of mycelia were not significantly different. Under citronellol treatment, the expression levels of ß-1,3-glucanase, chitin synthase, and chitin deacetylase-related genes were significantly decreased, while the expression levels of chitinase genes were increased, leading to lower chitinase activity and increased ß-1,3-glucanase activity. Therefore, citronellol disrupted the cell wall integrity of C. camelliae and inhibited normal mycelial growth.


Subject(s)
Acyclic Monoterpenes , Cell Wall , Colletotrichum , Colletotrichum/drug effects , Cell Wall/drug effects , Cell Wall/ultrastructure , Acyclic Monoterpenes/pharmacology , Antifungal Agents/pharmacology , Monoterpenes/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Mycelium/drug effects , Mycelium/growth & development , Mycelium/ultrastructure , Fungicides, Industrial/pharmacology
16.
Chem Biol Drug Des ; 104(3): e14612, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39237482

ABSTRACT

The Mycobacterium cell wall is a capsule-like structure comprising of various layers of biomolecules such as mycolic acid, peptidoglycans, and arabinogalactans, which provide the Mycobacteria a sort of cellular shield. Drugs like isoniazid, ethambutol, cycloserine, delamanid, and pretomanid inhibit cell wall synthesis by inhibiting one or the other enzymes involved in cell wall synthesis. Many enzymes present across these layers serve as potential targets for the design and development of newer anti-TB drugs. Some of these targets are currently being exploited as the most druggable targets like DprE1, InhA, and MmpL3. Many of the anti-TB agents present in clinical trials inhibit cell wall synthesis. The present article covers a systematic perspective of developing cell wall inhibitors targeting various enzymes involved in cell wall biosynthesis as potential drug candidates for treating Mtb infection.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Cell Wall , Mycobacterium tuberculosis , Cell Wall/metabolism , Cell Wall/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Tuberculosis/drug therapy , Oxidoreductases/metabolism , Oxidoreductases/antagonists & inhibitors , Mycolic Acids/metabolism , Alcohol Oxidoreductases , Membrane Transport Proteins
17.
Carbohydr Polym ; 344: 122526, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218549

ABSTRACT

Flax (Linum usitatissimum L.) is a plant of industrial importance, its fibres being presently used for high-value textile applications, composite reinforcements as well as natural actuators. Human interest in this fibre-rich plant dates back several millennia, including to Ancient Egypt where flax was used extensively in various quotidian items. While the recent technical developments of flax fibres continue to diversify through scientific research, the historical use of flax also has rich lessons for today. Through careful examination of ancient Egyptian and modern flax fibres, this study aims to conduct a multi-scale characterization from the yarn to the fibre cell wall scale, linking differences in structure and polysaccharide content to the mechanical performance and durability of flax. Here, a multi-scale biochemical study is enriched by scanning electron microscopy and nanomechanical investigations. A key finding is the similarity of cellulose features, crystallinity index and local mechanical performances between ancient and modern fibres. Biochemically speaking, monosaccharides analysis, deep-UV and NMR investigations demonstrate that ancient fibres exhibit less pectins but a similar hemicellulosic content, especially through uronic acids and galactose, suggesting the sensitivity of these non-crystalline components.


Subject(s)
Cell Wall , Flax , Polysaccharides , Flax/chemistry , Cell Wall/chemistry , Polysaccharides/chemistry , Cellulose/chemistry , Uronic Acids/chemistry , Uronic Acids/analysis , Egypt , Pectins/chemistry , Microscopy, Electron, Scanning
18.
Med Mycol J ; 65(3): 75-82, 2024.
Article in Japanese | MEDLINE | ID: mdl-39218650

ABSTRACT

The hyphal surface of cells of filamentous fungi is covered with cell wall, which is mainly composed of polysaccharides. Since the cell wall is the first structure to come in contact with the infection host, the environment, and the fungus itself, the elucidation of the cell wall structure and biogenesis is essential for understanding fungal ecology. Among filamentous fungi, the genus Aspergillus is an important group in the industrial, food, and medical fields. It is known that Aspergillus species form hyphal pellets in shake liquid culture. The authors previously found the role of α-1,3-glucan in hyphal aggregation in Aspergillus species. In addition, extracellular polysaccharide galactosaminogalactan contributed to hyphal aggregation as well, and dual disruption of biosynthesis genes of α-1,3-glucan and galactosaminogalactan resulted in complete hyphal dispersion in shake liquid culture. The characteristic of mycelia to form pellets under liquid culture conditions was the main reason why the growth measurement methods used for unicellular organisms could not be applied. We reported that hyphal growth of the dual disruption mutant could be measured by optical density. A real-time plate reader could be used to determine the growth curve of the mycelial growth of the dual disruption mutant. This measurement approach not only provides basic microbiological insights in filamentous fungi, but also has the potential to be applied to high-throughput screening of anti-Aspergillus drugs.


Subject(s)
Aspergillus , Cell Wall , Hyphae , Hyphae/growth & development , Aspergillus/genetics , Glucans/metabolism , Industrial Microbiology/methods
19.
Compr Rev Food Sci Food Saf ; 23(5): e70003, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223755

ABSTRACT

Yeast cell wall (YCW) polysaccharides, including ß-glucans, mannans, chitins, and glycogens, can be extracted from the waste of beer industry. They are environmentally friendly, abundant, inexpensive raw materials, and have shown broad biological activities and application potentials. The exploitation of yeast polysaccharides is of great importance for environmental protection and resource utilization. This paper reviews the structural features and preparation of YCW polysaccharides. The solubility and emulsification of yeast polysaccharides and the properties of binding metal ions are presented. In addition, biological activities such as blood glucose and lipid lowering, immune regulation, antioxidant, promotion of intestinal health, and promotion of wound healing are proposed, highlighting the beneficial effects of yeast polysaccharides on human health. Through modification, the physical and chemical properties of yeast polysaccharides are changed, which emphasizes the promotion of their biological activities and properties. In addition, the food applications of yeast polysaccharides, including the food packaging film, emulsifier, thickening agent, and fat alternatives, are focused and discussed.


Subject(s)
Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Saccharomyces cerevisiae/chemistry , Yeasts/chemistry , Humans , Food Packaging/methods , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Emulsifying Agents/chemistry , Cell Wall/chemistry
20.
Food Res Int ; 194: 114940, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232550

ABSTRACT

Hyperspectral microscope imaging (HMI) technique was employed to assess the changes in physicochemical parameters and microstructure of 'Golden Delicious' apples flesh during storage. Four regions of interest (ROIs), including whole-cell ROI, intercellular space ROI, cytoplasm ROI, and cell wall ROI were investigated to assess their relationships with physicochemical parameters. Different ROIs presented similar vibrational profiles, but with slight differences in spectral intensity, especially in the range of 800-1000 nm. Spectral angle mapper (SAM) was applied to the HMI of apple tissues at different storage stages to clearly show the structural changes of parenchyma cells, while principal component analysis (PCA) could highlight the distribution of sugars, water and pigments in apple flesh at the cellular scale. Simultaneously with the degradation of acid-soluble pectin (ASP), middle lamella dissolution and increased intercellular space were observed using SEM and TEM. Single feature variables were used to construct linear models based on pearson correlation analysis, with R2 of 0.96 for moisture at 982 nm, 0.85 for water-soluble pectin (WSP) at 420 nm, 0.82 for L* at 946 nm, 0.77 for soluble solids content (SSC) at 484 nm, and 0.66 for firmness at 490 nm. This work demonstrated the great potential of HMI technology as a fast, accurate and efficient solution for assessing the quality of 'Golden Delicious' apples.


Subject(s)
Fruit , Hyperspectral Imaging , Malus , Pectins , Malus/chemistry , Fruit/chemistry , Hyperspectral Imaging/methods , Pectins/chemistry , Pectins/analysis , Principal Component Analysis , Microscopy/methods , Food Storage/methods , Microscopy, Electron, Scanning , Cell Wall/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL