Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 573.870
Filter
1.
Islets ; 16(1): 2385510, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39097865

ABSTRACT

Human islets from deceased organ donors have made important contributions to our understanding of pancreatic endocrine function and continue to be an important resource for research studies aimed at understanding, treating, and preventing diabetes. Understanding the impacts of isolation and culture upon the yield of human islets for research is important for planning research studies and islet distribution to distant laboratories. Here, we examine islet isolation and cell culture outcomes at the Alberta Diabetes Institute (ADI) IsletCore (n = 197). Research-focused isolations typically have a lower yield of islet equivalents (IEQ), with a median of 252,876 IEQ, but a higher purity (median 85%) than clinically focused isolations before culture. The median recovery of IEQs after culture was 75%, suggesting some loss. This was associated with a shift toward smaller islet particles, indicating possible islet fragmentation, and occurred within 24 h with no further loss after longer periods of culture (up to 136 h). No overall change in stimulation index as a measure of islet function was seen with culture time. These findings were replicated in a representative cohort of clinical islet preparations from the Clinical Islet Transplant Program at the University of Alberta. Thus, loss of islets occurs within 24 h of isolation, and there is no further impact of extended culture prior to islet distribution for research.


Subject(s)
Cell Culture Techniques , Islets of Langerhans , Humans , Islets of Langerhans/cytology , Alberta , Male , Cell Culture Techniques/methods , Female , Adult , Islets of Langerhans Transplantation/methods , Middle Aged , Cells, Cultured , Aged , Young Adult , Cell Separation/methods , Adolescent
2.
BMC Cardiovasc Disord ; 24(1): 406, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098896

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is a major disease with high morbidity and mortality worldwide. However, existing treatments are far from satisfactory, making the exploration of potent molecular targets more imperative. The E3 ubiquitin ligase RING finger protein 5 (RNF5) has been previously reported to be involved in several diseases by regulating ubiquitination-mediated protein degradation. Nevertheless, few reports have focused on its function in cardiovascular diseases, including MI. METHODS: In this study, we established RNF5 knockout mice through precise CRISPR-mediated genome editing and utilized left anterior descending coronary artery ligation in 9-11-week-old male C57BL/6 mice. Subsequently, serum biochemical analysis and histopathological examination of heart tissues were performed. Furthermore, we engineered adenoviruses for modulating RNF5 expression and subjected neonatal rat cardiomyocytes to oxygen-glucose deprivation (OGD) to mimic ischemic conditions, demonstrating the impact of RNF5 manipulation on cellular viability. Gene and protein expression analysis provided insights into the molecular mechanisms. Statistical methods were rigorously employed to assess the significance of experimental findings. RESULTS: We found RNF5 was downregulated in infarcted heart tissue of mice and NRCMs subjected to OGD treatment. RNF5 knockout in mice resulted in exacerbated heart dysfunction, more severe inflammatory responses, and increased apoptosis after MI surgery. In vitro, RNF5 knockdown exacerbated the OGD-induced decline in cell activity, increased apoptosis, while RNF5 overexpression had the opposite effect. Mechanistically, it was proven that the kinase cascade initiated by apoptosis signal-regulating kinase 1 (ASK1) activation was closely regulated by RNF5 and mediated RNF5's protective function during MI. CONCLUSIONS: We demonstrated the protective effect of RNF5 on myocardial infarction and its function was dependent on inhibiting the activation of ASK1, which adds a new regulatory component to the myocardial infarction associated network and promises to enable new therapeutic strategy.


Subject(s)
Apoptosis , Disease Models, Animal , MAP Kinase Kinase Kinase 5 , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction , Myocytes, Cardiac , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinase 5/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cells, Cultured , Mice , Ventricular Function, Left , Cell Hypoxia , Rats
3.
Sci Rep ; 14(1): 18804, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138321

ABSTRACT

Cell therapy for adrenocortical insufficiency can potentially provide steroid replacement in response to physiological stimuli. Previously, we reported that adipose tissue-derived stromal cells (ADSCs) are transformed into steroid-producing cells by overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1). The steroidogenic cells are characterized by the production of both adrenal and gonadal steroids. Cytotherapy for adrenocortical insufficiency requires cells with more adrenocortical characteristics. Considering the highly developed vascular network within the adrenal cortex, all adrenocortical cells are adjacent to and interact with vascular endothelial cells (VECs). In this study, NR5A1-induced steroidogenic cells derived from mouse ADSCs (NR5A1-ADSCs) were co-cultured with mouse VECs. Testosterone secretion in NR5A1-ADSCs was not altered; however, corticosterone secretion significantly increased while levels of steroidogenic enzymes significantly increased in the corticosterone synthesis pathway. Co-culture with lymphatic endothelial cells (LECs) or ADSCs, or transwell culture with NR5A1-ADSCs and VECs did not alter corticosterone production. VECs expressed higher levels of collagen and laminin than LECs. Culture in type-IV collagen and laminin-coated dishes increased corticosterone secretion in NR5A1-ADSCs. These results suggest that VECs may characterize ADSC-derived steroidogenic cells into a more corticosterone-producing phenotype, and VECs may be useful for generating adrenal steroidogenic cells from stem cells.


Subject(s)
Adipose Tissue , Coculture Techniques , Corticosterone , Endothelial Cells , Mesenchymal Stem Cells , Animals , Corticosterone/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , Steroidogenic Factor 1/metabolism , Steroidogenic Factor 1/genetics , Cells, Cultured , Cell Differentiation , Testosterone/metabolism , Testosterone/biosynthesis
4.
Cell Commun Signal ; 22(1): 396, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138534

ABSTRACT

BACKGROUND: Secreted frizzled-related proteins (SFRPs) comprise a family of WNT signaling antagonists whose roles in the ovary are poorly understood. Sfrp4-null mice were previously found to be hyperfertile due to an enhanced granulosa cell response to gonadotropins, leading to decreased antral follicle atresia and enhanced ovulation rates. The present study aimed to elucidate the mechanisms whereby SFRP4 antagonizes FSH action. METHODS: Primary cultures of granulosa cells from wild-type mice were treated with FSH and/or SFRP4, and effects of treatment on gene expression were evaluated by RT-qPCR and RNAseq. Bioinformatic analyses were conducted to analyse the effects of SFRP4 on the transcriptome, and compare them to those of FSH or a constitutively active mutant of FOXO1. Additional granulosa cell cultures from wild-type or Sfrp4-null mice, some pretreated with pharmacologic inhibitors of specific signaling effectors, were used to examine the effects of FSH and/or SFRP4 on signaling pathways, autophagy and apoptosis by western blotting and TUNEL. RESULTS: Treatment of cultured granulosa cells with recombinant SFRP4 was found to decrease basal and FSH-stimulated mRNA levels of FSH target genes. Unexpectedly, this effect was found to occur neither via a canonical (CTNNB1-dependent) nor non-canonical WNT signaling mechanism, but was found to be GSK3ß-dependent. Rather, SFRP4 was found to antognize AKT activity via a mechanism involving AMPK. This lead to the hypophosphorylation of FOXO1 and a decrease in the expression of a portion of the FSH and FOXO1 transcriptomes. Conversely, FSH-stimulated AMPK, AKT and FOXO1 phosphorylation levels were found to be increased in the granulosa cells of Sfrp4-null mice relative to wild-type controls. SFRP4 treatement of granulosa cells also induced autophagy by signaling via AKT-mTORC1-ULK1, as well as apoptosis. CONCLUSIONS: This study identifies a novel GSK3ß-AMPK-AKT signaling mechanism through which SFPR4 antagonizes FSH action, and further identifies SFRP4 as a novel regulator of granulosa cell autophagy. These findings provide a mechanistic basis for the phenotypic changes previously observed in Sfrp4-null mice, and broaden our understanding of the physiological roles of WNT signaling processes in the ovary.


Subject(s)
Autophagy , Follicle Stimulating Hormone , Granulosa Cells , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Female , Proto-Oncogene Proteins c-akt/metabolism , Autophagy/drug effects , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Mice , Signal Transduction/drug effects , Apoptosis/drug effects , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Mice, Inbred C57BL , Cells, Cultured , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mice, Knockout
5.
Fluids Barriers CNS ; 21(1): 65, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138578

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder with minimally effective treatment options. An important hurdle in ALS drug development is the non-invasive therapeutic access to the motor cortex currently limited by the presence of the blood-brain barrier (BBB). Focused ultrasound and microbubble (FUS+ MB) treatment is an emerging technology that was successfully used in ALS patients to temporarily open the cortical BBB. However, FUS+ MB-mediated drug delivery across ALS patients' BBB has not yet been reported. Similarly, the effects of FUS+ MB on human ALS BBB cells remain unexplored. METHODS: Here we established the first FUS+ MB-compatible, fully-human ALS patient-cell-derived BBB model based on induced brain endothelial-like cells (iBECs) to study anti-TDP-43 antibody delivery and FUS+ MB bioeffects in vitro. RESULTS: Generated ALS iBECs recapitulated disease-specific hallmarks of BBB pathology, including reduced BBB integrity and permeability, and TDP-43 proteinopathy. The results also identified differences between sporadic ALS and familial (C9orf72 expansion carrying) ALS iBECs reflecting patient heterogeneity associated with disease subgroups. Studies in these models revealed successful ALS iBEC monolayer opening in vitro with no adverse cellular effects of FUS+ MB as reflected by lactate dehydrogenase (LDH) release viability assay and the lack of visible monolayer damage or morphology change in FUS+ MB treated cells. This was accompanied by the molecular bioeffects of FUS+ MB in ALS iBECs including changes in expression of tight and adherens junction markers, and drug transporter and inflammatory mediators, with sporadic and C9orf72 ALS iBECs generating transient specific responses. Additionally, we demonstrated an effective increase in the delivery of anti-TDP-43 antibody with FUS+ MB in C9orf72 (2.7-fold) and sporadic (1.9-fold) ALS iBECs providing the first proof-of-concept evidence that FUS+ MB can be used to enhance the permeability of large molecule therapeutics across the BBB in a human ALS in vitro model. CONCLUSIONS: Together, this study describes the first characterisation of cellular and molecular responses of ALS iBECs to FUS+ MB and provides a fully-human platform for FUS+ MB-mediated drug delivery screening on an ALS BBB in vitro model.


Subject(s)
Amyotrophic Lateral Sclerosis , Blood-Brain Barrier , DNA-Binding Proteins , Microbubbles , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Humans , DNA-Binding Proteins/metabolism , Drug Delivery Systems/methods , Endothelial Cells/metabolism , Antibodies/administration & dosage , Ultrasonic Waves , Cells, Cultured
6.
Front Immunol ; 15: 1434011, 2024.
Article in English | MEDLINE | ID: mdl-39144143

ABSTRACT

Background: Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods: In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results: Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion: Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.


Subject(s)
Cytotoxicity, Immunologic , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/physiology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Porcine Reproductive and Respiratory Syndrome/immunology , T-Lymphocytes, Cytotoxic/immunology , Biomarkers , Orthomyxoviridae Infections/immunology , Perforin/metabolism , Perforin/immunology , Intraepithelial Lymphocytes/immunology , Cells, Cultured
7.
Front Public Health ; 12: 1419525, 2024.
Article in English | MEDLINE | ID: mdl-39145180

ABSTRACT

Background: The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods: HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results: 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion: The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.


Subject(s)
Fibroblasts , Radio Waves , Humans , Fibroblasts/radiation effects , Radio Waves/adverse effects , DNA Damage , Cell Cycle/radiation effects , Cells, Cultured
8.
Matrix Biol ; 132: 47-58, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147560

ABSTRACT

BACKGROUND: Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-ß (TGF-ß) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung. RESULTS: Stimulation of lung fibroblasts with TGF-ß1 and TGF-ß2 induced collagen-I and fibronectin protein expression (p < 0.05), a response inhibited with co-treatment with IL-1α (p < 0.05). Additionally, TGF-ß1 and TGF-ß2 induced myofibroblast differentiation, and collagen-I gel contraction, which were both suppressed by IL-1α (p < 0.05). In contrast, interleukin (IL)-6, IL-8 and thymic stromal lymphopoietin induced by IL-1α, were unaffected by TGF-ß1 or TGF-ß2. Mechanistically, IL-1α administration led to the suppression of TGF-ß1 and TGF-ß2 signaling, through downregulation of mRNA and protein for TGF-ß receptor II and the downstream adaptor protein TRAF6, but not through miR-146a that is known to be induced by IL-1α. DISCUSSION: IL-1α acts as a master regulator, modulating TGF-ß1 and TGF-ß2-induced ECM production, remodeling, and myofibroblast differentiation in human lung fibroblasts, playing a vital role in balancing tissue repair versus fibrosis. Further research is required to understand the dysregulated cross-talk between IL-1α and TGF-ß signaling in chronic lung diseases and the exploration of therapeutic opportunities. METHODS: Primary human lung fibroblasts (PHLF) were treated with media control, or 1 ng/ml IL-1α with or without 50 ng/ml TGF-ß1 or TGF-ß2 for 1, 6 and 72 h. Cell lysates were assessed for the expression of ECM proteins and signaling molecules by western blot, miRNA by qPCR, mRNA by RNA sequencing and cell supernatants for cytokine production by ELISA. PHLFs were also seeded in non-tethered collagen-I gels to measure contraction, and myofibroblast differentiation using confocal microscopy.


Subject(s)
Extracellular Matrix , Fibroblasts , Interleukin-1alpha , Lung , Signal Transduction , Transforming Growth Factor beta1 , Humans , Interleukin-1alpha/metabolism , Interleukin-1alpha/genetics , Extracellular Matrix/metabolism , Transforming Growth Factor beta1/metabolism , Lung/metabolism , Lung/cytology , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/cytology , Cell Differentiation , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Cells, Cultured , Collagen Type I/metabolism , Collagen Type I/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Fibronectins/metabolism , Fibronectins/genetics , Gene Expression Regulation/drug effects , Transforming Growth Factor beta2
9.
Front Immunol ; 15: 1415009, 2024.
Article in English | MEDLINE | ID: mdl-39139572

ABSTRACT

The beneficial effects of feeding probiotic Bacillus subtilis DSM 32315 (BS) and Bacillus velezensis CECT 5940 (BV) to chickens in vivo are well-documented, with potential immune modulation as a key mechanism. In this study, we investigated the direct interactions of chicken peripheral blood mononuclear cells (PBMCs) with BS or BV in vitro through whole transcriptome profiling and cytokine array analysis. Transcriptome profiling revealed 20 significantly differentially expressed genes (DEGs) in response to both Bacillus treatments, with twelve DEGs identified in BS-treated PBMCs and eight in BV-treated PBMCs. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated significant regulation of immune-related pathways by both BS and BV. Notably, BS treatment upregulated genes associated with immune cell surface markers (CD4, CD25, CD28), anti-inflammatory cytokine interleukin-10 (IL-10), and C-C motif chemokine ligand 5 (CCL5), while downregulating the gene encoding pro-inflammatory IL-16. BV treatment similarly affected genes associated with immune cell surface markers, IL-16, and CCL5, with no impact on the gene encoding IL-10. Both treatments induced higher expression of the gene encoding the avian ß-defensin 1 (AvBD1). The results of this in vitro study indicate an immunomodulatory effect of BS and BV in chicken PBMCs by regulating genes involved in anti-inflammatory, bacteriostatic, protective, and pro-inflammatory responses. Consequently, BS and BV may serve to augment the immune system's capacity to defend against infection by modulating immune responses and cytokine expression. Thus, the administration of these probiotics holds promise for reducing reliance on antimicrobials in farming practices.


Subject(s)
Bacillus , Chickens , Cytokines , Leukocytes, Mononuclear , Probiotics , Animals , Chickens/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Cytokines/metabolism , Gene Expression Profiling , Immunomodulation , Bacillus subtilis/immunology , Cells, Cultured , Transcriptome
10.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200284, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39141878

ABSTRACT

BACKGROUND AND OBJECTIVES: Autoantibodies against the protein leucine-rich glioma inactivated 1 (LGI1) cause the most common subtype of autoimmune encephalitis with predominant involvement of the limbic system, associated with seizures and memory deficits. LGI1 and its receptor ADAM22 are part of a transsynaptic protein complex that includes several proteins involved in presynaptic neurotransmitter release and postsynaptic glutamate sensing. Autoantibodies against LGI1 increase excitatory synaptic strength, but studies that genetically disrupt the LGI1-ADAM22 complex report a reduction in postsynaptic glutamate receptor-mediated responses. Thus, the mechanisms underlying the increased synaptic strength induced by LGI1 autoantibodies remain elusive, and the contributions of presynaptic molecules to the LGI1-transsynaptic complex remain unclear. We therefore investigated the presynaptic mechanisms that mediate autoantibody-induced synaptic strengthening. METHODS: We studied the effects of patient-derived purified polyclonal LGI1 autoantibodies on synaptic structure and function by combining direct patch-clamp recordings from presynaptic boutons and somata of hippocampal neurons with super-resolution light and electron microscopy of hippocampal cultures and brain slices. We also identified the protein domain mediating the presynaptic effect using domain-specific patient-derived monoclonal antibodies. RESULTS: LGI1 autoantibodies dose-dependently increased short-term depression during high-frequency transmission, consistent with increased release probability. The increased neurotransmission was not related to presynaptic calcium channels because presynaptic Cav2.1 channel density, calcium current amplitude, and calcium channel gating were unaffected by LGI1 autoantibodies. By contrast, application of LGI1 autoantibodies homogeneously reduced Kv1.1 and Kv1.2 channel density on the surface of presynaptic boutons. Direct presynaptic patch-clamp recordings revealed that LGI1 autoantibodies cause a pronounced broadening of the presynaptic action potential. Domain-specific effects of LGI1 autoantibodies were analyzed at the neuronal soma. Somatic action potential broadening was induced by polyclonal LGI1 autoantibodies and patient-derived monoclonal autoantibodies targeting the epitempin domain, but not the leucin-rich repeat domain. DISCUSSION: Our results indicate that LGI1 autoantibodies reduce the density of both Kv1.1 and Kv1.2 on presynaptic boutons, without actions on calcium channel density or function, thereby broadening the presynaptic action potential and increasing neurotransmitter release. This study provides a molecular explanation for the neuronal hyperactivity observed in patients with LGI1 autoantibodies.


Subject(s)
Action Potentials , Autoantibodies , Intracellular Signaling Peptides and Proteins , Presynaptic Terminals , Synaptic Transmission , Autoantibodies/immunology , Autoantibodies/pharmacology , Humans , Animals , Synaptic Transmission/physiology , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Presynaptic Terminals/metabolism , Action Potentials/physiology , Action Potentials/drug effects , Hippocampus/metabolism , Rats , Kv1.1 Potassium Channel/immunology , Proteins/immunology , Proteins/metabolism , Male , Cells, Cultured
11.
Mol Med ; 30(1): 126, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152406

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMMSCs) are commonly used for cell transplantation to treat refractory diseases. However, the presence of inflammatory factors, such as tumour necrosis factor-alpha (TNF-α), at the transplantation site severely compromises the stemness of BMMSCs, thereby reducing the therapeutic effect of cell transplantation. Aspirin (AS) is a drug that has been in use for over a century and has a wide range of effects, including the regulation of cell proliferation, multidirectional differentiation, and immunomodulatory properties of stem cells. However, it is still unclear whether AS can delay the damaging effects of TNF-α on BMMSC stemness. METHODS: This study investigated the effects of AS and TNF-α on BMMSC stemness and the molecular mechanisms using colony formation assay, western blot, qRT-PCR, and overexpression or knockdown of YAP and SMAD7. RESULTS: The results demonstrated that TNF-α inhibited cell proliferation, the expression of stemness, osteogenic and chondrogenic differentiation markers of BMMSCs. Treatment with AS was shown to mitigate the TNF-α-induced damage to BMMSC stemness. Mechanistic studies revealed that AS may reverse the damage caused by TNF-α on BMMSC stemness by upregulating YAP and inhibiting the expression of SMAD7. CONCLUSION: AS can attenuate the damaging effects of TNF-α on BMMSC stemness by regulating the YAP-SMAD7 axis. These findings are expected to promote the application of AS to improve the efficacy of stem cell therapy.


Subject(s)
Aspirin , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Smad7 Protein , Tumor Necrosis Factor-alpha , YAP-Signaling Proteins , Tumor Necrosis Factor-alpha/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Smad7 Protein/metabolism , Smad7 Protein/genetics , Aspirin/pharmacology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , YAP-Signaling Proteins/metabolism , Signal Transduction/drug effects , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Cells, Cultured , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Osteogenesis/drug effects , Mice
12.
J Orthop Surg Res ; 19(1): 480, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152444

ABSTRACT

BACKGROUND: Increasing evidence shows the pivotal significance of miRNAs in the pathogenesis of osteoporosis. miR-381-3p has been identified as an inhibitor of osteogenesis. This study explored the role and mechanism of miR-381-3p in postmenopausal osteoporosis (PMOP), the most common type of osteoporosis. METHODS: Bilateral ovariectomy (OVX) rat model was established and miR-381-3p antagomir was administrated through the tail vein in vivo. The pathological changes in rats were assessed through the evaluation of serum bone turnover markers (BALP, PINP, and CTX-1), hematoxylin and eosin (H&E) staining, as well as the expression of osteoblast differentiation biomarkers. Moreover, isolated bone marrow mesenchymal stem cells from OVX-induced rats (OVX-BMMSCs) were utilized to explore the impact of miR-381-3p on osteoblast differentiation. In addition, the target gene and downstream pathway of miR-381-3p were further investigated both in vivo and in vitro. RESULTS: miR-381-3p expression was elevated, whereas KLF5 was suppressed in OVX rats. miR-381-3p antagomir decreased serum levels of bone turnover markers, improved trabecular separation, promoted osteoblast differentiation biomarker expression in OVX rats. ALP activity and mineralization were suppressed, and levels of osteoblast differentiation biomarkers were impeded after miR-381-3p overexpression during osteoblast differentiation of OVX-BMMSCs. While contrasting results were found after inhibition of miR-381-3p. miR-381-3p targets KLF5, negatively affecting its expression as well as its downstream Wnt/ß-catenin pathway, both in vivo and in vitro. Silencing of KLF5 restored Wnt/ß-catenin activation induced by miR-381-3p antagomir. CONCLUSION: miR-381-3p aggravates PMOP by inhibiting osteogenic differentiation through targeting KLF5/Wnt/ß-catenin pathway. miR-381-3p appears to be a promising candidate for therapeutic intervention in PMOP.


Subject(s)
Cell Differentiation , Kruppel-Like Transcription Factors , MicroRNAs , Osteogenesis , Osteoporosis, Postmenopausal , Ovariectomy , Rats, Sprague-Dawley , Wnt Signaling Pathway , Animals , MicroRNAs/genetics , Ovariectomy/adverse effects , Osteogenesis/genetics , Osteogenesis/physiology , Female , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Rats , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Disease Models, Animal , Osteoblasts/metabolism , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/metabolism , Mesenchymal Stem Cells/metabolism , Cells, Cultured , Humans
13.
Arch Dermatol Res ; 316(8): 527, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153095

ABSTRACT

BACKGROUND AND OBJECTIVE: Adipose-derived mesenchymal stem cells (ADSCs) can accelerate wound healing, reduce scar formation, and inhibit hypertrophic scar (HTS). ADSCs can secrete a large amount of CCL5, and CCL5 has been proved to be pro-inflammatory and pro-fibrotic. CXCL12 (SDF-1) is a key chemokine that promotes stem cell migration and survival. Therefore, this study selected normal skin and HTS conditioned medium to simulate different microenvironments, and analyzed the effects of different microenvironments on the expression of CCL5 and CXCL12 in human ADSCs (hADSCs). MATERIALS AND METHODS: hADSCs with silenced expression of CCL5 and CXCL12 were co-cultured with hypertrophic scar fibroblasts to verify the effects of CCL5 and CXCL12 in hADSCs on the proliferation ability of hypertrophic scar fibroblasts. A mouse model of hypertrophic scar was established to further confirm the effect of CCL5 and CXCL12 in hADSCs on hypertrophic scar formation. RESULTS: CCL5 level was found to be significantly high in hADSCs cultured in HTS conditioned medium. CXCL12 in HTS group was prominently lowly expressed compared with the normal group. Inhibition of CCL5 in hADSCs enhanced the effects of untreated hADSCs on proliferation of HTS fibroblasts while CXCL12 knockdown exerted the opposite function. Inhibition of CCL5 in hADSCs increased the percentage of HTS fibroblasts in the G0/G1 phase while down-regulation of CXCL12 decreased those. Meanwhile, the down-regulated levels of fibroblast markers including collagen I, collagen III, and α-SMA induced by CCL5 knockdown were significantly up-regulated by CXCL12 inhibition. hADSCs alleviate the HTS of mice through CCL5 and CXCL12. CONCLUSION: In summary, our results demonstrated that hADSCs efficiently cured HTS by suppressing proliferation of HTS fibroblasts, which may be related to the inhibition of CXCL12 and elevation of CCL5 in hADSCs, suggesting that hADSCs may provide an alternative therapeutic approach for the treatment of HTS.


Subject(s)
Cell Proliferation , Chemokine CCL5 , Chemokine CXCL12 , Cicatrix, Hypertrophic , Fibroblasts , Mesenchymal Stem Cells , Chemokine CCL5/metabolism , Fibroblasts/metabolism , Humans , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Chemokine CXCL12/metabolism , Mice , Disease Models, Animal , Cells, Cultured , Female , Culture Media, Conditioned/pharmacology , Coculture Techniques , Male , Mesenchymal Stem Cell Transplantation/methods , Adult , Wound Healing , Adipose Tissue/cytology
14.
Elife ; 132024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146380

ABSTRACT

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.


Subject(s)
Actins , Dendrites , Hippocampus , Neuronal Plasticity , Polymerization , Receptors, AMPA , Animals , Receptors, AMPA/metabolism , Actins/metabolism , Rats , Neuronal Plasticity/physiology , Dendrites/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Protein Transport , Neurons/metabolism , Cells, Cultured , Exocytosis
15.
Reprod Biol Endocrinol ; 22(1): 98, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107809

ABSTRACT

BACKGROUND: At present, a number of clinical trials have been carried out on GLP-1 receptor agonist liraglutide in the treatment of polycystic ovary syndrome (PCOS). However, the effect of liraglutide on follicle development and its specific mechanism are still unclear. METHODS: RNA sequencing was used to explore the molecular characteristics of granulosa cells from patients with PCOS treated with liraglutide. The levels of C-X-C motif chemokine ligand 10 (CXCL10) in follicular fluid were detected by ELISA, the expression levels of ovulation related genes and inflammatory factor genes in follicles and granulosa cells were detected by qPCR and the protein levels of connexin 43 (Cx43), Janus Kinase 2 (JAK2) and phosphorylated JAK2 were detected by Western blot. The mouse ovarian follicles culture system in vitro was used to detect the status of follicle development and ovulation. RESULTS: In the present study, we found that liraglutide inhibited the secretion of inflammatory factors in PCOS granulosa cells, among which CXCL10 was the most significant. In addition, CXCL10 was significantly higher in granulosa cells and follicular fluid in PCOS patients than in non-PCOS patients. We applied in vitro follicle culture and other techniques to carry out the mechanism exploration which revealed that CXCL10 disrupted the homeostasis of gap junction protein alpha 1 (GJA1) between oocyte and granulosa cells before physiological ovulation, thus inhibiting follicular development and ovulation. Liraglutide inhibited CXCL10 secretion in PCOS granulosa cells by inhibiting the JAK signaling pathway and can improved dehydroepiandrosterone (DHEA)-induced follicle development disorders, which is reversed by CXCL10 supplementation. CONCLUSIONS: The present study suggests that liraglutide inhibits CXCL10 secretion in granulosa cells through JAK signaling pathway, thereby improving the homeostasis of GJA1 between oocyte and granulosa cells before physiological ovulation and ultimately improving the follicular development and ovulation of PCOS, which provides more supportive evidence for the clinical application of liraglutide in the treatment of ovulatory disorders in PCOS. TRIAL REGISTRATION: Not applicable.


Subject(s)
Chemokine CXCL10 , Granulosa Cells , Liraglutide , Ovarian Follicle , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/drug therapy , Female , Liraglutide/pharmacology , Liraglutide/therapeutic use , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Humans , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Animals , Mice , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Adult , Ovulation/drug effects , Follicular Fluid/metabolism , Cells, Cultured , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
16.
CNS Neurosci Ther ; 30(8): e14695, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107945

ABSTRACT

INTRODUCTION: Traumatic brain injury (TBI) is a complex pathophysiological process, and increasing attention has been paid to the important role of post-synaptic density (PSD) proteins, such as glutamate receptors. Our previous study showed that a PSD protein Arc/Arg3.1 (Arc) regulates endoplasmic reticulum (ER) stress and neuronal necroptosis in traumatic injury in vitro. AIM: In this study, we investigated the expression, regulation and biological function of Arc in both in vivo and in vitro experimental TBI models. RESULTS: Traumatic neuronal injury (TNI) induced a temporal upregulation of Arc in cortical neurons, while TBI resulted in sustained increase in Arc expression up to 24 h in rats. The increased expression of Arc was mediated by the activity of metabotropic glutamate receptor 5 (mGluR5), but not dependent on the intracellular calcium (Ca2+) release. By using inhibitors and antagonists, we found that TNI regulates Arc expression via Gq protein and protein turnover. In addition, overexpression of Arc protects against TBI-induced neuronal injury and motor dysfunction both in vivo and in vitro, whereas the long-term cognitive function was not altered. To determine the role of Arc in mGluR5-induced protection, lentivirus-mediated short hairpin RNA (shRNA) transfection was performed to knockdown Arc expression. The mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG)-induced protection against TBI was partially prevented by Arc knockdown. Furthermore, the CHPG-induced attenuation of Ca2+ influx after TNI was dependent on Arc activation and followed regulation of AMPAR subunits. The results of Co-IP and Ca2+ imaging showed that the Arc-Homer1 interaction contributes to the CHPG-induced regulation of intracellular Ca2+ release. CONCLUSION: In summary, the present data indicate that the mGluR5-mediated Arc activation is a protective mechanism that attenuates neurotoxicity following TBI through the regulation of intracellular Ca2+ hemostasis. The AMPAR-associated Ca2+ influx and ER Ca2+ release induced by Homer1-IP3R pathway might be involved in this protection.


Subject(s)
Brain Injuries, Traumatic , Cytoskeletal Proteins , Homer Scaffolding Proteins , Nerve Tissue Proteins , Neurons , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Male , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/biosynthesis , Rats , Homer Scaffolding Proteins/metabolism , Neurons/metabolism , Neurons/drug effects , Disease Models, Animal , Cells, Cultured , Cerebral Cortex/metabolism , Calcium/metabolism , Glycine/analogs & derivatives , Phenylacetates
17.
Arq Bras Oftalmol ; 88(1): e20230163, 2024.
Article in English | MEDLINE | ID: mdl-39109744

ABSTRACT

PURPOSE: The epithelial-mesenchymal transition of human lens epithelial cells plays a role in posterior capsule opacification, a fibrotic process that leads to a common type of cataract. Hyaluronic acid has been implicated in this fibrosis. Studies have investigated the role of transforming growth factor (TGF)-ß2 in epithelial-mesenchymal transition. However, the role of TGF-ß2 in hyaluronic acid-mediated fibrosis of lens epithelial cell remains unknown. We here examined the role of TGF-ß2 in the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells. METHODS: Cultured human lens epithelial cells (HLEB3) were infected with CD44-siRNA by using the Lipofectamine 3000 transfection reagent. The CCK-8 kit was used to measure cell viability, and the scratch assay was used to determine cell migration. Cell oxidative stress was analyzed in a dichloro-dihydro-fluorescein diacetate assay and by using a flow cytometer. The TGF-ß2 level in HLEB3 cells was examined through immunohistochemical staining. The TGF-ß2 protein level was determined through western blotting. mRNA expression levels were determined through quantitative real-time polymerase chain reaction. RESULTS: Treatment with hyaluronic acid (1.0 µM, 24 h) increased the epithelial-mesenchymal transition of HLEB3 cells. The increase in TGF-ß2 levels corresponded to an increase in CD44 levels in the culture medium. However, blocking the CD44 function significantly reduced the TGF-ß2-mediated epithelial-mesenchymal transition response of HLEB3 cells. CONCLUSIONS: Our study showed that both CD44 and TGF-ß2 are critical contributors to the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells, and that TGF-ß2 in epithelial-mesenchymal transition is regulated by CD44. These results suggest that CD44 could be used as a target for preventing hyaluronic acid-induced posterior capsule opacification. Our findings suggest that CD44/TGF-ß2 is crucial for the hyaluronic acid-induced epithelial-mesenchymal transition of lens epithelial cells.


Subject(s)
Cell Movement , Epithelial Cells , Epithelial-Mesenchymal Transition , Hyaluronan Receptors , Hyaluronic Acid , Lens, Crystalline , Transforming Growth Factor beta2 , Humans , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Hyaluronic Acid/pharmacology , Hyaluronan Receptors/metabolism , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Lens, Crystalline/cytology , Lens, Crystalline/drug effects , Lens, Crystalline/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Blotting, Western , Capsule Opacification/metabolism , Capsule Opacification/pathology , Real-Time Polymerase Chain Reaction , Flow Cytometry , Immunohistochemistry , Cells, Cultured
18.
PLoS One ; 19(8): e0308207, 2024.
Article in English | MEDLINE | ID: mdl-39110684

ABSTRACT

Neurofibromatosis Type 1 (NF1) is a complex genetic disorder characterized by the development of benign neurofibromas, which can cause significant morbidity in affected individuals. While the molecular mechanisms underlying NF1 pathogenesis have been extensively studied, the development of effective therapeutic strategies remains a challenge. This paper presents the development and validation of a novel biomaterial testing model to enhance our understanding of NF1 pathophysiology, disease mechanisms and evaluate potential therapeutic interventions. Our long-term goal is to develop an invitro model of NF1 to evaluate drug targets. We have developed an in vitro system to test the cellular behavior of NF1 patient derived cells on electroconductive aligned nanofibrous biomaterials with electrical stimulatory cues. We hypothesized that cells cultured on electroconductive biomaterial will undergo morphological changes and variations in cell proliferation that could be further enhanced with the combination of exogenous electrical stimulation (ES). In this study, we developed electrospun Hyaluronic Acid-Carbon Nanotube (HA-CNT) nanofiber scaffolds to mimic the axon's topographical and bioelectrical cues that influence neurofibroma growth and development. The cellular behavior was qualitatively and quantitively analyzed through immunofluorescent stains, Alamar blue assays and ELISA assays. Schwann cells from NF1 patients appear to have lost their ability to respond to electrical stimulation in the development and regeneration range, which was seen through changes in morphology, proliferation and NGF release. Without stimulation, the conductive material enhances NF1 SC behavior. Wild-type SC respond to electrical stimulation with increased cell proliferation and NGF release. Using this system, we can better understand the interaction between axons and SC that lead to tumor formation, homeostasis and regeneration.


Subject(s)
Cell Proliferation , Electric Stimulation , Hyaluronic Acid , Nanotubes, Carbon , Schwann Cells , Schwann Cells/metabolism , Nanotubes, Carbon/chemistry , Humans , Hyaluronic Acid/chemistry , Nanofibers/chemistry , Neurofibromatosis 1/pathology , Neurofibromatosis 1/metabolism , Tissue Scaffolds/chemistry , Cells, Cultured , Biocompatible Materials/chemistry
19.
Stem Cell Res Ther ; 15(1): 245, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113095

ABSTRACT

BACKGROUND: The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS: We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS: The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS: These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.


Subject(s)
Embryonic Stem Cells , Animals , Culture Media, Serum-Free/pharmacology , Swine , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Cell Differentiation , Feeder Cells/cytology , Feeder Cells/metabolism , Cell Culture Techniques/methods , Cell Proliferation , Blastocyst/cytology , Blastocyst/metabolism , Cells, Cultured
20.
Stem Cell Res Ther ; 15(1): 247, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113140

ABSTRACT

BACKGROUND: The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs. METHODS: The cytotoxicity of NOCA on PDLSCs was assessed using a CCK-8 assay. PDLSCs were then treated with hydrogen peroxide (H2O2) to induce OS. ROS levels, cell viability, and antioxidant factor expression were analyzed using relevant kits after treatment. Small molecule inhibitors U0126 and XAV-939 were employed to block ERK signaling and Wnt pathways respectively. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining of mineralized nodules. Expression levels of osteogenic gene markers and ERK pathway were determined via real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis. ß-catenin nuclear localization was examined by western blotting and confocal microscopy. RESULTS: NOCA exhibited no significant cytotoxicity at concentrations below 20 µM and effectively inhibited H2O2-induced OS in PDLSCs. NOCA also restored ALP activity, mineralized nodule formation, and the expression of osteogenic markers in H2O2-stimulated PDLSCs. Mechanistically, NOCA increased p-ERK level and promoted ß-catenin translocation into the nucleus; however, blocking ERK pathway disrupted the osteogenic protection provided by NOCA and impaired its ability to induce ß-catenin nuclear translocation under OS conditions in PDLSCs. CONCLUSIONS: NOCA protected PDLSCs against H2O2-induced OS and effectively restored impaired osteogenic differentiation in PDLSCs by modulating the ERK/Wnt signaling pathway.


Subject(s)
Cell Differentiation , Hydrogen Peroxide , Osteogenesis , Oxidative Stress , Periodontal Ligament , Stem Cells , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Periodontal Ligament/drug effects , Humans , Oxidative Stress/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Osteogenesis/drug effects , Cell Differentiation/drug effects , beta Catenin/metabolism , Cell Survival/drug effects , Wnt Signaling Pathway/drug effects , MAP Kinase Signaling System/drug effects , Cells, Cultured , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL