Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 667
Filter
1.
Aging (Albany NY) ; 16(12): 10657-10665, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942604

ABSTRACT

Two recent seminal works have untangled the intricate role of tumor-associated senescent cells in cancer progression, or regression, by guiding our immune system against cancer cells. The characterization of these unique, yet diverse cell populations, should be considered, particularly when contemplating the use of senolytics, which are drugs that selectively eliminate senescent cells, in a cancer framework. Here, we will describe the current knowledge in this field. In particular, we will discuss how the presence of senescent cells in tumors could be used as a therapeutic target in immunogenic cancers and how we may hypothetically design an adaptive anti-aging vaccine.


Subject(s)
Aging , Cancer Vaccines , Cellular Senescence , Neoplasms , Humans , Neoplasms/immunology , Cellular Senescence/immunology , Aging/immunology , Cancer Vaccines/immunology , Animals
2.
Oncoimmunology ; 13(1): 2367777, 2024.
Article in English | MEDLINE | ID: mdl-38887372

ABSTRACT

T lymphocytes expressing CD57 and lacking costimulatory receptors CD27/CD28 have been reported to accumulate with aging, chronic infection, and cancer. These cells are described as senescent, with inability to proliferate but enhanced cytolytic and cytokine-producing capacity. However, robust functional studies on these cells taken directly from cancer patients are lacking. We isolated these T cells and their CD27/28+ counterparts from blood and tumor samples of 50 patients with previously untreated head and neck cancer. Functional studies confirmed that these cells have enhanced ability to degranulate and produce IFN-γ. They also retain the ability to proliferate, thus are not senescent. These data suggest that CD27/28-CD57+ CD8+ T cells are a subset of highly differentiated, CD45RA+ effector memory (TEMRA) cells with retained proliferative capacity. Patients with > 34% of these cells among CD8+ T cells in the blood had a higher rate of locoregional disease relapse, suggesting these cells may have prognostic significance.


Subject(s)
CD28 Antigens , CD57 Antigens , CD8-Positive T-Lymphocytes , Cellular Senescence , Head and Neck Neoplasms , Humans , CD28 Antigens/metabolism , CD57 Antigens/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Male , Middle Aged , Female , Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cellular Senescence/immunology , Interferon-gamma/metabolism , Adult , Cell Proliferation , Aged, 80 and over
3.
Braz J Med Biol Res ; 57: e13225, 2024.
Article in English | MEDLINE | ID: mdl-38896644

ABSTRACT

Innate immune system activation is crucial in the inflammatory response, but uncontrolled activation can lead to autoimmune diseases. Cellular exhaustion and senescence are two processes that contribute to innate immune tolerance breakdown. Exhausted immune cells are unable to respond adequately to specific antigens or stimuli, while senescent cells have impaired DNA replication and metabolic changes. These processes can impair immune system function and disrupt homeostasis, leading to the emergence of autoimmunity. However, the influence of innate immune exhaustion and senescence on autoimmune disorders is not well understood. This review aims to describe the current findings on the role of innate immune exhaustion and senescence in autoimmunity, focusing on the cellular and molecular changes involved in each process. Specifically, the article explores the markers and pathways associated with immune exhaustion, such as PD-1 and TIM-3, and senescence, including Β-galactosidase (ß-GAL), lamin B1, and p16ink4a, and their impact on autoimmune diseases, namely type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and immune-mediated myopathies. Understanding the mechanisms underlying innate immune exhaustion and senescence in autoimmunity may provide insights for the development of novel therapeutic strategies.


Subject(s)
Autoimmune Diseases , Cellular Senescence , Immunity, Innate , Humans , Immunity, Innate/immunology , Autoimmune Diseases/immunology , Cellular Senescence/immunology , Autoimmunity/immunology , Immune System Exhaustion
4.
J Dermatol Sci ; 114(3): 94-103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806324

ABSTRACT

BACKGROUND: Elderly atopic dermatitis (AD) is a subtype of AD defined by age (≥ 60 years). The molecular characteristics of elderly AD remain to be clarified. OBJECTIVE: We sought to characterize the molecular features of skin lesions and peripheral blood mononuclear cells (PBMCs) in patients with AD across different age, focusing on elderly AD. METHODS: Skin and PBMCs samples were used for RNA sequencing. Analysis of differentially expressed genes and gene set variation analysis were performed. Immunofluorescence staining, quantitative real-time PCR (qRT-PCR), flow cytometry and transwell assay were used for validation. RESULTS: Compared with healthy controls, the skin transcriptome of AD patients showed common signatures of AD, like barrier dysfunction and enhanced Th1/Th2/Th17 immune pathways. In PBMCs, the expression of Th1/Th2 response genes was more remarkable in adult AD, while expression of Th17-related genes was significantly higher in childhood AD. The gene modules associated with natural killer (NK) cells were downregulated in elderly AD. In skin lesions, elderly AD exhibited enrichment of macrophages, fibroblasts and senescence-associated secretory phenotype (SASP) related genes. The correlation among fibroblasts, SASP and innate immune cells were revealed by the co-localization of fibroblasts, macrophages and NK cells in the lesions across different age groups. Fibroblasts under inflammation or senescence could induce stronger chemotaxis of macrophages and NK cells. CONCLUSION: We identified the molecular phenotypes of skin lesions and PBMCs in elderly AD individuals. Fibroblasts, innate immune cells, and SASP might play important roles in the pathogenesis of elderly AD.


Subject(s)
Cellular Senescence , Dermatitis, Atopic , Fibroblasts , Immunity, Innate , Killer Cells, Natural , Skin , Humans , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Dermatitis, Atopic/genetics , Fibroblasts/immunology , Fibroblasts/metabolism , Aged , Middle Aged , Male , Female , Skin/immunology , Skin/pathology , Killer Cells, Natural/immunology , Cellular Senescence/immunology , Adult , Case-Control Studies , Transcriptome/immunology , Young Adult , Adolescent , Child , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macrophages/immunology , Macrophages/metabolism , Age Factors , Gene Expression Profiling , Th17 Cells/immunology
5.
Pharmacol Res ; 204: 107198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692466

ABSTRACT

In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.


Subject(s)
Cellular Senescence , Macrophages , Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor Microenvironment/immunology , Animals , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Macrophages/immunology , Cellular Senescence/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Senescence-Associated Secretory Phenotype
7.
Cells ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727285

ABSTRACT

With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.


Subject(s)
CD4-Positive T-Lymphocytes , Cellular Senescence , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , CD4-Positive T-Lymphocytes/immunology , Cellular Senescence/immunology , Animals , Aging/immunology , Aging/pathology , T-Cell Senescence
8.
Eur J Immunol ; 54(7): e2350603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752316

ABSTRACT

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by persistent activation of immune cells and overproduction of autoantibodies. The accumulation of senescent T and B cells has been observed in SLE and other immune-mediated diseases. However, the exact mechanistic pathways contributing to this process in SLE remain incompletely understood. In this study, we found that in SLE patients: (1) the frequency of CD4+CD57+ senescent T cells was significantly elevated and positively correlated with disease activity; (2) the expression levels of B-lymphoma-2 (BCL-2) family and interferon-induced genes (ISGs) were significantly upregulated; and (3) in vitro, the cytokine IL-15 stimulation increased the frequency of senescent CD4+ T cells and upregulated the expression of BCL-2 family and ISGs. Further, treatment with ABT-263 (a senolytic BCL-2 inhibitor) in MRL/lpr mice resulted in decreased: (1) frequency of CD4+CD44hiCD62L-PD-1+CD153+ senescent CD4+ T cells; (2) frequency of CD19+CD11c+T-bet+ age-related B cells; (3) level of serum antinuclear antibody; (4) proteinuria; (5) frequency of Tfh cells; and (6) renal histopathological abnormalities. Collectively, these results indicated a dominant role for CD4+CD57+ senescent CD4+ T cells in the pathogenesis of SLE and senolytic BCL-2 inhibitor ABT-263 may be the potential treatment in ameliorating lupus phenotypes.


Subject(s)
CD4-Positive T-Lymphocytes , Cellular Senescence , Lupus Erythematosus, Systemic , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/drug therapy , Animals , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cellular Senescence/immunology , Cellular Senescence/drug effects , Sulfonamides/pharmacology , CD4-Positive T-Lymphocytes/immunology , Female , Adult , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Mice, Inbred MRL lpr , Middle Aged , Male , Senotherapeutics/pharmacology
9.
Ageing Res Rev ; 97: 102296, 2024 06.
Article in English | MEDLINE | ID: mdl-38588867

ABSTRACT

Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.


Subject(s)
Aging , Fibroblasts , Fibroblasts/immunology , Humans , Aging/immunology , Aging/physiology , Animals , Cellular Senescence/immunology , Cellular Senescence/physiology
10.
J Mol Med (Berl) ; 102(6): 733-750, 2024 06.
Article in English | MEDLINE | ID: mdl-38600305

ABSTRACT

The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.


Subject(s)
Aging , B7-H1 Antigen , Cellular Senescence , Programmed Cell Death 1 Receptor , Signal Transduction , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/metabolism , Aging/immunology , Aging/metabolism , Animals , Cellular Senescence/immunology
11.
Cancer Discov ; 14(7): 1302-1323, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38683161

ABSTRACT

The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast CAFs (myCAF) that are senescent (senCAF) in mouse and human breast tumors. Utilizing the MMTV-PyMT;INK-ATTAC (INK) mouse model, we found that senCAF-secreted extracellular matrix specifically limits natural killer (NK) cell cytotoxicity to promote tumor growth. Genetic or pharmacologic senCAF elimination unleashes NK cell killing, restricting tumor growth. Finally, we show that senCAFs are present in HER2+, ER+, and triple-negative breast cancer and in ductal carcinoma in situ (DCIS) where they predict tumor recurrence. Together, these findings demonstrate that senCAFs are potently tumor promoting and raise the possibility that targeting them by senolytic therapy could restrain breast cancer development. Significance: senCAFs limit NK cell-mediated killing, thereby contributing to breast cancer progression. Thus, targeting senCAFs could be a clinically viable approach to limit tumor progression. See related article by Belle et al., p. 1324.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Disease Progression , Tumor Microenvironment , Animals , Female , Mice , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Tumor Microenvironment/immunology , Killer Cells, Natural/immunology , Cellular Senescence/immunology
12.
Allergol Int ; 73(3): 453-463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38350817

ABSTRACT

BACKGROUND: Although it has been reported that cellular senescence is important in the pathogenesis of asthma, the differential effects of diesel exhaust particle (DEP)-induced cellular senescence on the development of asthma according to age have not been thoroughly studied. METHODS: We first confirmed that DEP induced cellular senescence in mouse lungs, and then that DEP-induced cellular senescence followed by intranasal instillation of a low-dose house dust mite (HDM) allergen resulted in murine asthma. Second, we examined age-dependent differential effects using 6-week-old (young) and 18-month-old mice (old), and tested whether the mammalian target of the rapamycin (mTOR) pathway plays an important role in this process. Finally, we performed in vitro experiments using human bronchial epithelial cells (HBEC) originating from young and elderly adults to identify the underlying mechanisms. RESULTS: DEP induced cellular senescence in the airway epithelial cells of young and old mice characterized by increased senescence-associated beta-galactosidase, S100A8/9, and high mobility group box 1 (HMGB1) expressions. DEP-induced cellular senescence with subsequent exposure to a low-dose HDM allergen resulted in asthma in young and old mice. Rapamycin (mTOR pathway inhibitor) administration before DEP instillation significantly attenuated these asthmatic features. In addition, after treatment with a low-dose HDM allergen, S100A9 and HMGB1 over-expressed HBEC originating from young and elderly adults greatly activated co-cultured monocyte-derived dendritic cells (DCs). CONCLUSIONS: This study showed that DEP-induced senescence made both young and old mice susceptible to allergic sensitization and resultant asthma development by enhancing DC activation. Public health efforts to reduce DEP exposure are warranted.


Subject(s)
Asthma , Cellular Senescence , Disease Models, Animal , TOR Serine-Threonine Kinases , Vehicle Emissions , Animals , Asthma/immunology , Asthma/etiology , Cellular Senescence/immunology , Vehicle Emissions/toxicity , Mice , TOR Serine-Threonine Kinases/metabolism , Humans , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Allergens/immunology , Age Factors , Pyroglyphidae/immunology , Signal Transduction
13.
Nature ; 614(7949): 762-766, 2023 02.
Article in English | MEDLINE | ID: mdl-36653453

ABSTRACT

Differentiated somatic mammalian cells putatively exhibit species-specific division limits that impede cancer but may constrain lifespans1-3. To provide immunity, transiently stimulated CD8+ T cells undergo unusually rapid bursts of numerous cell divisions, and then form quiescent long-lived memory cells that remain poised to reproliferate following subsequent immunological challenges. Here we addressed whether T cells are intrinsically constrained by chronological or cell-division limits. We activated mouse T cells in vivo using acute heterologous prime-boost-boost vaccinations4, transferred expanded cells to new mice, and then repeated this process iteratively. Over 10 years (greatly exceeding the mouse lifespan)5 and 51 successive immunizations, T cells remained competent to respond to vaccination. Cells required sufficient rest between stimulation events. Despite demonstrating the potential to expand the starting population at least 1040-fold, cells did not show loss of proliferation control and results were not due to contamination with young cells. Persistent stimulation by chronic infections or cancer can cause T cell proliferative senescence, functional exhaustion and death6. We found that although iterative acute stimulations also induced sustained expression and epigenetic remodelling of common exhaustion markers (including PD1, which is also known as PDCD1, and TOX) in the cells, they could still proliferate, execute antimicrobial functions and form quiescent memory cells. These observations provide a model to better understand memory cell differentiation, exhaustion, cancer and ageing, and show that functionally competent T cells can retain the potential for extraordinary population expansion and longevity well beyond their organismal lifespan.


Subject(s)
Cell Division , Cellular Senescence , Longevity , Lymphocyte Activation , T-Lymphocytes , Animals , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Immunologic Memory , Longevity/immunology , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Cellular Senescence/immunology , Cellular Senescence/physiology , Immunization, Secondary , Vaccination , Adoptive Transfer , Time Factors , Infections/immunology , Chronic Disease , Epigenesis, Genetic
14.
Cells ; 11(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35053408

ABSTRACT

Glioblastoma (GBM) is the most common primary brain cancer with the median age at diagnosis around 64 years, thus pointing to aging as an important risk factor. Indeed, aging, by increasing the senescence burden, is configured as a negative prognostic factor for GBM stage. Furthermore, several anti-GBM therapies exist, such as temozolomide (TMZ) and etoposide (ETP), that unfortunately trigger senescence and the secretion of proinflammatory senescence-associated secretory phenotype (SASP) factors that are responsible for the improper burst of (i) tumorigenesis, (ii) cancer metastasis, (iii) immunosuppression, and (iv) tissue dysfunction. Thus, adjuvant therapies that limit senescence are urgently needed. The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) gene previously demonstrated a modulatory activity in restoring age-related immune dysfunction and in balancing the low-grade inflammatory status of elderly people. Based on the above findings, we tested LAV-BPIFB4 senotherapeutic effects on senescent glioblastoma U87-MG cells and on T cells from GBM patients. We interrogated SA-ß-gal and HLA-E senescence markers, SASP factors, and proliferation and apoptosis assays. The results highlighted a LAV-BPIFB4 remodeling of the senescent phenotype of GBM cells, enhancement of their sensitivity to temozolomide and a selective reduction of the T cells' senescence from GBM patients. Overall, these findings candidate LAV-BPIFB4 as an adjuvant therapy for GBM.


Subject(s)
Antineoplastic Agents/therapeutic use , Cellular Senescence/genetics , Glioma/blood , Glioma/genetics , Intercellular Signaling Peptides and Proteins/genetics , Longevity , Lymphocytes/metabolism , Mutation/genetics , Cell Line, Tumor , Cellular Senescence/drug effects , Cellular Senescence/immunology , Cytokines/metabolism , Glioma/drug therapy , Humans , Longevity/drug effects , Lymphocytes/drug effects , Phenotype , Recombinant Proteins/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use , Treatment Outcome
15.
Aging Cell ; 21(1): e13525, 2022 01.
Article in English | MEDLINE | ID: mdl-34962049

ABSTRACT

Aging and senescence impact CD4 T helper cell (Th) subset differentiation during influenza infection. In the lungs of infected aged mice, there were significantly greater percentages of Th cells expressing the transcription factor FoxP3, indicative of regulatory CD4 T cells (Treg), when compared to young. TGF-beta levels, which drive FoxP3 expression, were also higher in the bronchoalveolar lavage of aged mice and blocking TGF-beta reduced the percentage of FoxP3+ Th in aged lungs during influenza infection. Since TGF-beta can be the product of senescent cells, these were targeted by treatment with senolytic drugs. Treatment of aged mice with senolytics prior to influenza infection restored the differentiation of Th cells in those aged mice to a more youthful phenotype with fewer Th cells expressing FoxP3. In addition, treatment with senolytic drugs induced differentiation of aged Th toward a healing Type 2 phenotype, which promotes a return to homeostasis. These results suggest that senescent cells, via production of cytokines such as TGF-beta, have a significant impact on Th differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Cellular Senescence/immunology , Senotherapeutics/therapeutic use , Animals , Cell Differentiation , Humans , Mice , Senotherapeutics/pharmacology
16.
J Virol ; 96(3): e0173721, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34851147

ABSTRACT

The expansion of the geographical footprint of dengue viruses (DENVs) and their mosquito vectors have affected more than half of the global population, including older adults who appear to show elevated risk of severe dengue. Despite this epidemiological trend, how aging contributes to increased dengue pathogenesis is poorly understood. A limitation has been the lack of useful in vitro experimental approaches; cell lines commonly used for infection studies are immortal and hence do not age. Cell strains such as WI-38 and MRC-5 with diploid genomes do age with in vitro passaging, but these cell strains were isolated decades ago and are now mostly highly passaged. Here, we show that reprogramming of cell strains with finite life span into induced pluripotent stem cells (iPSCs), followed by conversion back into terminally differentiated cells, can be an approach to derive genetically identical cells at different stages of aging. The iPSC-derived differentiated cells were susceptible to wild-type DENV infection and produced greater levels of type I interferon expression with increased passaging, despite similar levels of infection. In contrast, infection with the attenuated DENV-2 PDK53 and YF17D-204 strains showed reduced and increased levels of infection with increasing passages, respectively; the latter could be clinically pertinent, as YF17D-204 vaccination in older adults is associated with increased risk of severe adverse outcome. The differences in infection susceptibility and host response collectively suggest the potential of iPSC-derived cell strains as a genetically controlled approach to understanding how aging impacts viral pathogenesis. IMPORTANCE Aging has been a risk factor for poor clinical outcome in several infectious diseases, including dengue. However, age-dependent responses to dengue and other flaviviral infection or vaccination have remained incompletely understood due partly to lack of suitable laboratory tools. We thus developed an in vitro approach to examine age-related changes in host response to flaviviral infection. Notably, this approach uses cell strains with diploid rather than aneuploidic genomes, which are unstable. Conversion of these cells into iPSCs ensures sustainability of this resource, and reprogramming back into terminally differentiated cells would, even with a limited number of passages, produce cells at different stages of aging for infection studies. Our findings suggest that this in vitro system has the potential to serve as a genetically controlled approach to define the age-related response to flavivirus infection.


Subject(s)
Flavivirus Infections/metabolism , Flavivirus Infections/virology , Flavivirus/physiology , Host-Pathogen Interactions , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/virology , Age Factors , Cell Differentiation , Cells, Cultured , Cellular Senescence/genetics , Cellular Senescence/immunology , Dengue/virology , Dengue Virus , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Male
17.
Oncogene ; 41(1): 26-36, 2022 01.
Article in English | MEDLINE | ID: mdl-34667277

ABSTRACT

The EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated ß-galactosidase (SA-ß-Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-ß and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.


Subject(s)
Cellular Senescence/immunology , Epithelial-Mesenchymal Transition/immunology , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Stomach Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Humans , Prognosis , Stomach Neoplasms/pathology , Tumor Microenvironment
18.
Int J Biochem Cell Biol ; 143: 106142, 2022 02.
Article in English | MEDLINE | ID: mdl-34954323

ABSTRACT

Alveolar epithelial cell senescence is a core event in the development of pulmonary fibrosis. Endoplasmic reticulum stress accelerates cellular senescence significantly; however, whether this stress promotes alveolar epithelial cell senescence in pulmonary fibrosis and its mechanisms are unclear. As a common intersection of endoplasmic reticulum stress signaling pathways, CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) activates the oxidative stress pathway, which in turn accelerates cellular senescence. Therefore, we speculated CHOP pathway activation would affect endoplasmic reticulum stress-induced alveolar epithelial cell senescence in pulmonary fibrosis. In this study, we observed that alveolar epithelial cell senescence was accompanied by CHOP overexpression in idiopathic pulmonary fibrosis lung tissues. Bleomycin and tunicamycin combination models in vivo and in vitro showed that CHOP downregulation rescued alveolar epithelial cell senescence, reduced fibroblast activation mediated by the senescence-associated secretory phenotype, and improved pulmonary fibrosis pathology. Mechanistic studies showed that CHOP accelerated alveolar epithelial cell senescence by promoting reactive oxygen species generation, which activated the nuclear factor-kappa B pathway. Our study suggested that CHOP activates the downstream nuclear factor-kappa B pathway, thus contributing to endoplasmic reticulum stress-induced alveolar epithelial cell senescence and pulmonary fibrosis.


Subject(s)
Alveolar Epithelial Cells/metabolism , CCAAT-Binding Factor/metabolism , Cellular Senescence/immunology , Idiopathic Pulmonary Fibrosis/genetics , NF-kappa B/metabolism , Aged , Animals , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/pathology , Male , Mice , Signal Transduction
19.
Cell Death Differ ; 29(6): 1267-1282, 2022 06.
Article in English | MEDLINE | ID: mdl-34916628

ABSTRACT

Cytoplasmic recognition of microbial lipopolysaccharides (LPS) in human cells is elicited by the caspase-4 and caspase-5 noncanonical inflammasomes, which induce a form of inflammatory cell death termed pyroptosis. Here we show that LPS-mediated activation of caspase-4 also induces a stress response promoting cellular senescence, which is dependent on the caspase-4 substrate gasdermin-D and the tumor suppressor p53. Furthermore, we found that the caspase-4 noncanonical inflammasome is induced and assembled in response to oncogenic RAS signaling during oncogene-induced senescence (OIS). Moreover, targeting caspase-4 expression in OIS showed its critical role in the senescence-associated secretory phenotype and the cell cycle arrest induced in cellular senescence. Finally, we observed that caspase-4 induction occurs in vivo in mouse models of tumor suppression and ageing. Altogether, we are showing that cellular senescence is induced by cytoplasmic LPS recognition by the noncanonical inflammasome and that this pathway is conserved in the cellular response to oncogenic stress.


Subject(s)
Caspases, Initiator , Inflammasomes , Animals , Caspases, Initiator/immunology , Cellular Senescence/immunology , Cytoplasm/immunology , Humans , Immunity, Innate , Inflammasomes/immunology , Lipopolysaccharides/pharmacology , Mice
20.
Front Immunol ; 12: 729366, 2021.
Article in English | MEDLINE | ID: mdl-34759918

ABSTRACT

A hallmark of T cell ageing is a loss of effector plasticity. Exercise delays T cell ageing, yet the mechanisms driving the effects of exercise on T cell biology are not well elucidated. T cell plasticity is closely linked with metabolism, and consequently sensitive to metabolic changes induced by exercise. Mitochondrial function is essential for providing the intermediate metabolites necessary to generate and modify epigenetic marks in the nucleus, thus metabolic activity and epigenetic mechanisms are intertwined. In this perspective we propose a role for exercise in CD4+ T cell plasticity, exploring links between exercise, metabolism and epigenetic reprogramming.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Plasticity , Cellular Senescence/immunology , Exercise/immunology , Immunosenescence/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cellular Senescence/genetics , Chromatin Assembly and Disassembly , Energy Metabolism , Epigenesis, Genetic , Exercise/genetics , Humans , Immunosenescence/genetics , Mitochondria/genetics , Mitochondria/immunology , Mitochondria/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...