Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 860
Filter
1.
Nat Commun ; 15(1): 7798, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242554

ABSTRACT

Phosphoethanolamine (pEtN) cellulose is a naturally occurring modified cellulose produced by several Enterobacteriaceae. The minimal components of the E. coli cellulose synthase complex include the catalytically active BcsA enzyme, a hexameric semicircle of the periplasmic BcsB protein, and the outer membrane (OM)-integrated BcsC subunit containing periplasmic tetratricopeptide repeats (TPR). Additional subunits include BcsG, a membrane-anchored periplasmic pEtN transferase associated with BcsA, and BcsZ, a periplasmic cellulase of unknown biological function. While cellulose synthesis and translocation by BcsA are well described, little is known about its pEtN modification and translocation across the cell envelope. We show that the N-terminal cytosolic domain of BcsA positions three BcsG copies near the nascent cellulose polymer. Further, the semicircle's terminal BcsB subunit tethers the N-terminus of a single BcsC protein in a trans-envelope secretion system. BcsC's TPR motifs bind a putative cello-oligosaccharide near the entrance to its OM pore. Additionally, we show that only the hydrolytic activity of BcsZ but not the subunit itself is necessary for cellulose secretion, suggesting a secretion mechanism based on enzymatic removal of translocation incompetent cellulose. Lastly, protein engineering introduces cellulose pEtN modification in orthogonal cellulose biosynthetic systems. These findings advance our understanding of pEtN cellulose modification and secretion.


Subject(s)
Cellulose , Escherichia coli Proteins , Escherichia coli , Ethanolamines , Glucosyltransferases , Cellulose/biosynthesis , Cellulose/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Ethanolamines/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Cell Membrane/metabolism , Cell Wall/metabolism , Periplasm/metabolism , Cellulase/metabolism , Cellulase/genetics
2.
Sci Rep ; 14(1): 20494, 2024 09 03.
Article in English | MEDLINE | ID: mdl-39227724

ABSTRACT

Bacterial cellulose synthesis from defined media and waste products has attracted increasing interest in the circular economy context for sustainable productions. In this study, a glucose dehydrogenase-deficient Δgdh K2G30 strain of Komagataeibacter xylinus was obtained from the parental wild type through homologous recombination. Both strains were grown in defined substrates and cheese whey as an agri-food waste to assess the effect of gene silencing on bacterial cellulose synthesis and carbon source metabolism. Wild type K2G30 boasted higher bacterial cellulose yields when grown in ethanol-based medium and cheese whey, although showing an overall higher D-gluconic acid synthesis. Conversely, the mutant Δgdh strain preferred D-fructose, D-mannitol, and glycerol to boost bacterial cellulose production, while displaying higher substrate consumption rates and a lower D-gluconic acid synthesis. This study provides an in-depth investigation of two K. xylinus strains, unravelling their suitability for scale-up BC production.


Subject(s)
Carbon , Cellulose , Cellulose/biosynthesis , Cellulose/metabolism , Carbon/metabolism , Acetobacteraceae/metabolism , Acetobacteraceae/genetics , Gluconates/metabolism , Glycerol/metabolism , Mannitol/metabolism
3.
Int J Biol Macromol ; 278(Pt 4): 134983, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39209591

ABSTRACT

Enzymatic treatment on lignocellulosic biomass has become a trend in preparing nanocellulose (NC), but the process must be optimized to guarantee high production yield and crystallinity. This study offers insights into an innovative protocol using cultivated fungal cellulase and xylanase to improve NC production from raw oil palm leaves (OPL) using five-factor-four-level Taguchi orthogonal design for optimizing parameters, namely substrate and enzyme loading, surfactant concentration, incubation temperature and time. Statistical results revealed the best condition for producing NC (66.06 % crystallinity, 43.59 % yield) required 10 % (w/v) substrate, 1 % (v/v) enzyme, 1.4 % (w/v) Tween-80, with 72-h incubation at 30 °C. Likewise, the highest sugar yield (47.07 %) was obtained using 2.5 % (w/v) substrate, 2.0 % (v/v) enzyme, 2.0 % (w/v) Tween-80, with 72-h incubation at 60 °C. The auxiliary enzymes used in this study, i.e., xylanase, produced higher crystallinity NC, showing widths between 8 and 12 nm and lengths >1 µm and sugars at 47.07 % yield. Thus, our findings proved that optimizing the single-step enzymatic hydrolysis of raw OPL could satisfactorily produce relatively crystalline NC and sugar yield for further transformation into bio-nanocomposites and biofuels. This study presented a simple, innovative protocol for NC synthesis showing characteristics comparable to the traditionally-prepared NC, which is vital for material's commercialization.


Subject(s)
Cellulase , Cellulose , Plant Leaves , Cellulose/chemistry , Cellulose/biosynthesis , Plant Leaves/chemistry , Cellulase/chemistry , Cellulase/metabolism , Sugars/chemistry , Arecaceae/chemistry , Palm Oil/chemistry , Biomass , Temperature , Hydrolysis , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry
4.
Int J Biol Macromol ; 278(Pt 4): 134892, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39217043

ABSTRACT

This study aimed to characterize potato varieties for producing potato juice media (PJM) that allow bacterial cellulose (BC) effective and cost-efficient production. The study used 12 edible and 10 starch potato varieties from an accredited company for breeding and seed production. In general, edible varieties produced a 73 % higher PJ yield. Favorable BC yields were obtained using five edible and two starch varieties. Notably, the average BC yields in PJM from three edible varieties (Altesse, Mazur, and Owacja) were above the average BC yield from Hestrin-Schramm (HS) medium (4.3, 4.1, and 3.9 g/L v. 3.69 g/L, respectively); these varieties had relatively high concentrations of glucose (3.3-4.2 g/L), fructose (3.0-4.2 g/L), and sucrose (2.9-4.2 g/L). It was also shown that the macro- and microstructure, crystallinity, and polymerization degree showed no significant differences between PJM-derived BC and HS-BC. As estimated, the cost of PJM required to produce 1 kg of BC is approximately EUR 60. In contrast, the cost of HS medium exceeds 1200 EUR. In conclusion, our research has proven that PJM can significantly reduce the costs (by over tenfold) of the medium for BC biosynthesis, ultimately lowering overall costs of producing this valuable biomaterial.


Subject(s)
Cellulose , Plant Tubers , Solanum tuberosum , Solanum tuberosum/chemistry , Cellulose/chemistry , Cellulose/biosynthesis , Plant Tubers/chemistry , Plant Tubers/metabolism , Starch/chemistry , Glucose/metabolism
5.
Int J Biol Macromol ; 277(Pt 3): 134436, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098689

ABSTRACT

Traditional vinegars are naturally produced from sugar- or starch-containing raw materials, through alcoholic fermentation followed by acetic fermentation. Fermentation is a spontaneous and complex process involving interactions between various microorganisms. In this study, we produced vinegar using traditional methods from six fruits: rosehip, pear, fig, wild pear, apple, and plum. Bacteria that produce bacterial cellulose (BC) were isolated from these vinegars and identified. In addition, we investigated the properties of BC produced from these bacteria. The strains isolated from vinegars were identified as Gluconobacter oxydans strain MG2022, Acetobacter tropicalis strain MG2022, Acetobacter fabarum strain MG2022, Komagataeibacter saccharivorans strain MG2022, K. saccharivorans strain EG2022, and Acetobacter lovaniensis strain OD2022. In total, 0.83-2.04 g/L BC was produced and the bacterial strain isolated from pear vinegar yielded the most BC. BC produced by the bacterial strain isolated from wild pear vinegar had the highest thermal stability and crystallinity (87.44 %). Overall, this study shows that different fruits contain different BC-producing bacteria in their natural flora and vinegars obtained from fruits can be used in BC production. Also, different BC-producing bacteria can be isolated from different vinegars, and BC produced by these bacteria might have different properties.


Subject(s)
Acetic Acid , Cellulose , Cellulose/chemistry , Cellulose/metabolism , Cellulose/biosynthesis , Acetic Acid/metabolism , Acetic Acid/chemistry , Fermentation , Acetobacter/metabolism , Acetobacter/isolation & purification , Bacteria/metabolism , Bacteria/classification , Fruit/microbiology , Phylogeny
6.
Carbohydr Polym ; 343: 122459, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174096

ABSTRACT

Bacterial cellulose (BC) is a renewable biomaterial that has attracted significant attention due to its excellent properties and wide applications. Komagataeibacter xylinus CGMCC 2955 is an important BC-producing strain. It primarily produces BC from glucose while simultaneously generating gluconic acid as a by-product, which acidifies the medium and inhibits BC synthesis. To enhance glucose uptake and BC synthesis, we reconstructed the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) and strengthened glycolysis by introducing heterologous genes, resulting in a recombinant strain (GX08PTS03; Δgcd::ptsHIcrrE. coli::ptsGE. coli::pfkAE. coli). Strain GX08PTS03 efficiently utilized glucose for BC production without accumulating gluconic acid. Subsequently, the fermentation process was systematically optimized. Under optimal conditions, strain GX08PTS03 produced 7.74 g/L of BC after 6 days of static fermentation, with a BC yield of 0.39 g/g glucose, which were 87.41 % and 77.27 % higher than those of the wild-type strain, respectively. The BC produced by strain GX08PTS03 exhibited a longer fiber diameter along with a lower porosity, significantly higher solid content, crystallinity, tensile strength, and Young's modulus. This study is novel in reporting that the engineered PTSGlc-based glucose metabolism could effectively enhance the production and properties of BC, providing a future outlook for the biopolymer industry.


Subject(s)
Acetobacteraceae , Cellulose , Glucose , Cellulose/biosynthesis , Cellulose/metabolism , Cellulose/chemistry , Glucose/metabolism , Acetobacteraceae/metabolism , Acetobacteraceae/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Fermentation , Metabolic Engineering/methods , Gluconacetobacter xylinus/metabolism , Gluconacetobacter xylinus/genetics , Tensile Strength
7.
Int J Biol Macromol ; 277(Pt 2): 134228, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39074706

ABSTRACT

Bacterial nanocellulose was produced here using static, static intermittent-fed batch (SIFB) and rotary disc bioreactor (RDB) mode. Economical black tea broth media with symbiotic consortia of bacteria and yeast (SCOBY) was used towards feasible BNC production (instead of commercial NCIM 2526 strain and conventional HS media). The physicochemical characterization of BNC produced in all three modes via FE-SEM, ATR-FTIR, XRD and TGA results showed a highly porous morphology, mostly Iα form, good crystallinity and thermal stability, respectively. BNC crystallinity lies in the range of 68 % (RDB) to 79.4 % (static and SIFB). Water retention value (86 to 93 %) and moisture content (85 to 93 %) are high for BNC produced in all three modes. Commendable difference in the BNC yield, sugar consumption, conversion yield and residual sugar was observed using different methods. Highest BNC yield 29.4 ± 0.66 gL-1 was obtained under SIFB method as compared to static mode (13.6 ± 0.32 g L-1). Under RDB, a negligible amount of BNC i.e., 1.0 ± 0.2 g L-1 was produced. SCOBY with BTB medium was found unsuitable for BNC production under RDB and needs further investigation. Thus, this comparative study offers a way to produce a commendable amount of low-priced BNC for various techno-industrial usage.


Subject(s)
Bioreactors , Cellulose , Fermentation , Tea , Cellulose/chemistry , Cellulose/biosynthesis , Tea/chemistry , Culture Media/chemistry , Bacteria/metabolism , Batch Cell Culture Techniques/methods , Nanoparticles/chemistry
8.
Int J Biol Macromol ; 275(Pt 2): 133755, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986995

ABSTRACT

Bacterial cellulose (BC) is an extracellular polysaccharide with myriad unique properties, such as high purity, water-holding capacity and biocompatibility, making it attractive in materials science. However, genetic engineering techniques for BC-producing microorganisms are rare. Herein, the electroporation-based gene transformation and the λ Red-mediated gene knockout method with a nearly 100 % recombination efficiency were established in the fast-growing and BC hyperproducer Enterobacter sp. FY-07. This genetic manipulation toolkit was validated by inactivating the protein subunit BcsA in the cellulose synthase complex. Subsequently, the inducible BC-producing strains from glycerol were constructed through inducible expression of the key gene fbp in the gluconeogenesis pathway, which recovered >80 % of the BC production. Finally, the BC properties analysis results indicated that the induced-synthesized BC pellicles were looser, more porous and reduced crystallinity, which could further broaden the application prospects of BC. To our best knowledge, this is the first attempt to construct the completely inducible BC-producing strains. Our work paves the way for increasing BC productivity by metabolic engineering and broadens the available fabrication methods for BC-based advanced functional materials.


Subject(s)
Cellulose , Enterobacter , Enterobacter/metabolism , Enterobacter/genetics , Cellulose/biosynthesis , Cellulose/metabolism , Metabolic Engineering/methods , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycerol/metabolism
9.
Int J Biol Macromol ; 276(Pt 2): 133904, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39084992

ABSTRACT

This study proposed Hibiscus sabdariffa as a novel substrate for BC production with Komagataeibacter species and their consortia. K. intermedius is found as the most efficient producer (5.98 g/L BC, 3.56 × 10-2 g-1 h-1 productivity rate) following K. maltaceti (4.44 g/L BC, 2.64 × 10-2 g-1 h-1 productivity rate) and K. nataicola (3.67 g/L BC, 2.18 × 10-2 g-1 h-1 productivity rate). Whereas agitation increased BC production with K. nataicola (1.22-fold, 4.49 g/L BC), K. maltaceti (1.24-fold, 5.52 g/L BC) and K. intermedius (1.27-fold, 7.63 g/L BC), irregular shaped BC was obtained. This could be a novel result as Komagataeibacter consortia increased BC production by 1.17-2.01-fold compared to monocultures resulting as 8.11 g/L BC through the co-cultivation of K. maltaceti-K. intermedius. Maximum increase was found to be 1.75-fold (1.79-fold WHC), occurring with monoculture of K. maltaceti, while 1.94-fold (1.26-fold WHC) with K. maltaceti-K. intermedius consortium when H. sabdariffa-based media compared Hestrin-Schramm media. Based on these results, this could be a novel result as H. sabdariffa-based media may replace the use of HS media in BC production by means of a bioactive content-rich plant and obtaining 3-D ultrafine porous structure with high thermal resistant (∼460-500 °C) BC with mono and co-cultivation of Komagataeibacter species to be used in industrial area.


Subject(s)
Acetobacteraceae , Cellulose , Hibiscus , Acetobacteraceae/metabolism , Cellulose/biosynthesis , Cellulose/metabolism , Fermentation
10.
J Integr Plant Biol ; 66(8): 1658-1674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031878

ABSTRACT

The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.


Subject(s)
Cell Wall , Gene Expression Regulation, Plant , Plant Proteins , Populus , Wood , Populus/genetics , Populus/metabolism , Populus/growth & development , Cell Wall/metabolism , Wood/growth & development , Wood/genetics , Wood/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Xylem/metabolism , Xylem/genetics , Lignin/biosynthesis , Lignin/metabolism , Plants, Genetically Modified , Genes, Plant , Cellulose/biosynthesis , Cellulose/metabolism
11.
Proc Natl Acad Sci U S A ; 121(31): e2403585121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042685

ABSTRACT

Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.


Subject(s)
Cellulose , Directed Molecular Evolution , Cellulose/metabolism , Cellulose/biosynthesis , Directed Molecular Evolution/methods , Acetobacteraceae/metabolism , Acetobacteraceae/genetics , Phenotype , Mutation
12.
Plant Physiol Biochem ; 214: 108918, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986238

ABSTRACT

Lodging largely affects yield, quality and mechanical harvesting of maize. Stalk strength is one of the major factors that affect maize lodging. Although plant cell wall components including lignin and cellulose were known to be associated with stalk strength and lodging resistance, spatial accumulation of specific lignin monomers and cellulose in different tissues and their association with stalk strength in maize was not clearly understood. In this study, we found that both G and S lignin monomers accumulate highest in root, stem rind and leaf vein. Consistently, most lignin biosynthetic genes were expressed higher in root and stem than in other tissues. However, cellulose appears to be lowest in root. There are only mild changes of G lignin and cellulose in different internodes. Instead, we noticed a dramatic decrease of S-lignin accumulation and lignin biosynthetic gene expression in 2nd to 4th internodes wherein stem breakage usually occurs, thereby revealing a few candidate lignin biosynthetic genes associated with stalk strength. Moreover, stalk strength is positively correlated with G, S lignin, and cellulose, but negatively correlated with S/G ratio based on data of maize lines with high or low stalk strength. Loss-of-function of a caffeic acid o-methyltransferase (COMT), which is involved in S lignin biosynthesis, in the maize bm3 mutant, leads to lower stalk strength. Our data collectively suggest that stalk strength is determined by tissue-specific accumulation of lignin monomers and cellulose, and manipulation of the cell wall components by genetic engineering is vital to improve maize stalk strength and lodging resistance.


Subject(s)
Cellulose , Lignin , Zea mays , Zea mays/metabolism , Zea mays/genetics , Lignin/metabolism , Lignin/biosynthesis , Cellulose/metabolism , Cellulose/biosynthesis , Gene Expression Regulation, Plant , Plant Stems/metabolism , Plant Stems/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Wall/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics
13.
Int J Biol Macromol ; 275(Pt 2): 133396, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945719

ABSTRACT

Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.


Subject(s)
Bacteria , Cellulose , Cosmetics , Bacteria/chemistry , Cellulose/biosynthesis , Cellulose/chemistry , Cellulose/isolation & purification , Fermentation , Government Regulation , Sustainable Growth
14.
Int J Biol Macromol ; 274(Pt 1): 133047, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857722

ABSTRACT

Bacterial cellulose (BC) has been found extensive applications in diverse domains for its exceptional attributes. However, the lack of antibacterial properties hampers its utilization in food and biomedical sectors. Leucocin, a bacteriocin belonging to class IIa, is synthesized by Leuconostoc that demonstrates potent efficacy against the foodborne pathogen, Listeria monocytogenes. In the current study, co-culturing strategy involving Kosakonia oryzendophytica FY-07 and Leuconostoc carnosum 4010 was used to confer anti-listerial activity to BC, which resulted in the generation of leucocin-containing BC (BC-L). The physical characteristics of BC-L, as determined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were similar to the physical characteristics of BC. Notably, the experimental results of disc diffusion and growth curve indicated that the BC-L film exhibited a potent inhibitory effect against L. monocytogenes. Scanning electron microscopy (SEM) showed that BC-L exerts its bactericidal activity by forming pores on the bacterial cell wall. Despite the BC-L antibacterial mechanism, which involves pore formation, the mammalian cell viability remained unaffected by the BC-L film. The measurement results of zeta potential indicated that the properties of BC changed after being loaded with leucocin. Based on these findings, the anti-listerial BC-L generated through this co-culture system holds promise as a novel effective antimicrobial agent for applications in meat product preservation and packaging.


Subject(s)
Anti-Bacterial Agents , Cellulose , Listeria monocytogenes , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/biosynthesis , Coculture Techniques , Microbial Sensitivity Tests , Leuconostoc/metabolism , Bacteriocins/pharmacology , Bacteriocins/chemistry
15.
Int J Biol Macromol ; 274(Pt 1): 133391, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917921

ABSTRACT

Leaf petiole or stem strength is an important agronomic trait affecting the growth of underground organs as a channel for material exchange and plays a vital role in the quality and yield of crops and vegetables. There are two different types of petioles in lotus, floating leaf petioles and vertical leaf petioles; however, the internal difference mechanism between these petioles is unclear. In this study, we investigated the differences between the initial vertical leaf petioles and the initial floating leaf petioles based on RNA sequencing (RNA-seq), and >2858 differentially expressed genes were annotated. These genes were chiefly enriched in phenylpropanoid biosynthesis, which is the source of the lignin and cellulose in petioles and stems. Lignin biology-related gene NnHCT1 was identified, and subsequent biological function validation demonstrated that the transient overexpression of NnHCT1 significantly increased the lignin and cellulose contents in lotus petioles and tobacco leaves. In contrast, silencing NnHCT1 through virus-induced gene silencing significantly reduced petiole lignin synthesis. Additionally, differentially up-regulated MYB family transcription factors were identified using RNA-seq. Yeast-one-hybrid and dual-luciferase reporter assays demonstrated that MYB4 could bind to the NnHCT1 promoter and up-regulate NnHCT1 expression. These findings demonstrate the significant potential of NnHCT1 to enhance lignin synthesis, thereby improving stem or petiole resistance to stunting and explaining the need for the study of differential petiole relationships in plants.


Subject(s)
Gene Expression Regulation, Plant , Lignin , Nelumbo , Plant Leaves , Plant Proteins , Lignin/biosynthesis , Lignin/genetics , Nelumbo/genetics , Nelumbo/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cellulose/biosynthesis , Genes, Plant
16.
Plant Physiol Biochem ; 212: 108794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850730

ABSTRACT

With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.


Subject(s)
Cell Wall , Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Stress, Physiological , Transcription Factors , Oryza/genetics , Oryza/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Lignin/biosynthesis , Lignin/metabolism , Plants, Genetically Modified , Cellulose/biosynthesis , Cellulose/metabolism , Abscisic Acid/metabolism
17.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1856-1867, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914496

ABSTRACT

Bacterial cellulose (BC) is a biopolymer synthesized by bacteria, which possess excellent characteristics such as high water holding capacity, high crystallinity, and high purity. It is widely used in food, medical, cosmetics, and functional films. Komagataeibacter xylinus is a model strain used in BC synthesis research. In bacteria, motility-related genes are associated with BC synthesis, whereas in Komagataeibacter xylinus CGMCC 2955, the functions of motility-related genes and their effects on BC synthesis are not known. To address this gap, we used the λ Red recombinant system to individually knock out motA, motB, and mot2A respectively, and constructed the knockout strains K. x-ΔmotA, K. x-ΔmotB, and K. x-Δmot2A. Additionally, both motA and motB were disrupted to construct the K. x-ΔmotAB mutant. The results demonstrated that knockout strain K. x-ΔmotAB exhibited the highest BC yield, reaching (5.05±0.26) g/L, which represented an increase of approximately 24% compared to wild-type strains. Furthermore, the BC synthesized by this strain exhibited the lowest porosity, 54.35%, and displayed superior mechanical properties with a Young's modulus of up to 5.21 GPa. As knocking out motA and motB genes in K. xylinus CGMCC 2955 did not reduce BC yield; instead, it promoted BC synthesis. Consequently, this research further deepened our understanding of the relationship between motility and BC synthesis in acetic acid bacteria. The knockouts of motA and motB genes resulted in reduced BC porosity and improved mechanical properties, provides a reference for BC synthesis and membrane structure regulation modification.


Subject(s)
Acetobacteraceae , Cellulose , Cellulose/biosynthesis , Cellulose/metabolism , Acetobacteraceae/genetics , Acetobacteraceae/metabolism , Gene Knockout Techniques , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gluconacetobacter xylinus/genetics , Gluconacetobacter xylinus/metabolism , Genes, Bacterial
19.
Glycobiology ; 34(6)2024 04 24.
Article in English | MEDLINE | ID: mdl-38690785

ABSTRACT

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Subject(s)
Arabidopsis , Cellulose , Glucosylceramides , Glucosyltransferases , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Cellulose/metabolism , Cellulose/biosynthesis , Glucosylceramides/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Cell Wall/metabolism
20.
Plant J ; 119(2): 1014-1029, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805573

ABSTRACT

Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.


Subject(s)
Cellulose , Gene Expression Regulation, Plant , Gibberellins , Manihot , Plant Proteins , Manihot/genetics , Manihot/metabolism , Cellulose/metabolism , Cellulose/biosynthesis , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Cell Wall/metabolism , Cell Enlargement , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/growth & development , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL