Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.910
1.
Nature ; 622(7983): 552-561, 2023 Oct.
Article En | MEDLINE | ID: mdl-37758947

Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.


Central Nervous System , Imaging, Three-Dimensional , Single-Cell Analysis , Transcriptome , Animals , Mice , Brain/anatomy & histology , Brain/cytology , Brain/metabolism , Central Nervous System/anatomy & histology , Central Nervous System/cytology , Central Nervous System/metabolism , Single-Cell Analysis/methods , Spinal Cord/anatomy & histology , Spinal Cord/cytology , Spinal Cord/metabolism , Transcriptome/genetics , Single-Cell Gene Expression Analysis , Viral Tropism , Datasets as Topic , Transgenes/genetics , Imaging, Three-Dimensional/methods
2.
Nature ; 622(7981): 120-129, 2023 Oct.
Article En | MEDLINE | ID: mdl-37674083

Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.


Astrocytes , Central Nervous System , Glutamic Acid , Signal Transduction , Adult , Humans , Astrocytes/classification , Astrocytes/cytology , Astrocytes/metabolism , Central Nervous System/cytology , Central Nervous System/metabolism , Glutamic Acid/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Neurons/metabolism , Synaptic Transmission , Calcium/metabolism , Exocytosis , Single-Cell Gene Expression Analysis , Vesicular Glutamate Transport Protein 1/deficiency , Vesicular Glutamate Transport Protein 1/genetics , Gene Deletion , Cerebral Cortex/cytology , Cerebral Cortex/metabolism
3.
Nature ; 620(7975): 881-889, 2023 Aug.
Article En | MEDLINE | ID: mdl-37558878

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.


Autoimmune Diseases , Central Nervous System , Dendritic Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Lactic Acid , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/prevention & control , Autoimmunity , Central Nervous System/cytology , Central Nervous System/immunology , Central Nervous System/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Probiotics/therapeutic use , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , Feedback, Physiological , Lactase/genetics , Lactase/metabolism , Single-Cell Analysis
4.
Nature ; 613(7942): 120-129, 2023 01.
Article En | MEDLINE | ID: mdl-36517604

Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFß1-TGFßR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.


Central Nervous System , Microglia , Myelin Sheath , Adult , Animals , Humans , Mice , Axons/metabolism , Central Nervous System/cytology , Central Nervous System/metabolism , Central Nervous System/pathology , Microglia/cytology , Microglia/metabolism , Microglia/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Cognition , Transforming Growth Factor beta1/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Lipid Metabolism , Aging/metabolism , Aging/pathology
5.
Nature ; 611(7936): 585-593, 2022 Nov.
Article En | MEDLINE | ID: mdl-36352225

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Central Nervous System , Cerebrospinal Fluid , Macrophages , Parenchymal Tissue , Animals , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Central Nervous System/cytology , Central Nervous System/metabolism , Cerebrospinal Fluid/metabolism , Macrophages/physiology , Meninges/cytology , Rheology , Extracellular Matrix Proteins/metabolism , Aging/metabolism , Phagocytosis , Endocytosis , Interferon-gamma/metabolism , Parenchymal Tissue/cytology , Humans
6.
Science ; 378(6619): eadc9020, 2022 11 04.
Article En | MEDLINE | ID: mdl-36378959

Astrocytes, a type of glia, are abundant and morphologically complex cells. Here, we report astrocyte molecular profiles, diversity, and morphology across the mouse central nervous system (CNS). We identified shared and region-specific astrocytic genes and functions and explored the cellular origins of their regional diversity. We identified gene networks correlated with astrocyte morphology, several of which unexpectedly contained Alzheimer's disease (AD) risk genes. CRISPR/Cas9-mediated reduction of candidate genes reduced astrocyte morphological complexity and resulted in cognitive deficits. The same genes were down-regulated in human AD, in an AD mouse model that displayed reduced astrocyte morphology, and in other human brain disorders. We thus provide comprehensive molecular data on astrocyte diversity and mechanisms across the CNS and on the molecular basis of astrocyte morphology in health and disease.


Alzheimer Disease , Astrocytes , Central Nervous System , Transcriptome , Animals , Humans , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Astrocytes/classification , Astrocytes/metabolism , Astrocytes/ultrastructure , Disease Models, Animal , Central Nervous System/cytology , Central Nervous System/metabolism
7.
Virus Res ; 313: 198726, 2022 05.
Article En | MEDLINE | ID: mdl-35248672

HHV-6A is a neurotropic herpesvirus able to infect several CNS cells including astrocytes and primary neurons. Here we found that HHV-6A infection of astrocytoma cells, by reducing autophagy, increased ROS and induced ER stress, promoting the release of inflammatory cytokines such as IL-6 and IL-1ß and activating pathways such as STAT3, NF-kB and mTOR. Moreover, HHV-6A infection increased the production of CXCL13, a B lymphocyte attracting chemokine, whose recruitment in the CNS could further enhance neuroinflammation. Interestingly, HHV-6A also increased the release of cathepsin S by infected astrocytoma cells as well as by primary neurons. As this enzyme is involved in the degradation of MBP, this effect could contribute to the onset/progression of MS, a neurodegenerative disease that, besides inflammation, is characterized by a progressive demyelination process. In conclusion, this study unveils new molecular mechanisms through which HHV-6A may promote important aspects involved in several neurodegenerative diseases.


Autophagy , Cathepsins/metabolism , Cytokines/metabolism , Endoplasmic Reticulum Stress , Neurons/virology , Roseolovirus Infections/immunology , Central Nervous System/cytology , Herpesvirus 6, Human/pathogenicity , Humans , Inflammation , Neurodegenerative Diseases , Neurons/immunology
8.
Nat Rev Neurosci ; 23(1): 23-34, 2022 01.
Article En | MEDLINE | ID: mdl-34671105

Recent transcriptomic, histological and functional studies have begun to shine light on the fibroblasts present in the meninges, choroid plexus and perivascular spaces of the brain and spinal cord. Although the origins and functions of CNS fibroblasts are still being described, it is clear that they represent a distinct cell population, or populations, that have likely been confused with other cell types on the basis of the expression of overlapping cellular markers. Recent work has revealed that fibroblasts play crucial roles in fibrotic scar formation in the CNS after injury and inflammation, which have also been attributed to other perivascular cell types such as pericytes and vascular smooth muscle cells. In this Review, we describe the current knowledge of the location and identity of CNS perivascular cell types, with a particular focus on CNS fibroblasts, including their origin, subtypes, roles in health and disease, and future areas for study.


Central Nervous System Diseases/physiopathology , Central Nervous System/injuries , Central Nervous System/physiology , Fibroblasts/physiology , Animals , Central Nervous System/cytology , Humans
9.
Arch Dis Child Fetal Neonatal Ed ; 107(1): 60-64, 2022 Jan.
Article En | MEDLINE | ID: mdl-34021027

OBJECTIVE: Central nervous system (CNS) derived exosomes can be purified from peripheral blood and have been used widely in adult neurological disease. Application to neonatal neurological disease deserves investigation in the setting of hypoxic-ischaemic encephalopathy (HIE). DESIGN: Observational cohort. SETTING: Level III neonatal intensive care unit. PARTICIPANTS: Term/near-term neonates undergoing therapeutic hypothermia (TH) for HIE. INTERVENTIONS: Blood samples were collected at 0-6, 12, 24, 48 and 96 hours of life. MAIN OUTCOMES AND MEASURES: CNS exosomes were purified from serum using previously described methods. Biomarker protein levels were quantified using standard ELISA methods and normalised to exosome marker CD-81. The slope of change for biomarker levels was calculated for each time interval. Our primary outcome was MRI basal ganglia/watershed score of ≥3. RESULTS: 26 subjects were included (umbilical artery pH range 6.6-7.29; 35% seizures). An increasing MRI injury score was significantly associated with decreasing levels of synaptopodin between 0-6 and 12 hours (p=0.03) and increasing levels of lipocalin-2 (NGAL) between 12 and 48 hours (p<0.0001). Neuronal pentraxin was not significant. The negative predictive values for increasing synaptopodin and decreasing NGAL was 70.0% and 90.9%, respectively. CONCLUSIONS AND RELEVANCE: Our results indicate that CNS exosome cargo has the potential to act as biomarkers of the severity of brain injury and response to TH as well as quantify pharmacological response to neuroactive therapeutic/adjuvant agents. Rigorous prospective trials are critical to evaluate potential clinical use of exosome biomarkers.


Exosomes/metabolism , Hypothermia, Induced , Hypoxia-Ischemia, Brain/blood , Hypoxia-Ischemia, Brain/therapy , Lipocalin-2/blood , Microfilament Proteins/blood , Biomarkers , C-Reactive Protein , Central Nervous System/cytology , Diffusion Magnetic Resonance Imaging , Female , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Infant, Newborn , Intensive Care Units, Neonatal , Male , Nerve Tissue Proteins/blood , Pilot Projects , Retrospective Studies
11.
Acta Neuropathol ; 143(2): 143-157, 2022 02.
Article En | MEDLINE | ID: mdl-34860266

It is the centenary of the discovery of oligodendrocytes and we are increasingly aware of their importance in the functioning of the brain in development, adult learning, normal ageing and in disease across the life course, even in those diseases classically thought of as neuronal. This has sparked more interest in oligodendroglia for potential therapeutics for many neurodegenerative/neurodevelopmental diseases due to their more tractable nature as a renewable cell in the central nervous system. However, oligodendroglia are not all the same. Even from the first description, differences in morphology were described between the cells. With advancing techniques to describe these differences in human tissue, the complexity of oligodendroglia is being discovered, indicating apparent functional differences which may be of critical importance in determining vulnerability and response to disease, and targeting of potential therapeutics. It is timely to review the progress we have made in discovering and understanding oligodendroglial heterogeneity in health and neuropathology.


Central Nervous System/cytology , Oligodendroglia/cytology , Humans
12.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article En | MEDLINE | ID: mdl-34638524

Human pluripotent stem cells (hPSCs) are grouped into two cell types; embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). hESCs have provided multiple powerful platforms to study human biology, including human development and diseases; however, there were difficulties in the establishment of hESCs from human embryo and concerns over its ethical issues. The discovery of hiPSCs has expanded to various applications in no time because hiPSCs had already overcome these problems. Many hPSC-based studies have been performed using two-dimensional monocellular culture methods at the cellular level. However, in many physiological and pathophysiological conditions, intra- and inter-organ interactions play an essential role, which has hampered the establishment of an appropriate study model. Therefore, the application of recently developed technologies, such as three-dimensional organoids, bioengineering, and organ-on-a-chip technology, has great potential for constructing multicellular tissues, generating the functional organs from hPSCs, and recapitulating complex tissue functions for better biological research and disease modeling. Moreover, emerging techniques, such as single-cell transcriptomics, spatial transcriptomics, and artificial intelligence (AI) allowed for a denser and more precise analysis of such heterogeneous and complex tissues. Here, we review the applications of hPSCs to construct complex organs and discuss further prospects of disease modeling and drug discovery based on these PSC-derived organs.


Central Nervous System/cytology , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Synthetic Biology/methods , Tissue Engineering/methods , Biomedical Research , Cell Differentiation , Coculture Techniques , Humans
13.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article En | MEDLINE | ID: mdl-34638595

Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.


Induced Pluripotent Stem Cells/cytology , Mental Disorders/therapy , Neuroglia/cytology , Animals , Astrocytes/cytology , Central Nervous System/cytology , Drug Development/methods , Humans , Inflammation/pathology , Microglia/cytology , Neurons/cytology , Quality of Life
14.
Immunity ; 54(10): 2194-2208, 2021 10 12.
Article En | MEDLINE | ID: mdl-34644556

As resident macrophages of the central nervous system (CNS), microglia are associated with diverse functions essential to the developing and adult brain during homeostasis and disease. They are aided in their tasks by intricate bidirectional communication with other brain cells under steady-state conditions as well as with infiltrating peripheral immune cells during perturbations. Harmonious cell-cell communication involving microglia are considered crucial to maintain the healthy state of the tissue environment and to overcome pathology such as neuroinflammation. Analyses of such intercellular pathways have contributed to our understanding of the heterogeneous but context-associated microglial responses to environmental cues across neuropathology, including inflammatory conditions such as infections and autoimmunity, as well as immunosuppressive states as seen in brain tumors. Here, we summarize the latest evidence demonstrating how these interactions drive microglia immune and non-immune functions, which coordinate the transition from homeostatic to disease-related cellular states.


Central Nervous System/cytology , Central Nervous System/physiology , Homeostasis/physiology , Microglia/cytology , Microglia/physiology , Animals , Humans
15.
Acta Med Okayama ; 75(5): 549-556, 2021.
Article En | MEDLINE | ID: mdl-34703037

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The loss of nigrostriatal dopaminergic neurons produces its characteristic motor symptoms, but PD patients also have non-motor symptoms such as constipation and orthostatic hypotension. The pathological hallmark of PD is the presence of α-synuclein-containing Lewy bodies and neurites in the brain. However, the PD pathology is observed in not only the central nervous system (CNS) but also in parts of the peripheral nervous system such as the enteric nervous system (ENS). Since constipation is a typical prodromal non-motor symptom in PD, often preceding motor symptoms by 10-20 years, it has been hypothesized that PD pathology propagates from the ENS to the CNS via the vagal nerve. Discovery of pharmacological and other methods to halt this progression of neurodegeneration in PD has the potential to improve millions of lives. Astrocytes protect neurons in the CNS by secretion of neurotrophic and antioxidative factors. Similarly, astrocyte-like enteric glial cells (EGCs) are known to secrete neuroprotective factors in the ENS. In this article, we summarize the neuroprotective function of astrocytes and EGCs and discuss therapeutic strategies for the prevention of neurodegeneration in PD targeting neurotrophic and antioxidative molecules in glial cells.


Antioxidants/metabolism , Central Nervous System/drug effects , Enteric Nervous System/drug effects , Neuroglia/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Central Nervous System/cytology , Enteric Nervous System/cytology , Humans
16.
Nat Rev Neurosci ; 22(11): 657-673, 2021 11.
Article En | MEDLINE | ID: mdl-34545240

Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.


Autism Spectrum Disorder/physiopathology , Central Nervous System/physiology , Immunity, Cellular/physiology , Neuronal Plasticity/physiology , Schizophrenia/physiopathology , Age Factors , Animals , Autism Spectrum Disorder/immunology , Central Nervous System/cytology , Humans , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/physiopathology , Schizophrenia/immunology
18.
Neural Plast ; 2021: 5575090, 2021.
Article En | MEDLINE | ID: mdl-34221002

The parenchymal microglia possess different morphological characteristics in cerebral physiological and pathological conditions; thus, visualizing these cells is useful as a means of further investigating parenchymal microglial function. Annexin A3 (ANXA3) is expressed in microglia, but it is unknown whether it can be used as a marker protein for microglia and its physiological function. Here, we compared the distribution and morphology of parenchymal microglia labeled by ANXA3, cluster of differentiation 11b (CD11b), and ionized calcium-binding adaptor molecule 1 (Iba1) and measured the expression of ANXA3 in nonparenchymal macrophages (meningeal and perivascular macrophages). We also investigated the spatiotemporal expression of ANXA3, CD11b, and Iba1 in vivo and in vitro and the cellular function of ANXA3 in microglia. We demonstrated that ANXA3-positive cells were abundant and evenly distributed throughout the whole brain tissue and spinal cord of adult rats. The morphology and distribution of ANXA3-labeled microglia were quite similar to those labeled by the microglial-specific markers CD11b and Iba1 in the central nervous system (CNS). ANXA3 was expressed in the cytoplasm of microglia, and its expression was significantly increased in activated microglia. ANXA3 was almost undetectable in the nonparenchymal macrophages. Meanwhile, the protein and mRNA expression levels of ANXA3 in different regions of the CNS were different from those of CD11b and Iba1. Moreover, knockdown of ANXA3 inhibited the proliferation and migration of microglia, while overexpression of ANXA3 enhanced these activities. This study confirms that ANXA3 may be a novel marker for parenchymal microglia in the CNS of adult rats and enriches our understanding of ANXA3 from expression patterns to physiological function.


Annexin A3/analysis , Central Nervous System/cytology , Microglia/chemistry , Nerve Tissue Proteins/analysis , Animals , Annexin A3/biosynthesis , Annexin A3/genetics , Biomarkers , CD11b Antigen/biosynthesis , CD11b Antigen/genetics , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/genetics , Cell Cycle , Cell Movement , Cells, Cultured , Gene Knockdown Techniques , Genetic Vectors , Infarction, Middle Cerebral Artery/pathology , Lentivirus , Macrophages/chemistry , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Organ Specificity , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Transfection
19.
STAR Protoc ; 2(3): 100666, 2021 09 17.
Article En | MEDLINE | ID: mdl-34286294

Microglia are important immune cells in the central nervous system (CNS). Mutations in microglia may cause CNS disorders. Replacement of dysfunctional microglia with allogeneic wild-type microglia can correct the gene deficiency, thus treating the neurogenic diseases. However, traditional approaches cannot efficiently replace microglia at the adulthood. Here, we introduce a potentially clinical-feasible strategy named microglia replacement by bone marrow transplantation that achieves efficient microglia replacement at the whole CNS scale, including the brain, spinal cord, and retina in adult mice. For complete details on the use and execution of this protocol, please refer to Xu et al. (2020). The original abbreviation of this microglia replacement strategy is mrBMT. We hereby change the name to Mr BMT.


Bone Marrow Cells/cytology , Bone Marrow Transplantation/methods , Central Nervous System , Microglia , Animals , Brain/cytology , Central Nervous System/cytology , Central Nervous System/surgery , Female , Male , Mice , Microglia/cytology , Microglia/physiology , Spinal Cord/cytology , Transplantation, Homologous
20.
Int J Mol Sci ; 22(11)2021 May 30.
Article En | MEDLINE | ID: mdl-34070785

Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.


Central Nervous System/metabolism , Glutamic Acid/metabolism , Interneurons/metabolism , Neurons/metabolism , Receptors, Somatostatin/genetics , Somatostatin/genetics , Synapses/metabolism , Animals , Calcium/metabolism , Central Nervous System/cytology , Cyclic AMP/metabolism , Gene Expression Regulation , Humans , Interneurons/cytology , Neurons/cytology , Potassium/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Somatostatin/metabolism , Somatostatin/metabolism , Synaptic Transmission
...