Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.877
1.
J Biomed Opt ; 29(Suppl 3): S33302, 2024 Jun.
Article En | MEDLINE | ID: mdl-38707651

Significance: Cerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS). Aim: This work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery. Approach: The Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts. Results: In the first protocol (28±5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65±15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed. Conclusions: The Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.


Cerebrovascular Circulation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation , Female , Male , Adult , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Oximetry/methods , Oximetry/instrumentation , Oxygen/blood , Oxygen/metabolism , Brain/diagnostic imaging , Brain/blood supply , Equipment Design
2.
Crit Care Explor ; 6(5): e1083, 2024 May.
Article En | MEDLINE | ID: mdl-38694846

OBJECTIVES: This prospective cohort study aimed to investigate changes in intracranial pressure (ICP) and cerebral hemodynamics in infants with congenital heart disease undergoing the Glenn procedure, focusing on the relationship between superior vena cava pressure and estimated ICP. DESIGN: A single-center prospective cohort study. SETTING: The study was conducted in a cardiac center over 4 years (2019-2022). PATIENTS: Twenty-seven infants with congenital heart disease scheduled for the Glenn procedure were included in the study, and detailed patient demographics and primary diagnoses were recorded. INTERVENTIONS: Transcranial Doppler (TCD) ultrasound examinations were performed at three time points: baseline (preoperatively), postoperative while ventilated (within 24-48 hr), and at discharge. TCD parameters, blood pressure, and pulmonary artery pressure were measured. MEASUREMENTS AND MAIN RESULTS: TCD parameters included systolic flow velocity, diastolic flow velocity (dFV), mean flow velocity (mFV), pulsatility index (PI), and resistance index. Estimated ICP and cerebral perfusion pressure (CPP) were calculated using established formulas. There was a significant postoperative increase in estimated ICP from 11 mm Hg (interquartile range [IQR], 10-16 mm Hg) to 15 mm Hg (IQR, 12-21 mm Hg) postoperatively (p = 0.002) with a trend toward higher CPP from 22 mm Hg (IQR, 14-30 mm Hg) to 28 mm Hg (IQR, 22-38 mm Hg) postoperatively (p = 0.1). TCD indices reflected alterations in cerebral hemodynamics, including decreased dFV and mFV and increased PI. Intracranial hemodynamics while on positive airway pressure and after extubation were similar. CONCLUSIONS: Glenn procedure substantially increases estimated ICP while showing a trend toward higher CPP. These findings underscore the intricate interaction between venous pressure and cerebral hemodynamics in infants undergoing the Glenn procedure. They also highlight the remarkable complexity of cerebrovascular autoregulation in maintaining stable brain perfusion under these circumstances.


Cerebrovascular Circulation , Heart Defects, Congenital , Hemodynamics , Intracranial Pressure , Ultrasonography, Doppler, Transcranial , Humans , Infant , Prospective Studies , Female , Male , Intracranial Pressure/physiology , Heart Defects, Congenital/surgery , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/diagnostic imaging , Cerebrovascular Circulation/physiology , Ultrasonography, Doppler, Transcranial/methods , Hemodynamics/physiology , Cohort Studies , Fontan Procedure , Vena Cava, Superior/physiopathology , Vena Cava, Superior/diagnostic imaging
3.
Eur J Med Res ; 29(1): 289, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760844

OBJECTIVE: To explore the imaging and transcranial Doppler cerebral blood flow characteristics of cerebrovascular fenestration malformation and its relationship with the occurrence of ischemic cerebrovascular disease. METHODS: A retrospective analysis was conducted on the imaging data of 194 patients with cerebrovascular fenestration malformation who visited the Heyuan People's Hospital from July 2021 to July 2023. The location and morphology of the fenestration malformation blood vessels as well as the presence of other cerebrovascular diseases were analyzed. Transcranial Doppler cerebral blood flow detection data of patients with cerebral infarction and those with basilar artery fenestration malformation were also analyzed. RESULTS: A total of 194 patients with cerebral vascular fenestration malformation were found. Among the artery fenestration malformation, basilar artery fenestration was the most common, accounting for 46.08% (94/194). 61 patients (31.44%) had other vascular malformations, 97 patients (50%) had cerebral infarction, of which 30 were cerebral infarction in the fenestrated artery supply area. 28 patients with cerebral infarction in the fenestrated artery supply area received standardized antiplatelet, lipid-lowering and plaque-stabilizing medication treatment. During the follow-up period, these patients did not experience any symptoms of cerebral infarction or transient ischemic attack again. There were no differences in peak systolic flow velocity and end diastolic flow velocity, pulsatility index and resistance index between the ischemic stroke group and the no ischemic stroke group in patients with basal artery fenestration malformation (P > 0.05). CONCLUSION: Cerebrovascular fenestration malformation is most common in the basilar artery. Cerebrovascular fenestration malformation may also be associated with other cerebrovascular malformations. Standardized antiplatelet and statin lipid-lowering and plaque-stabilizing drugs are suitable for patients with cerebral infarction complicated with fenestration malformation. The relationship between cerebral blood flow changes in basilar artery fenestration malformation and the occurrence of ischemic stroke may not be significant.


Cerebrovascular Circulation , Humans , Female , Male , Middle Aged , Cerebrovascular Circulation/physiology , Adult , Retrospective Studies , Aged , Ultrasonography, Doppler, Transcranial/methods , Blood Flow Velocity , Adolescent , Brain Ischemia/physiopathology , Brain Ischemia/etiology , Brain Ischemia/diagnostic imaging , Cerebrovascular Disorders/physiopathology , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/diagnostic imaging , Young Adult , Cerebral Infarction/physiopathology , Cerebral Infarction/etiology , Cerebral Infarction/diagnostic imaging
4.
No Shinkei Geka ; 52(3): 488-495, 2024 May.
Article Ja | MEDLINE | ID: mdl-38783491

The middle cerebral artery divides into the cortical and perforating branches that supply blood to the extensive cerebral cortex and basal ganglia. In addition to an understanding of the normal vessel diameter and length, endovascular physicians should be familiar with anatomical variations. Understanding the perfusion territory is important for accurate diagnosis of the disease type.


Middle Cerebral Artery , Humans , Middle Cerebral Artery/diagnostic imaging , Cerebrovascular Circulation/physiology
5.
J Headache Pain ; 25(1): 84, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773396

BACKGROUND: Prior neuroimaging studies on vestibular migraine (VM) have extensively certified the functional and structural alterations in multiple brain regions and networks. However, few studies have assessed the cerebral blood flow (CBF) in VM patients using arterial spin labeling (ASL). The present study aimed to investigate CBF and functional connectivity (FC) alterations in VM patients during interictal periods. METHODS: We evaluated 52 VM patients and 46 healthy controls (HC) who received resting-state pseudo-continuous ASL and functional magnetic resonance imaging (fMRI) scanning. Comparisons of voxel-based CBF and seed-based FC were performed between the two groups. Brain regions showed significant group differences in CBF analyses were chosen as seeds in FC analyses. Additionally, the associations between abnormal imaging results and clinical features were explored. RESULTS: Compared with HC, VM patients showed higher normalized CBF in the right precentral gyrus (PreCG), left postcentral gyrus (PostCG), left superior frontal gyrus and bilateral insular (p < 0.05, FDR corrected). Furthermore, VM patients exhibited increased FC between the right PreCG and areas of the left PostCG, left cuneus and right lingual gyrus (p < 0.05, FDR corrected). In addition, we observed decreased FC between the left insular and regions of the left thalamus and right anterior cingulate cortex, as well as increased FC between the left insular and right fusiform gyrus in VM patients (p < 0.05, FDR corrected). Moreover, these variations in brain perfusion and FC were significantly correlated with multiple clinical features including frequency of migraine symptoms, frequency of vestibular symptoms and disease duration of VM (all p < 0.05). CONCLUSIONS: Patients with VM during interictal period showed hyperperfusion and abnormal resting-state FC in brain regions potentially contributed to disrupted multi-sensory and autonomic processing, as well as impaired ocular motor control, pain modulation and emotional regulation. Our study provided novel insights into the complex neuropathology of VM from a CBF perspective.


Cerebrovascular Circulation , Magnetic Resonance Imaging , Migraine Disorders , Spin Labels , Humans , Female , Male , Migraine Disorders/physiopathology , Migraine Disorders/diagnostic imaging , Adult , Cerebrovascular Circulation/physiology , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Brain/blood supply , Vestibular Diseases/physiopathology , Vestibular Diseases/diagnostic imaging
6.
Orphanet J Rare Dis ; 19(1): 212, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773534

BACKGROUND: Brain injury in hereditary hemoglobinopathies is commonly attributed to anemia-related relative hypoperfusion in terms of impaired oxygen blood supply. Supratentorial and infratentorial vascular watershed regions seem to be especially vulnerable, but data are very scarce. AIMS: We investigated a large beta-thalassemia sample with arterial spin labeling in order to characterize regional perfusion changes and their correlation with phenotype and anemia severity. METHODS: We performed a multicenter single-scanner cross-sectional 3T-MRI study analyzing non-invasively the brain perfusion in 54 transfusion-dependent thalassemia (TDT), 23 non-transfusion-dependent thalassemia (NTDT) patients and 56 Healthy Controls (HC). Age, hemoglobin levels, and cognitive functioning were recorded. RESULTS: Both TDT and NTDT patients showed globally increased brain perfusion values compared to healthy controls, while no difference was found between patient subgroups. Using age and sex as covariates and scaling the perfusion maps for the global cerebral blood flow, beta-thalassemia patients showed relative hyperperfusion in supratentorial/infratentorial watershed regions. Perfusion changes correlated with hemoglobin levels (p = 0.013) and were not observed in the less severely anemic patients (hemoglobin level > 9.5 g/dL). In the hyperperfused regions, white matter density was significantly decreased (p = 0.0003) in both patient subgroups vs. HC. In NTDT, white matter density changes correlated inversely with full-scale Intelligence Quotient (p = 0.007) while in TDT no correlation was found. CONCLUSION: Relative hyperperfusion of watershed territories represents a hemodynamic hallmark of beta-thalassemia anemia challenging previous hypotheses of brain injury in hereditary anemias. A careful management of anemia severity might be crucial for preventing structural white matter changes and subsequent long-term cognitive impairment.


Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , beta-Thalassemia , Humans , beta-Thalassemia/physiopathology , beta-Thalassemia/pathology , Male , Female , Adult , Cross-Sectional Studies , Brain/pathology , Brain/diagnostic imaging , Young Adult , Cerebrovascular Circulation/physiology , Adolescent , Middle Aged , Child
7.
Nature ; 629(8013): 810-818, 2024 May.
Article En | MEDLINE | ID: mdl-38778234

Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.


Cerebrovascular Circulation , Ultrasonography, Doppler, Transcranial , Humans , Ultrasonography, Doppler, Transcranial/methods , Male , Cerebrovascular Circulation/physiology , Female , Adult , Signal-To-Noise Ratio , Blood Flow Velocity , Young Adult , Imaging, Three-Dimensional , Skull/diagnostic imaging , Skull/blood supply
8.
PLoS One ; 19(5): e0304107, 2024.
Article En | MEDLINE | ID: mdl-38781193

AIM: In a previous study, we reported that watching two-dimensional videos of earthquakes significantly reduced sympathetic nerve activity in healthy young adults. In the present study, we aimed to investigate the emotional responses to earthquakes using immersive virtual reality (VR), which can provide a more realistic experience. METHODS: In total, 24 healthy young adults (12 males, 21.4 ± 0.2 years old) participated. Participants were required to watch earthquake and neutral videos while wearing a head-mounted display and near-infrared spectroscopy (NIRS), during which physiological signals, including pulse rate and cerebral blood flow (CBF) in the dorsolateral prefrontal cortex, were measured. We also analyzed changes in sympathetic and parasympathetic indices and obtained seven emotion ratings: valence, arousal, dominance, fear, astonishment, anxiety, and panic. RESULTS: The VR earthquake videos evoked negative subjective emotions, and the pulse rate significantly decreased. Sympathetic nerve activity tended to decrease, whereas CBF in the left prefrontal cortex showed a slight increase, although this was not significant. CONCLUSIONS: This study showed that measurements combined with NIRS and immersive VR have the potential to capture emotional responses to different stimuli.


Earthquakes , Emotions , Heart Rate , Spectroscopy, Near-Infrared , Virtual Reality , Humans , Male , Spectroscopy, Near-Infrared/methods , Emotions/physiology , Female , Young Adult , Heart Rate/physiology , Cerebrovascular Circulation/physiology , Adult , Prefrontal Cortex/physiology , Arousal/physiology
9.
Neuron ; 112(9): 1378-1380, 2024 May 01.
Article En | MEDLINE | ID: mdl-38697020

Adequate reperfusion after ischemic stroke is a major determinant of functional outcome yet remains unpredictable and insufficient for most survivors. In this issue of Neuron, Binder et al.1 identify leptomeningeal collaterals (LMCs) in mice and human patients as a key factor in regulating reperfusion and hemorrhagic transformation following stroke.


Collateral Circulation , Reperfusion , Stroke , Humans , Animals , Stroke/physiopathology , Collateral Circulation/physiology , Mice , Ischemic Stroke/physiopathology , Cerebrovascular Circulation/physiology , Meninges/blood supply , Brain Ischemia/physiopathology
10.
CNS Neurosci Ther ; 30(5): e14748, 2024 05.
Article En | MEDLINE | ID: mdl-38727518

AIMS: To investigate the characteristics of dynamic cerebral autoregulation (dCA) after intravenous thrombolysis (IVT) and assess the relationship between dCA and prognosis. METHODS: Patients with unilateral acute ischemic stroke receiving IVT were prospectively enrolled; those who did not were selected as controls. All patients underwent dCA measurements, by quantifying the phase difference (PD) and gain, at 1-3 and 7-10 days after stroke onset. Simultaneously, two dCA-based nomogram models were established to verify the predictive value of dCA for patients with mild-to-moderate stroke. RESULTS: Finally, 202 patients who received IVT and 238 who did not were included. IVT was positively correlated with higher PD on days 1-3 and 7-10 after stroke onset. PD values in both sides at 1-3 days after stroke onset and in the affected side at 7-10 days after onset were independent predictors of unfavorable outcomes in patients who received IVT. Additionally, in patients with mild-to-moderate stroke who received IVT, the dCA-based nomogram models significantly improved the risk predictive ability for 3-month unfavorable outcomes. CONCLUSION: IVT has a positive effect on dCA in patients with acute stroke; furthermore, dCA may be useful to predict the prognosis of patients with IVT.


Homeostasis , Ischemic Stroke , Thrombolytic Therapy , Humans , Male , Female , Aged , Middle Aged , Prognosis , Thrombolytic Therapy/methods , Homeostasis/physiology , Homeostasis/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/physiopathology , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/therapeutic use , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/drug effects , Prospective Studies , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/therapeutic use , Administration, Intravenous , Predictive Value of Tests , Aged, 80 and over , Nomograms , Stroke/drug therapy , Stroke/physiopathology
11.
J Med Invest ; 71(1.2): 92-101, 2024.
Article En | MEDLINE | ID: mdl-38735731

This study aimed to investigate blood flow dynamics in the bilateral prefrontal cortex during silent and oral reading using near-infrared spectroscopy (NIRS). The subjects were 40 right-handed university students (20.5±1.8 years old, 20 men and 20 women). After completing the NIRS measurements, the subjects were asked to rate their level of proficiency in silent and oral reading, using a 5-point Likert scale. During oral reading, the left lateral prefrontal cortex (Broca's area) was significantly more active than the right side. During silent reading, prefrontal cortex activity was lower than that during oral reading, and there was no significant difference between both sides of the brain. A significant negative correlation was found between the change in oxy-hemoglobin (oxy-Hb) concentration in the left and right lateral prefrontal cortex during silent reading and silent reading speed. In addition, students with lower self-reported reading proficiency had significantly greater changes in oxy-Hb concentrations in the left and right lateral prefrontal cortex during silent/oral reading than did students with higher self-reported reading proficiency. Reading task assessment using NIRS may be useful for identifying language lateralization and Broca's area. The results demonstrate that NIRS is useful for assessing effortful reading and may be used to diagnose developmental dyslexia in children. J. Med. Invest. 71 : 92-101, February, 2024.


Prefrontal Cortex , Reading , Spectroscopy, Near-Infrared , Humans , Prefrontal Cortex/blood supply , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Male , Female , Young Adult , Oxyhemoglobins/analysis , Oxyhemoglobins/metabolism , Cerebrovascular Circulation/physiology , Adult
12.
Clin Neurol Neurosurg ; 241: 108289, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692117

OBJECTIVE: Transcranial Doppler ultrasound (TDUS), computed tomography angiography (CTA), and transcranial Doppler ultrasound to detect cerebral blood flow are among the adjunctive tests in diagnosing brain death. This study aimed to investigate the effectiveness of orbital doppler ultrasound (ODUS). METHODS: This prospective, single-blind study included 66 patients for whom brain death was to be diagnosed. Primary outcome measures were ODUS measurements, Ophthalmic artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive indices (RI) measurements recorded during the brain death determination process. Secondary outcome measures were computed tomography angio (CTA), transcranial Doppler ultrasound (TDUS), and demographic data. RESULTS: This study investigating the effectiveness of ODUS in diagnosing brain death provided diagnostic success with 100% sensitivity and 93% specificity compared to CT angiography. It was noted that anatomical variations may limit its use. CONCLUSION: ODUS was found to have high sensitivity and specificity in the diagnosis of clinical brain death. It may assist in early prognostic assessment and shorten patient follow-up and diagnostic processes.


Brain Death , Ultrasonography, Doppler, Transcranial , Humans , Brain Death/diagnostic imaging , Brain Death/diagnosis , Male , Female , Middle Aged , Single-Blind Method , Adult , Prospective Studies , Ultrasonography, Doppler, Transcranial/methods , Aged , Computed Tomography Angiography/methods , Young Adult , Ophthalmic Artery/diagnostic imaging , Sensitivity and Specificity , Cerebrovascular Circulation/physiology , Adolescent , Orbit/diagnostic imaging , Orbit/blood supply
14.
Medicine (Baltimore) ; 103(21): e38254, 2024 May 24.
Article En | MEDLINE | ID: mdl-38788021

Cerebral collateral circulation (CC) is associated with the recurrence and severity of acute ischemic stroke (AIS), and early identification of poor CC is helpful for the prevention of AIS. In this study we evaluated the association between serum albumin levels and CC in AIS using logistic regression. Propensity score (PS) matching was used to eliminate the effect of confounders, and restricted cubic splines (RCS) were employed to explore potential nonlinear associations between albumin and CC. In unadjusted logistic regression analysis, lower albumin (OR = 0.85, 95% CI = 0.79-0.92) was associated with poor CC, and after adjusting for covariates, the odds of lower albumin for poor CC compared to good CC were 0.86 (95% CI = 0.79-0.94). In the PS cohort, the association of albumin with CC was consistent with those of the original cohort. RCS results showed a linear relationship between albumin and CC (P values of .006 and .08 for overall and nonlinear associations, respectively). The results of this study suggest that lower serum albumin is independently associated with an increased risk of poor CC, which may serve as an effective predictive indicator for poor CC in patients with severe intracranial atherosclerotic stenosis.


Collateral Circulation , Ischemic Stroke , Propensity Score , Serum Albumin , Humans , Male , Collateral Circulation/physiology , Female , Ischemic Stroke/blood , Ischemic Stroke/physiopathology , Ischemic Stroke/etiology , Middle Aged , Aged , Serum Albumin/analysis , Cerebrovascular Circulation/physiology , Intracranial Arteriosclerosis/blood , Intracranial Arteriosclerosis/physiopathology , Intracranial Arteriosclerosis/complications , Retrospective Studies , Logistic Models
15.
Eur J Cardiothorac Surg ; 65(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38745366

In the current endovascular era, open surgery through left posterolateral thoracotomy with moderate to deep hypothermic circulatory arrest remains an alternative for treating chronic distal arch or proximal descending aortic diseases, allowing cardiovascular surgeons to definitively repair the aorta in a single stage. When utilizing this approach, this report illustrates an alternative surgical technique for antegrade body perfusion during cooling, antegrade selective cerebral perfusion and rewarming, through a prosthetic graft on the right subclavian artery. This report shows the safety and feasibility of this technique during open distal arch and/or proximal descending aortic surgery through left posterolateral thoracotomy, after shifting the patient from a supine to the right lateral decubitus position.


Aorta, Thoracic , Cerebrovascular Circulation , Subclavian Artery , Thoracotomy , Humans , Subclavian Artery/surgery , Thoracotomy/methods , Aorta, Thoracic/surgery , Cerebrovascular Circulation/physiology , Male , Perfusion/methods , Aged , Blood Vessel Prosthesis Implantation/methods , Aortic Aneurysm, Thoracic/surgery , Middle Aged
16.
Sci Rep ; 14(1): 11915, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789499

Speckle contrast optical spectroscopy (SCOS) is an emerging camera-based technique that can measure human cerebral blood flow (CBF) with high signal-to-noise ratio (SNR). At low photon flux levels typically encountered in human CBF measurements, camera noise and nonidealities could significantly impact SCOS measurement SNR and accuracy. Thus, a guide for characterizing, selecting, and optimizing a camera for SCOS measurements is crucial for the development of next-generation optical devices for monitoring human CBF and brain function. Here, we provide such a guide and illustrate it by evaluating three commercially available complementary metal-oxide-semiconductor cameras, considering a variety of factors including linearity, read noise, and quantization distortion. We show that some cameras that are well-suited for general intensity imaging could be challenged in accurately quantifying spatial contrast for SCOS. We then determine the optimal operating parameters for the preferred camera among the three and demonstrate measurement of human CBF with this selected low-cost camera. This work establishes a guideline for characterizing and selecting cameras as well as for determining optimal parameters for SCOS systems.


Cerebrovascular Circulation , Signal-To-Noise Ratio , Spectrum Analysis , Humans , Cerebrovascular Circulation/physiology , Spectrum Analysis/methods , Spectrum Analysis/instrumentation , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply
17.
Top Spinal Cord Inj Rehabil ; 30(2): 78-95, 2024.
Article En | MEDLINE | ID: mdl-38799609

Background: Spinal cord injuries (SCI) often result in cardiovascular issues, increasing the risk of stroke and cognitive deficits. Objectives: This study assessed cerebrovascular reactivity (CVR) using functional magnetic resonance imaging (fMRI) during a hypercapnic challenge in SCI participants compared to noninjured controls. Methods: Fourteen participants were analyzed (n = 8 with SCI [unless otherwise noted], median age = 44 years; n = 6 controls, median age = 33 years). CVR was calculated through fMRI signal changes. Results: The results showed a longer CVR component (tau) in the grey matter of SCI participants (n = 7) compared to controls (median difference = 3.0 s; p < .05). Time since injury (TSI) correlated negatively with steady-state CVR in the grey matter and brainstem of SCI participants (RS = -0.81, p = .014; RS = -0.84, p = .009, respectively). Lower steady-state CVR in the brainstem of the SCI group (n = 7) correlated with lower diastolic blood pressure (RS = 0.76, p = .046). Higher frequency of hypotensive episodes (n = 7) was linked to lower CVR outcomes in the grey matter (RS = -0.86, p = .014) and brainstem (RS = -0.89, p = .007). Conclusion: Preliminary findings suggest a difference in the dynamic CVR component, tau, between the SCI and noninjured control groups, potentially explaining the higher cerebrovascular health burden in SCI individuals. Exploratory associations indicate that longer TSI, lower diastolic blood pressure, and more hypotensive episodes may lead to poorer CVR outcomes. However, further research is necessary to establish causality and support these observations.


Cerebrovascular Circulation , Magnetic Resonance Imaging , Spinal Cord Injuries , Humans , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/complications , Male , Adult , Female , Middle Aged , Cerebrovascular Circulation/physiology , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Brain Stem/physiopathology , Brain Stem/diagnostic imaging
18.
Neurosurg Rev ; 47(1): 223, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758245

OBJECTIVE: Delayed cerebral ischemia (DCI) is a potentially reversible adverse event after aneurysmal subarachnoid hemorrhage (aSAH), when early detected and treated. Computer tomography perfusion (CTP) is used to identify the tissue at risk for DCI. In this study, the predictive power of early CTP was compared with that of blood distribution on initial CT for localization of tissue at risk for DCI. METHODS: A consecutive patient cohort with aSAH treated between 2012 and 2020 was retrospectively analyzed. Blood distribution on CT was semi-quantitatively assessed with the Hijdra-score. The vessel territory with the most surrounding blood and the one with perfusion deficits on CTP performed on day 3 after ictus were considered to be at risk for DCI, respectively. RESULTS: A total of 324 patients were included. Delayed infarction occurred in 17% (56/324) of patients. Early perfusion deficits were detected in 82% (46/56) of patients, 85% (39/46) of them developed infarction within the predicted vessel territory at risk. In 46% (25/56) a vessel territory at risk was reliably determined by the blood distribution. For the prediction of DCI, blood amount/distribution was inferior to CTP. Concerning the identification of "tissue at risk" for DCI, a combination of both methods resulted in an increase of sensitivity to 64%, positive predictive value to 58%, and negative predictive value to 92%. CONCLUSIONS: Regarding the DCI-prediction, early CTP was superior to blood amount/distribution, while a consideration of subarachnoid blood distribution may help identify the vessel territories at risk for DCI in patients without early perfusion deficits.


Brain Ischemia , Subarachnoid Hemorrhage , Tomography, X-Ray Computed , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Male , Female , Middle Aged , Brain Ischemia/etiology , Aged , Tomography, X-Ray Computed/methods , Retrospective Studies , Adult , Cerebrovascular Circulation/physiology , Perfusion Imaging/methods
19.
Neurosurg Rev ; 47(1): 222, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758384

To assess whether monitoring brain tissue oxygen partial pressure (PbtO2) or employing intracranial pressure (ICP)/cerebral perfusion pressure (CCP)-guided management improves patient outcomes, including mortality, hospital length of stay (LOS), mean daily ICP and mean daily CCP during the intensive care unit(ICU)stay. We searched the Web of Science, EMBASE, PubMed, Cochrane Library, and MEDLINE databases until December 12, 2023. Prospective randomized controlled and cohort studies were included. A meta-analysis was performed for the primary outcome measure, mortality, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eleven studies with a total of 37,492 patients were included. The mortality in the group with PbtO2 was 29.0% (odds ratio: 0.73;95% confidence interval [CI]:0.56-0.96; P = 0.03; I = 55%), demonstrating a significant benefit. The overall hospital LOS was longer in the PbtO2 group than that in the ICP/CPP group (mean difference:2.03; 95% CI:1.03-3.02; P<0.0001; I = 39%). The mean daily ICP in the PbtO2 monitoring group was lower than that in the ICP/CPP group (mean difference:-1.93; 95% CI: -3.61 to -0.24; P = 0.03; I = 41%). Moreover, PbtO2 monitoring did not improve the mean daily CPP (mean difference:2.43; 95%CI: -1.39 to 6.25;P = 0.21; I = 56%).Compared with ICP/CPP monitoring, PbtO2 monitoring reduced the mortality and the mean daily ICP in patients with severe traumatic brain injury; however, no significant effect was noted on the mean daily CPP. In contrast, ICP/CPP monitoring alone was associated with a short hospital stay.


Brain Injuries, Traumatic , Brain , Intracranial Pressure , Oxygen , Humans , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/therapy , Cerebrovascular Circulation/physiology , Intracranial Pressure/physiology , Length of Stay , Monitoring, Physiologic/methods , Oxygen/metabolism , Oxygen/blood , Partial Pressure , Prognosis
20.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38771245

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , Rest , Humans , Male , Female , Adult , Cerebrovascular Circulation/physiology , Reproducibility of Results , Rest/physiology , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Young Adult , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Psychomotor Performance/physiology , Circadian Rhythm/physiology , Arousal/physiology
...